

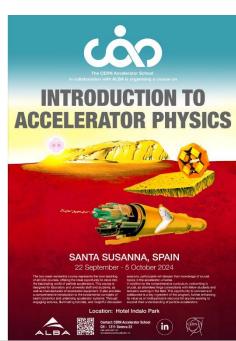
Beam Instrumentation & Diagnostics Part 1

CAS Introduction to Accelerator Physics

Santa Susanna, 1st of October 2024

Peter Forck

Gesellschaft für Schwerionenforschnung (GSI)


p.forck@gsi.de

Beam Instrumentation:

Functionality of devices & basic applications

Beam Diagnostics:

Usage of devices for complex measurements

Demands on Beam Diagnostics

Diagnostics is the 'sensory organs' for a real beam in a real environment.

(Referring to lecture by Volker Ziemann about 'Detecting imperfections to enable corrections')

Different demands lead to different installations:

- ➤ Quick, non-destructive measurements leading to a single number or simple plots
 Used as a check for online information. Reliable technologies have to be used
 Example: Current measurement by transformers
- Complex instruments for severe malfunctions, accelerator commissioning & development
 The instrumentation might be destructive and complex
 Example: Emittance determination, tune measurement

General usage of beam instrumentation:

- Monitoring of beam parameters for operation, beam alignment & accel. development
- ➤ Instruments for automatic, active beam control

 Example: Closed orbit feedback at synchrotrons using position measurement by BPMs

Demands on Beam Diagnostics

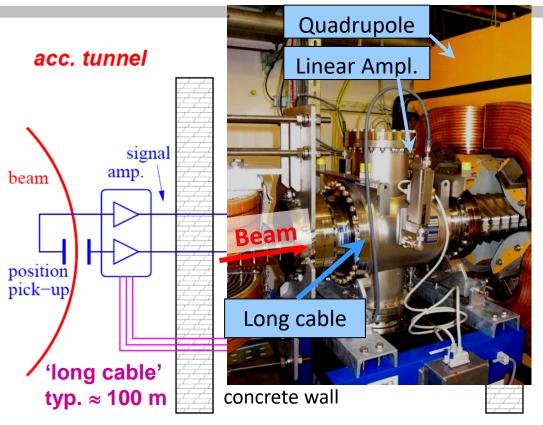
Diagnostics is the 'sensory organs' for a real beam in a real environment.

(Referring to lecture by Volker Ziemann about 'Detecting imperfections to enable corrections')

Non-invasive (= 'non-intercepting' or 'non-destructive') methods are preferred:

- \triangleright The beam is not influenced \Rightarrow the **same** beam can be measured at several locations
- > The instrument is not destroyed due to high beam power

Instruments could be different for:

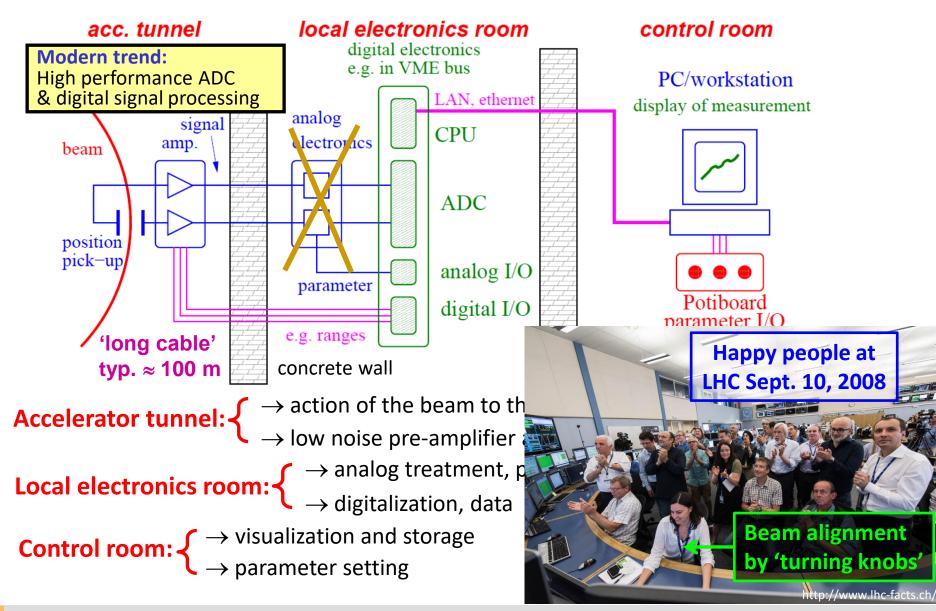

- \triangleright Transfer lines with single passage \leftrightarrow synchrotrons with multi-passages
- ➤ Electrons are mostly relativistic ↔ protons are at the beginning non-relativistic

Remark:

Most instrumentation is installed outside of rf-cavities to prevent for signal disturbance

Typical Installation of a Beam Instrument

Accelerator tunnel:


- \rightarrow action of the beam to the detector
- → low noise pre-amplifier and first signal shaping

Local electronics room: **₹**

- \rightarrow analog treatment, partly combining other parameters \rightarrow digitalization, data bus systems (GPIB, VME, cPCI, μ TCA...)

Typical Installation of a Beam Instrument

Outline of the Lectures

The ordering of the subjects is oriented by the beam quantities:

Part 1 of the lecture on electro-magnetic monitors:

- Current measurement
- Beam position monitors for bunched beams

Part 2 of the lecture on transverse and longitudinal diagnostics:

- > Profile measurement
- > Transverse emittance measure
- Measurement of longitudinal parameters

Measurement of Beam Current

The beam current and its time structure the basic quantity of the beam:

- > It this the first check of the accelerator functionality
- > It has to be determined in an absolute manner
- > Important for transmission measurement and to prevent for beam losses.

Different devices are used:

> Transformers: Measurement of the beam's magnetic field

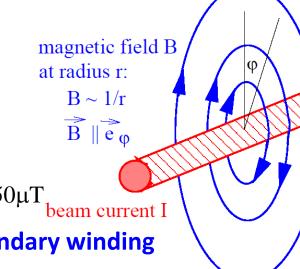
Non-destructive

No dependence on beam type and energy

They have lower detection threshold.

Faraday cups: Measurement of the beam's electrical charges

Magnetic Field of the Beam and the ideal Transformer


 \blacktriangleright Beam current of N_{part} charges with velocity β

$$I_{beam} = qe \cdot \frac{N_{part}}{t} = qe \cdot \beta c \cdot \frac{N_{part}}{l}$$

- > cylindrical symmetry
- → only azimuthal component

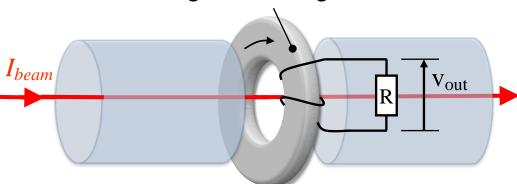
$$\vec{\mathbf{B}} = \mu_0 \frac{I_{beam}}{2\pi r} \cdot \vec{\mathbf{e}}_{\varphi}$$

Example: $I = 1 \mu A$, $r = 10 \text{cm} \Rightarrow B_{beam} = 2 \text{pT}$, earth $B_{earth} = 50 \mu T_{beam current}$

Idea: Beam as primary winding and sense by secondary winding

⇒ Loaded current transformer

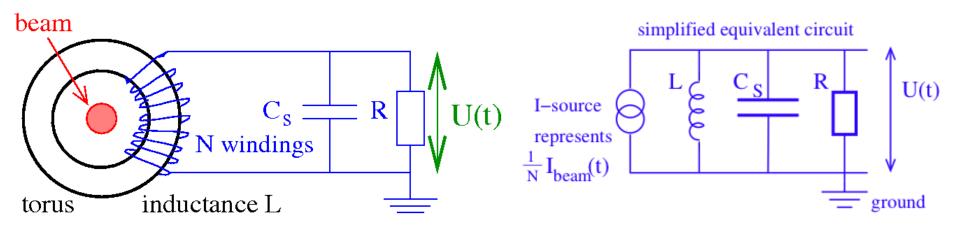
$$I_1/I_2 = N_2/N_1 \Rightarrow I_{sec} = 1/N \cdot I_{beam}$$


Inductance of a torus of
$$\mu_r$$

$$L = \frac{\mu_0 \mu_r}{2\pi} \cdot lN^2 \cdot \ln \frac{r_{out}}{r_{in}}$$

Goal of torus: Large inductance L and guiding of field lines.

Definition: $U = L \cdot dI/dt$


Torus to guide the magnetic field



Fast Current Transformer FCT (also called Passive Transformer)

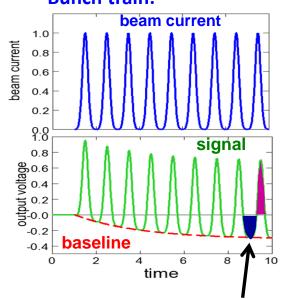
mer)

Simplified electrical circuit of a passively loaded transformer:

Equivalent circuit for analysis of sensitivity and bandwidth (disregarding the loss resistivity R_L)

A voltages is measured: $U = R \cdot I_{sec} = R / N \cdot I_{beam} \equiv S \cdot I_{beam}$ with S sensitivity [V/A] to determine beam current I_{beam} equivalent to transfer function or transfer impedance Z

Response of the Fast Current Transformer: Droop Time



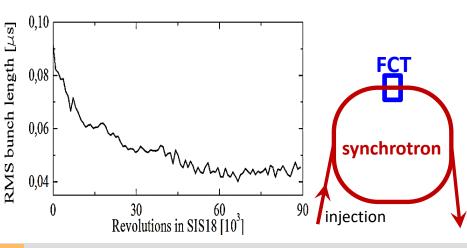
Time domain description:

A transformer is a ac-coupled device, i.e. it does **not** transfer dc-currents
Characterization with droop time:

$$\tau_{droop}$$
= 1/($2\pi f_{low}$) = L/R

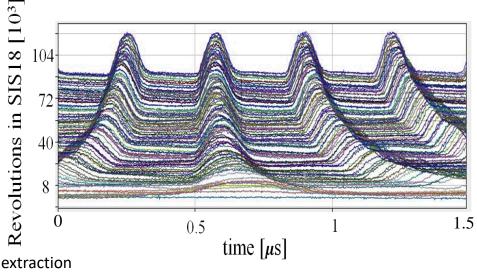
Effect for bunched beam: Shift of 'baseline' Bunch train:

Baseline: $U_{base} \propto 1 - \exp(-t/\tau_{droop})$ positive & negative areas are equal



Example for Fast Current Transformer From

For bunch beams e.g. during accel. in a synchrotron typical bandwidth of 2 kHz < f < 1 GHz


 \Leftrightarrow 10 ns < t_{bunch} < 1 μ s is well suited Example: GSI Fast Current Transformer FCT:

Inner / outer radius	70 / 90 mm
Permeability	$\mu_r \approx 10^5$ for f < 100 kHz $\mu_r \propto 1/f$ above
Windings	10
Sensitivity	4 V/A for R = 50Ω
Droop time $\tau_{droop} = L/R$	0.2 ms
Rise time $\tau_{rise} = \sqrt{L_S C_S}$	1 ns
Bandwidth	2 kHz 500 MHz

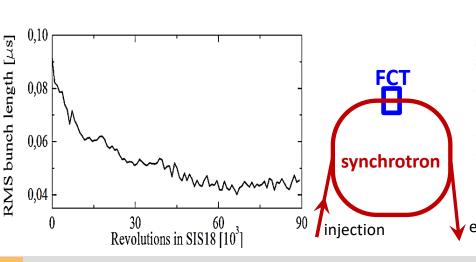
Example: U^{73+} from 11 MeV/u (β = 15 %) to 350 MeV/u within 300 ms (displayed every 0.15 ms)

Example for Fast Current Transformer

For bunch beams e.g. during accel. in a synchrotron typical bandwidth of 2 kHz < f < 1 GHz

 \Leftrightarrow 10 ns < t_{bunch} < 1 μ s is well suited

Example: GSI Fast Current Transformer FCT:


Inner / outer radius	70 / 90 mm
Permeability	$\mu_r \approx 10^5$ for f < 100 kHz $\mu_r \propto 1/f$ above
Windings	10
Sensitivity	4 V/A for R = 50Ω
Droop time $\tau_{droop} = L/R$	0.2 ms
Rise time $\tau_{rise} = \sqrt{L_S C_S}$	1 ns
Bandwidth	2 kHz 500 MHz



- > Transmission optimization
- Bunch shape measurement
- Input for synchronization of 'beam phase'

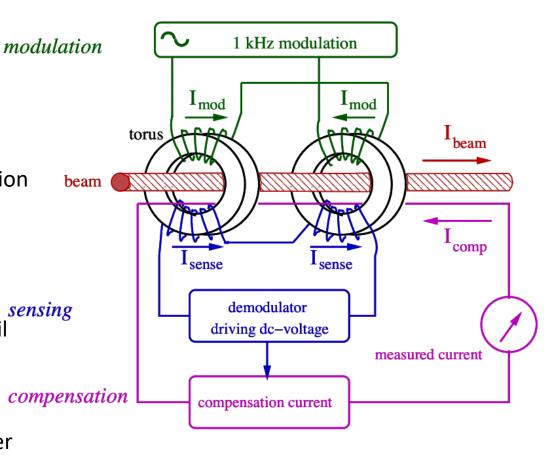
More examples see lecture 'Longitudinal Beam Dynamics' by Frank Tecker & Heiko Damerau

Example: U^{73+} from 11 MeV/u (β = 15 %) to 350 MeV/u within 300 ms (displayed every 0.15 ms)

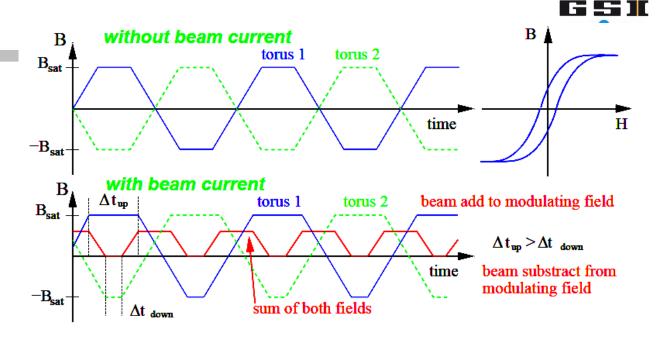
The dc Transformer DCCT

How to measure the DC current? The current transformer discussed sees only B-flux *changes*. The DC Current Transformer (DCCT) \rightarrow magnetic saturation of two torii.

Depictive statement:


A single transformer needs varying beam. The trick is to 'switch two transformers'!

- ➤ Modulation of the primary windings forces both torii into saturation twice per cycle
- > Sense windings measure the modulation signal and cancel each other.
- \triangleright But with the I_{beam} , the saturation is shifted and I_{sense} is not zero
- Compensation current adjustable until

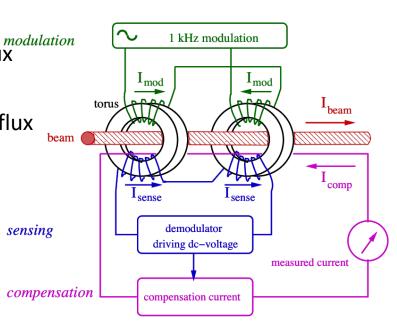

I_{sense} is zero once again

Remark:

Same principle installed in power supplier

The dc Transformer

Modulation without beam:


typically about 9 kHz to saturation \rightarrow **no** net flux

Modulation with beam:

saturation is reached at different times, \rightarrow net flux

- ➤ Net flux: double frequency than modulation
- Feedback: Current fed to compensation winding for larger sensitivity
- > Two magnetic cores: Must be very similar.

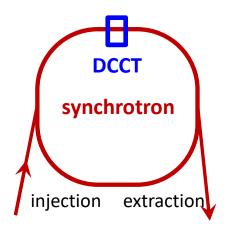
Remark: Same principle used for power suppliers

Measurement with a dc Transformer



Application for dc transformer:

 \Rightarrow Observation of beam behavior with typ. 20 µs time resolution \rightarrow the basic operation tool


Example: The DCCT at GSI synchrotron U⁷³⁺ accelerated from

11. 4 MeV/u (β = 15.5%) to 750 MeV/u (β = 84 %)

Important parameter:

- Detection threshold: ≈ 1 μA(= resolution)
- \triangleright Bandwidth: Δf = dc to 20 kHz
- \triangleright Rise-time: $t_{rise} = 20 \,\mu s$
- Temperature drift: 1.5 μA/°C
 - \Rightarrow compensation required.

For slow extraction: See lecture 'Injection and Extraction' by Pablo Arrutia

Measurement of Beam Current

> Transformers: Measurement of the beam's magnetic field

Non-destructive

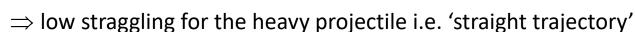
No dependence on beam type and energy

They have lower detection threshold.

Faraday cups: Measurement of the beam's electrical charges

They are destructive

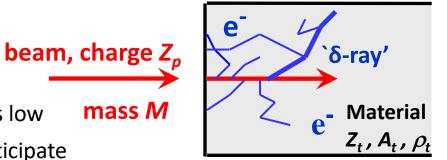
For low energies only


Low currents can be determined.

Excurse: Energy Loss of Protons & Ions

Bethe-Bloch formula:
$$-\frac{dE}{dx} = 4\pi N_A r_e^2 m_e c^2 \left(\frac{Z_t}{A_t} \rho_t \right) \left(\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2}{I^2} \frac{W_{max}}{I^2} - \beta^2 \right) \left(\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2}{I^2} \frac{W_{max}}{I^2} - \beta^2 \right)$$
 (simplest formulation)

Semi-classical approach:


- Projectiles of mass M collide
- with free electrons of mass *m*
- ➢ If M → m then the relative energy transfer is low
- \Rightarrow many collisions required many elections participate proportional to target electron density $m{n}_e = rac{Z_t}{A_t} m{
 ho}_t$

- \triangleright If projectile velocity $\beta \approx 1$ low relative energy change of projectile (γ is Lorentz factor)
- \triangleright I is mean ionization potential including kinematic corrections $I \approx Z_t \cdot 10 \text{ eV}$ for most metals
- > Strong dependence an projectile charge Z_p as $\frac{dE}{dx} \propto Z_p^2$

Constants: N_A Advogadro number, r_e classical e^- radius, m_e electron mass, c velocity of light

Maximum energy transfer from projectile ${\bf M}$ to electron ${\bf m_e}$: $W_{max} = \frac{2m_e c^2 \beta^2 \gamma^2}{1 + 2\gamma m_e/M + (m_e/M)^2}$

Excurse: Energy Loss of Protons & Ions in Copper

Bethe-Bloch formula:
$$-\frac{dE}{dx} = 4\pi N_A r_e^2 m_e c^2 \cdot \frac{Z_t}{A_t} \rho_t \cdot Z_p^2 \cdot \frac{1}{\beta^2} \left(\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 \cdot W_{max}}{I^2} - \beta^2 \right)$$
 (simplest formulation)

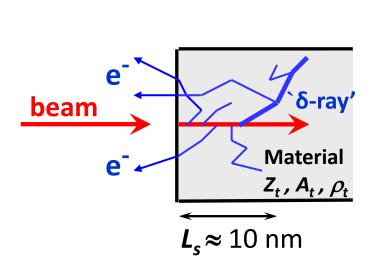
Range:
$$R = \int_{0}^{10000} \left(\frac{dE}{dx}\right)^{-1} dE$$
 with approx. scaling $R \propto E_{max}^{1.75}$ with semi-empirical model e.g. SRIM Main modification $Z_P \rightarrow Z_p^{eff}(E_{kin})$ and the semi-empirical model e.g. SRIM I_{1000} I_{1000}

Approximation e.g.
$$Z_p^{eff} \approx Z_p \left[1 - \exp\left(-Z_p^{-2/3}c\beta / V_{Bohr}\right) \right]$$

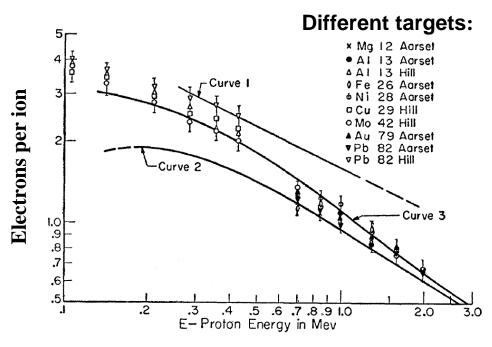
energy per nucleon [MeV/u]

Excurse: Secondary Electron Emission caused by Ion Impact

Energy loss of ions in metals close to a surface:


Closed collision with large energy transfer: \rightarrow fast e with $E_{kin} > 100 \text{ eV}$

Distant collision with low energy transfer \rightarrow slow e⁻ with $E_{kin} \leq 10 \text{ eV}$

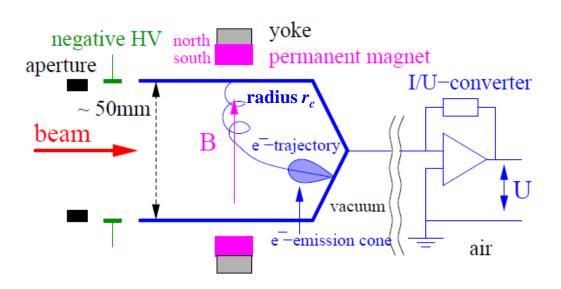

- \rightarrow 'diffusion' & scattering with other e⁻: scattering length $L_s \approx 1$ 10 nm
- \rightarrow at surface \approx 90 % probability for escape

Secondary **electron yield** and energy distribution comparable for all metals!

$$\Rightarrow$$
 Y = const. * **dE/dx** (Sternglass formula)

E.J. Sternglass, Phys. Rev. 108, 1 (1957)

Faraday Cups for Beam Charge Measurement

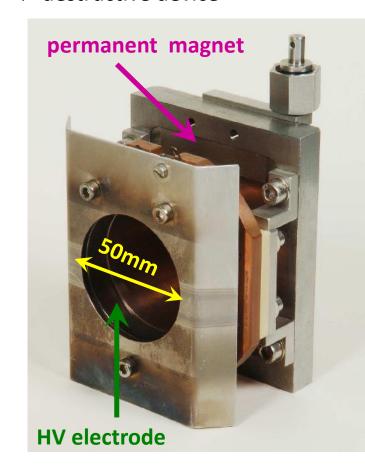


The beam particles are collected inside a metal cup

 \Rightarrow The beam's charge are recorded as a function of time. \rightarrow destructive device

The cup is moved in the beam pass

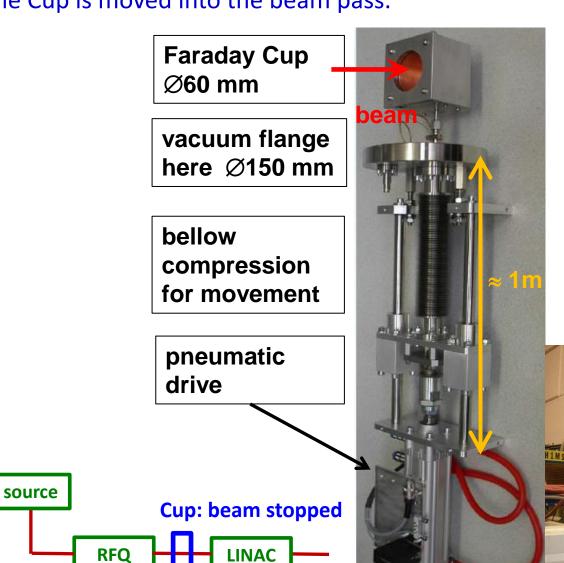
→ destructive device

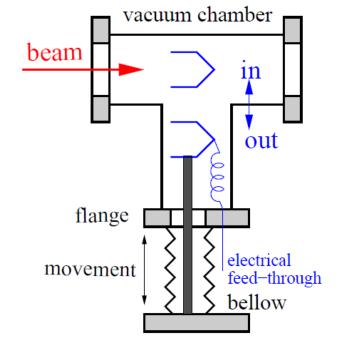

Currents down to 10 pA with bandwidth of 100 Hz!

To prevent for secondary electrons leaving the cup

Magnetic field: The central field is $B \approx 10 \text{ mT}$

for
$$E_{\perp} = 10 \text{ eV} = \frac{1}{2} m v_{\perp}^2 \Rightarrow r_C = \frac{m}{e} \cdot \frac{1}{B} \cdot v_{\perp} \approx 1 \text{ mm}.$$


or Electric field: Potential barrier at the cup entrance $U \approx 1$ kV.



Realization of a Faraday Cup at GSI LINAC

The Cup is moved into the beam pass.

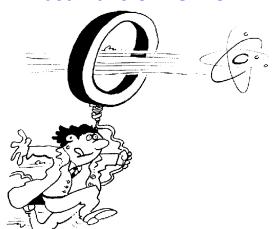
Summary for Current Measurement

Transformer: → measurement of the beam's magnetic field

Magnetic field is guided by a high μ toroid

> Types: FCT \rightarrow large bandwidth, $I_{min} \approx 30 \,\mu\text{A}$, BW = 10 kHz ... 500 MHz

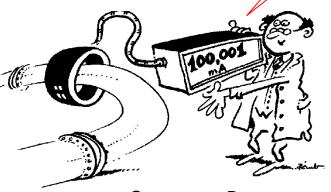
[ACT: $I_{min} \approx 0.3 \,\mu\text{A}$, BW = 10 Hz 1 MHz, used at proton LINACs]


DCCT: two toroids + modulation, $I_{min} \approx 1 \mu A$, BW = dc ... 20 kHz

Non-destructive, used for all beams

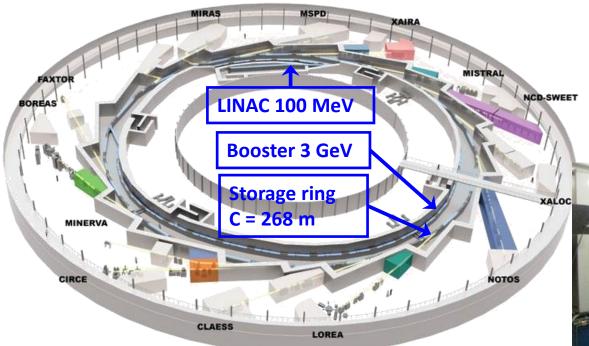
Faraday cup: → measurement of beam's charge,

- ➤ Low threshold by I/U-converter: I_{beam} > 10 pA
- > Totally destructive, used for low energy beams only


Fast Transformer FCT Active transformer ACT

Resolution limit

DC transformer DCCT

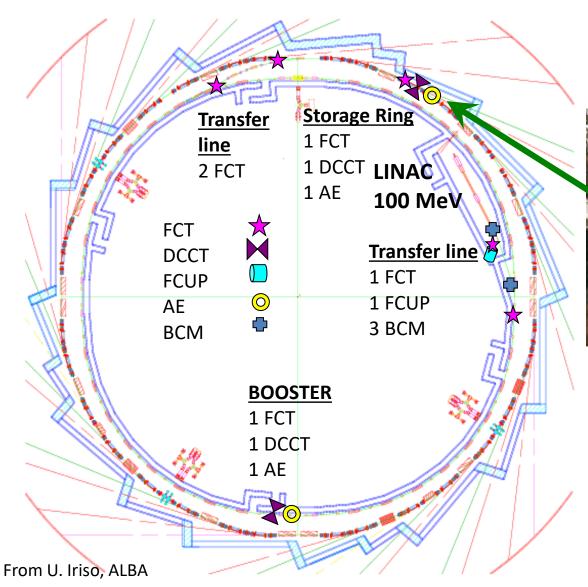


Company Bergoz

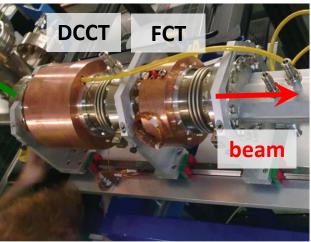
Example → **Synchrotron Light Facility ALBA**

3rd generation Spanish synchr. light facility in Barcelona

Layout:


- Storage ring length: 268 m
- Electron energy: 3 GeV
- > Top-up injection
- Max. beam current: 0.4 A

Appendix: The Synchrotron Light Facility ALBA: Current Meas.



Beam current measurements:

Several in transport lines

One per ring

Abbreviation:

FCT: Fast Current Transformer

DCCT: dc transformer

FCUP: Faraday Cup

AE: Annular Electrode

BCM: Bunch Charge Monitor

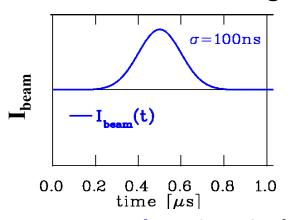
Pick-Ups for bunched Beams

Outline:

- ➤ Signal generation → transfer impedance
- Capacitive button BPM for high frequencies
- Electronics for position evaluation
- BPMs for measurement
- Summary

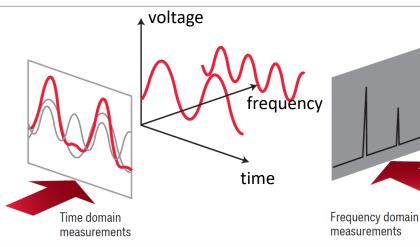
A Beam Position Monitor is an non-destructive device for bunched beams It delivers information about the transverse center of the beam:

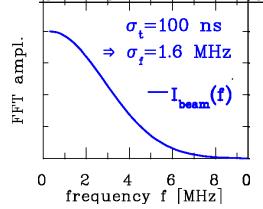
- > Trajectory: Position of an individual bunch within a transfer line or synchrotron
- > Closed orbit: Central orbit averaged over a period much longer than a betatron oscillation
- \succ **Single bunch position:** Determination of parameters like tune, chromaticity, β -function


Remarks: - BPMs have a low cut-off frequency ⇔ dc-beam can't be monitored

- The abbreviation **BPM** and pick-up **PU** are synonyms

Time Domain ↔ Frequency Domain: Instrumentation


Time domain: Recording of a voltage as a function of time:


Instrument:

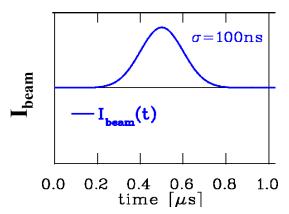
Oscilloscope

Frequency domain: Displaying of a voltage

Instrument:

Spectrum Analyzer

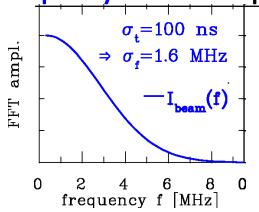
courtesy company Keysight


Photos and idea by Piotr Kowina

See lecture 'Time and Frequency Domain Signals' by Hermann Schmickler

Time Domain ↔ Frequency Domain: Mathematics

Time domain: Recording of a voltage as a function of time:



Mathematics for function f(t):

Fourier Transformation:

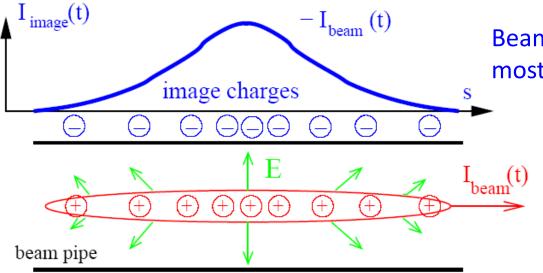
$$\widehat{f}(\boldsymbol{\omega}) = \int_{-\infty}^{\infty} f(t) \cdot e^{-i\omega t} dt$$

Frequency domain: Displaying of a voltage as a function of frequency:

Fourier Transformation:

- Contains amplitude & phase as the values are $\widehat{f}(\omega) \in \mathbb{C}$ (complex in math. sense)
- The same information is displayed differently

Law of Convolution: For a convolution in time: $f(t) = \int_{-\infty}^{\infty} f_1(\tau) \cdot f_2(t-\tau) d\tau$


 $\Rightarrow \hat{f}(\omega) = \hat{f}_1(\omega) \cdot \hat{f}_2(\omega) \Leftrightarrow \text{convolution be expressed as multiplication of FTs}$

See lecture 'Time and Frequency Domain Signals' by Hermann Schmickler

Pick-Ups for bunched Beams

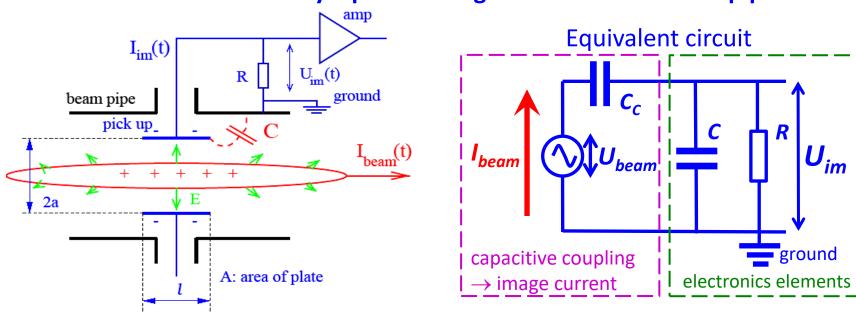
The image current at the beam pipe is monitored on a high frequency basis i.e. the ac-part given by the bunched beam.

Beam Position Monitor **BPM** is the most frequently used instrument!

For relativistic velocities, the electric field is transversal:

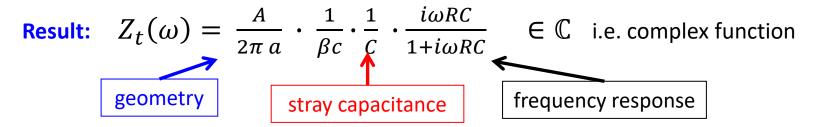
$$E_{\perp,lab}(t) = \gamma \cdot E_{\perp,rest}(t')$$

Principle of Signal Generation of a BPMs, centered Beam



The image current at the wall is monitored on a high frequency basis i.e. ac-part given by the bunched beam. Animation by Rhodri Jones (CERN)

Model for Signal Treatment of capacitive BPMs


The wall current is monitored by a plate or ring inserted in the beam pipe:

At a resistor R the voltage U_{im} from the image current is measured.

Goal: Connection from beam current to signal strength by transfer impedance $Z_t(\omega)$

in frequency domain: $U_{im}(\omega) = R \cdot I_{im}(\omega) = Z_t(\omega) \cdot I_{beam}(\omega)$

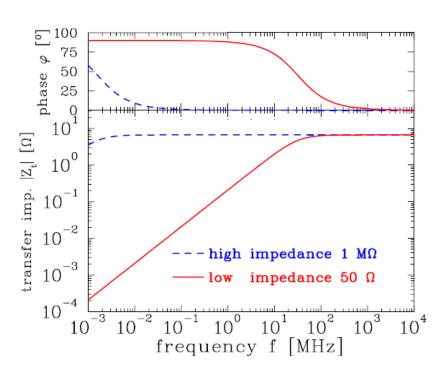
Example of Transfer Impedance for Proton Synchrotron

The high-pass characteristic for typical synchrotron BPM:

$$U_{im}(\omega) = Z_t(\omega) \cdot I_{beam}(\omega)$$

$$|Z_t| = \frac{A}{2\pi a} \cdot \frac{1}{\beta c} \cdot \frac{1}{C} \cdot \frac{\omega/\omega_{cut}}{\sqrt{1 + \omega^2/\omega_{cut}^2}}$$

$$\varphi = \arctan(\omega_{cut}/\omega)$$


Parameter linear-cut BPM at proton synchr.:

$$C = 100 \text{pF}, I = 10 \text{cm}, \beta = 50\%$$

$$f_{cut} = \omega/2\pi = (2\pi RC)^{-1}$$

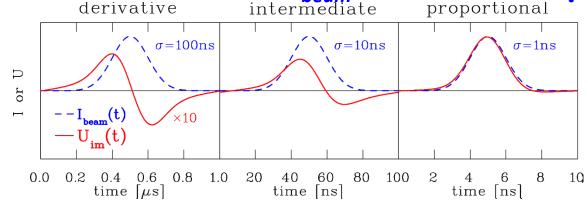
for
$$R = 50 \Omega \Rightarrow f_{cut} = 32 \text{ MHz}$$

for
$$R = 1 \text{ M}\Omega \Rightarrow f_{cut} = 1.6 \text{ kHz}$$

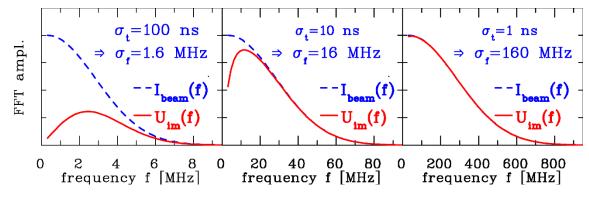
Large signal strength for long bunches → high impedance

Smooth signal transmission important for short bunches \rightarrow 50 Ω

Remark: For $\omega \to 0$ it is $Z_t \to 0$ i.e. **no** signal is transferred from dc-beams e.g.


- > de-bunched beam inside a synchrotron
- for slow extraction through a transfer line

Calculation of Signal Shape (here single Bunch)


The transfer impedance is used in frequency domain! The following is performed:

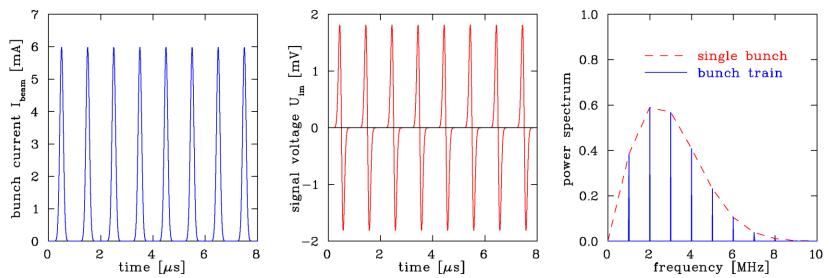
1. Start: Time domain Gaussian function $I_{beam}(t)$ having a width of σ_t

inverse Fourier trans.

2. FFT of $I_{beam}(t)$ leads to the frequency domain Gaussian $I_{beam}(f)$ with $\sigma_f = (2\pi\sigma_t)$

- **3. Multiplication** with $Z_t(f)$ with $f_{cut} = 32$ MHz leads to $U_{im}(f) = Z_t(f) \cdot I_{beam}(f)$
- 4. Inverse FFT leads to U_{im}(t)

Fourier


trans.

Remark: Time domain processing via convolution or filters (FIR and IIR) are possible

Calculation of Signal Shape: repetitive Bunch in a Synchrotron

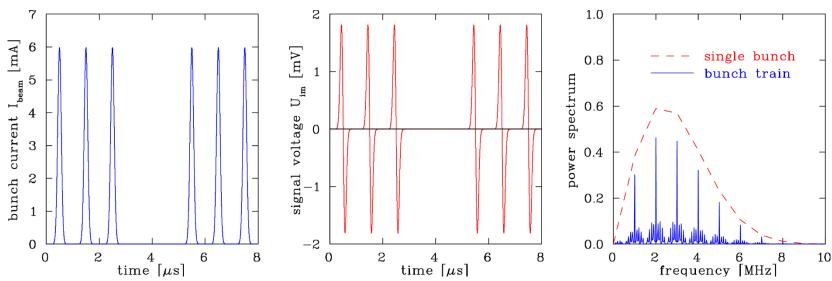
Synchrotron filled with 8 bunches accelerated with f_{acc} = 1 MHz

BPM terminated with $R=50 \Omega \implies f_{acc} << f_{cut}$:

Parameter: R=50 $\Omega \Rightarrow f_{cut}$ =32 MHz, all buckets filled

C=100pF,
$$l$$
=10cm, β =50%, σ_t =100 ns $\Rightarrow \sigma_l$ =15m

- Fourier spectrum is concentrated at acceleration harmonics with single bunch spectrum as an envelope.
- \triangleright Bandwidth up to typically $10*f_{acc}$

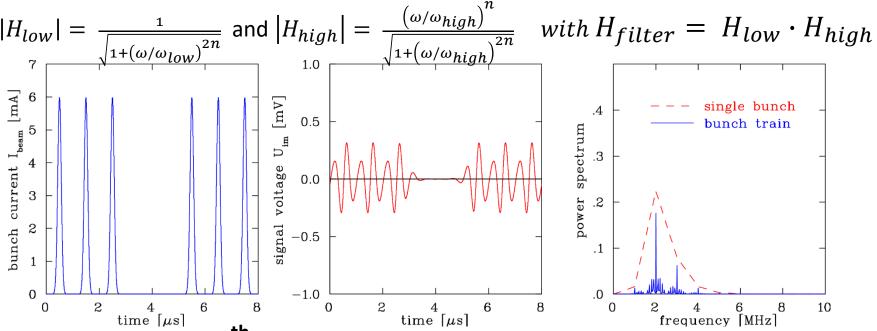

See lecture 'Time and Frequency Domain Signals' by Hermann Schmickler

Calculation of Signal Shape: Bunch Train with empty Buckets

Synchrotron during filling: Empty buckets, $R=50 \Omega$:

BPM terminated with $R=50 \Omega \implies f_{acc} << f_{cut}$

Parameter: R=50 $\Omega \Rightarrow f_{cut}$ =32 MHz, 2 empty buckets


C=100pF,
$$I$$
=10cm, β =50%, σ_t =100 ns $\Rightarrow \sigma_I$ =15m

Fourier spectrum is more complex, harmonics are broader due to sidebands

Calculation of Signal Shape: Filtering of Harmonics

Effect of filters, here 4th order Butterworth bandpass filter:

Parameter: R=50 Ω , 4th order Butterworth filter at f_{low} =1.8 MHz & f_{high} =2.2 MHz C=100pF, I=10cm, β =50%, σ_t =100 ns \Rightarrow σ_I =15m

- > Only few frequency components leading to 'ringing' due to sharp cutoff
- Other filter types more appropriate

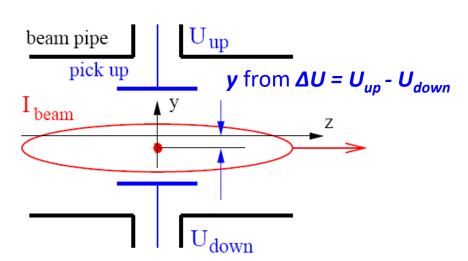
Generally: $Z_{tot}(\omega) = H_{cable}(\omega) \cdot H_{filter}(\omega) \cdot H_{amp}(\omega) \cdot ... \cdot Z_t(\omega)$

Remark: For numerical calculations, time domain filters (FIR and IIR) are more appropriate

Principle of Signal Generation of a BPMs: off-center Beam

The image current at the wall is monitored on a high frequency basis i.e. ac-part given by the bunched beam. Animation by Rhodri Jones (CERN)

Principle of Position Determination by a BPM



The difference voltage between plates gives the beam's center-of-mass

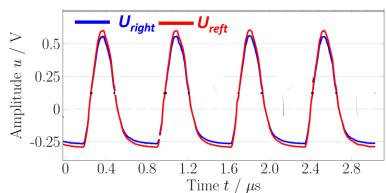
→most frequent application

$$y = \frac{1}{S_y(\omega)} \cdot \frac{U_{up} - U_{down}}{U_{up} + U_{down}}$$
$$\equiv \frac{1}{S_y} \cdot \frac{\Delta U_y}{\Sigma U_y}$$

$$x = \frac{1}{S_x(\omega)} \cdot \frac{U_{right} - U_{left}}{U_{right} + U_{left}}$$

 $S(\omega,x)$ is called **position sensitivity**, sometimes the inverse is used $k(\omega,x)=1/S(\omega,x)$

S is a geometry dependent, non-linear function,


Units: S = [%/mm], sometimes S = [dB/mm] or k = [mm].

Example: One turn = 4 bunches @ 35 MeV/u

Typical desired position resolution:

 $\Delta x \approx 0.1 \dots 0.3 \cdot \sigma_x$ of beam width

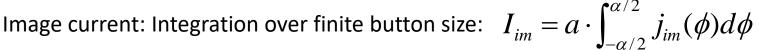
It is at least: $\Delta U \ll \frac{1}{10} \Sigma U$

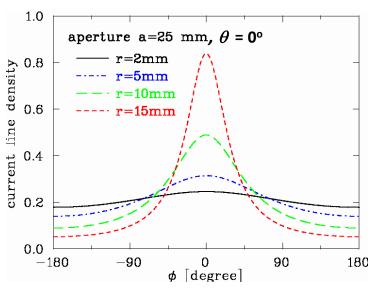
Pick-Ups for bunched Beams

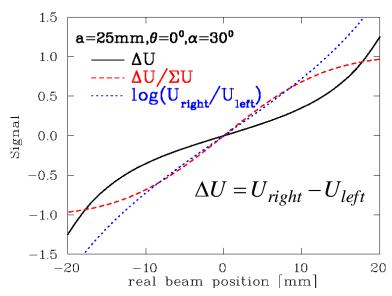
Outline:

- **>** Signal generation → transfer impedance
- Capacitive button BPM for high frequencies used at most proton LINACs and electron accelerators
- **Electronics for position evaluation**
- > BPMs for measurement of closed orbit, tune and further lattice functions
- > Summary

2-dim Model for a Button BPM




'Proximity effect': larger signal for closer plate

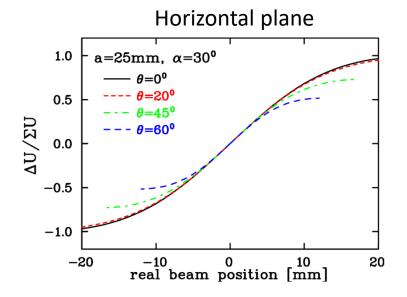

Ideal 2-dim model: Cylindrical pipe \rightarrow image current density

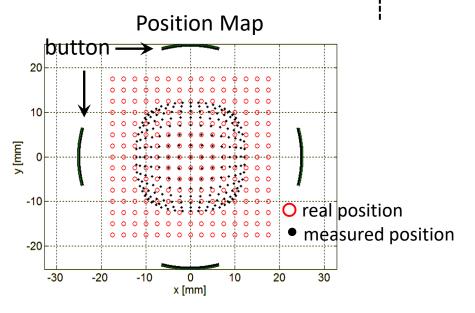
via 'image charge method' for 'pencil' beam:

$$j_{im}(\phi) = \frac{I_{beam}}{2\pi a} \cdot \left(\frac{a^2 - r^2}{a^2 + r^2 - 2ar \cdot \cos(\phi - \theta)} \right)$$

button

2-dim Model for a Button BPM


Ideal 2-dim model: Non-linear behavior and hor-vert coupling:


Sensitivity **S** converts signal to position $x = \frac{1}{S} \cdot \frac{\Delta U}{\Sigma U}$

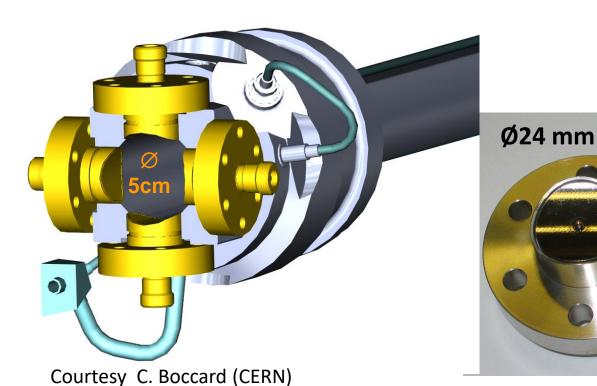
with S = [%/mm] or [dB/mm]

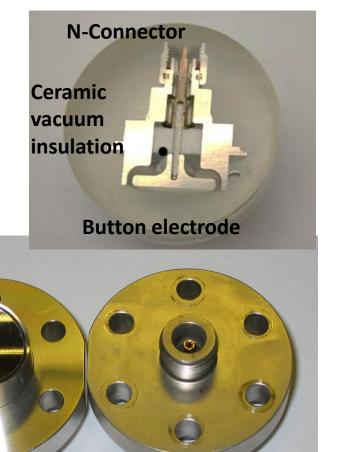
i.e. **S** is the derivative of the curve $S_x = \frac{\partial (\frac{\Delta U}{\Sigma U})}{\partial x}$, here $S_x = S_x(x, y)$ i.e. non-linear.

For this example: central part $S=7.4\%/\text{mm} \Leftrightarrow k=1/S=14\text{mm}$

button

Button BPM Realization

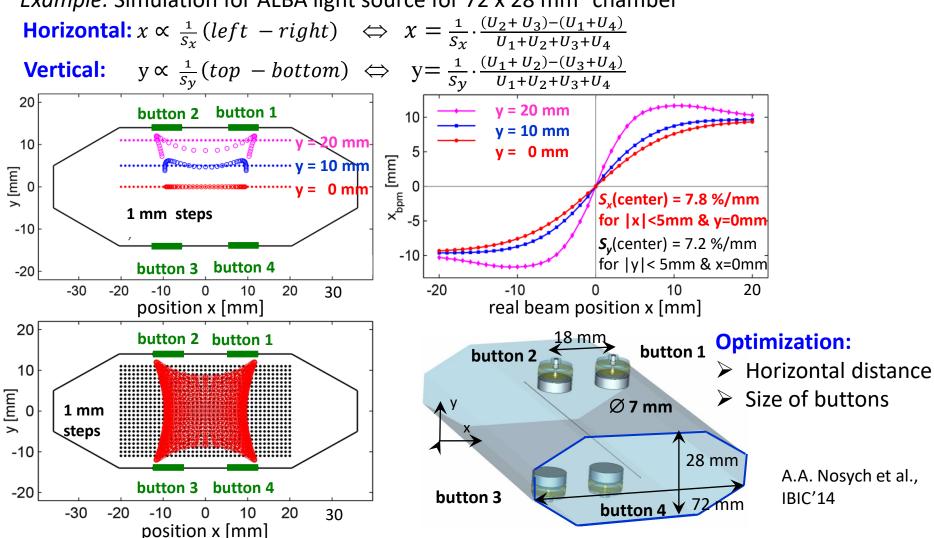

LINACs, e-synchrotrons: 100 MHz $< f_{rf} < 3$ GHz \rightarrow bunch length \approx BPM length


ightarrow 50 Ω signal path to prevent reflections

Example: LHC-type inside cryostat:

 \emptyset 24 mm, half aperture a = 25 mm, C = 8 pF

 \Rightarrow f_{cut} = 400 MHz, Z_t = 1.3 Ω above f_{cut}



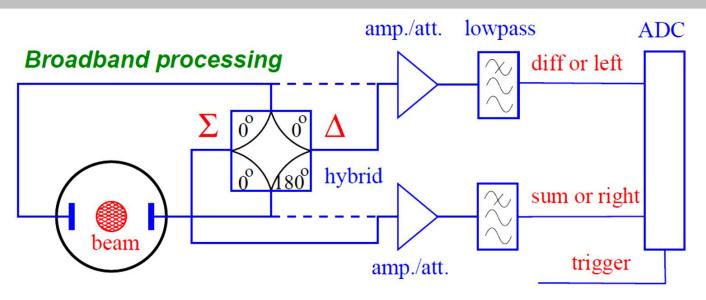
Simulations for Button BPM at Synchrotron Light Sources

Example: Simulation for ALBA light source for 72 x 28 mm² chamber

Result: - Non-linearity and xy-coupling occur in dependence of button size and position

- Can be corrected by polynomial interpolation for beams much smaller than chamber

Pick-Ups for bunched Beams



Outline:

- ➤ Signal generation → transfer impedance
- Capacitive button BPM for high frequencies used at most proton LINACs and electron accelerators
- ➤ Electronics for position evaluation analog signal conditioning to achieve small signal processing
- > BPMs for measurement of closed orbit, tune and further lattice functions
- Summary

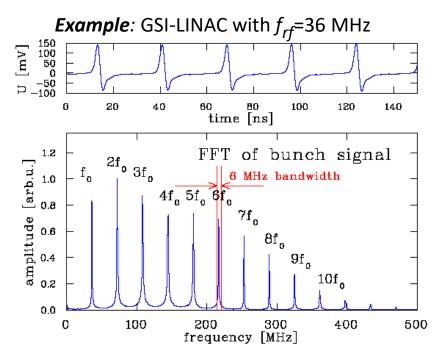
Broadband Signal Processing

- \succ Hybrid or transformer close to beam pipe for analog $\Delta U \& \Sigma U$ generation or $U_{left} \& U_{right}$
- ➤ Attenuator/amplifier
- > Filter to get the wanted harmonics and to suppress stray signals
- \triangleright ADC: digitalization \rightarrow followed by calculation of of $\Delta U / \Sigma U$

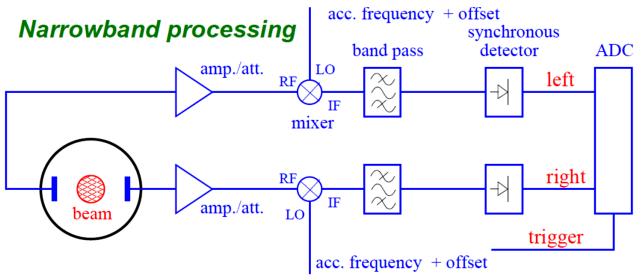
Advantage: Bunch-by-bunch observation possible, versatile post-processing possible

Disadvantage: Resolution down to \approx 100 µm for large aperture, i.e. \approx 0.1% of aperture, resolution is worse than narrowband processing, see below

Challenge: Precise analog electronics with very low drift of amplification


General: Noise Consideration

- 1. Signal voltage given by: $U_{im}(f) = Z_t(f) \cdot I_{beam}(f)$
- 2. Thermal noise voltage given by: $U_{noise}(R, \Delta f) = \sqrt{4k_B \cdot T \cdot R \cdot \Delta f}$


Signal-to-noise $\Delta U_{im}/U_{noise}$ is influenced by:

- > Input signal amplitude
- > Thermal noise from amplifiers etc.
- ➤ Bandwidth **Δf**
- \Rightarrow Restriction of frequency width as the power is concentrated at harmonics $n \cdot f_{rf}$

Narrowband Processing for improved Signal-to-Noise

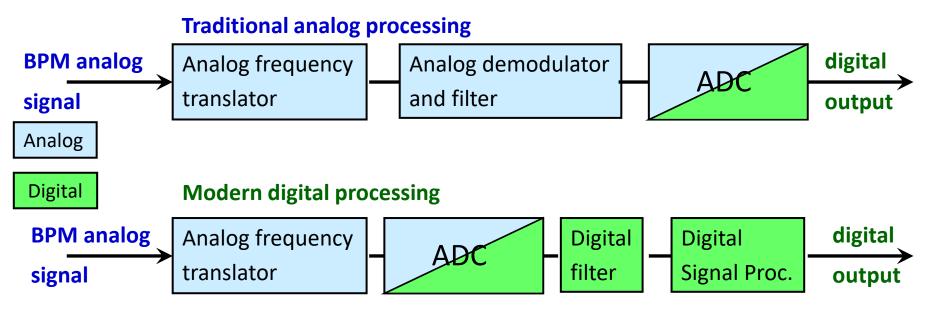
Narrowband processing equals heterodyne receiver (e.g. AM-radio or analog spectrum analyzer)

- Attenuator/amplifier
- \triangleright Mixing with accelerating frequency f_{LO}
 - \Rightarrow IF-output: signal with difference frequency f_{IF} = f_{LO} $-f_{RF}$
- ➤ Bandpass filter of the mixed signal (e.g at 10.7 MHz)
- > Rectifier: synchronous detector
- \triangleright ADC: digitalization \rightarrow followed calculation of $\Delta U/\Sigma U$

Advantage: Spatial resolution about 100 time better than broadband processing

Disadvantage: No turn-by-turn diagnosis, due to mixing = 'long averaging time'

correspondence:


I/Q demodulation

Digital

Analog versus Digital Signal Processing

Modern instrumentation uses **digital** techniques with extended functionality.

Digital receiver as modern successor of super heterodyne receiver

- > Basic functionality is preserved but implementation is very different
- Digital transition just after the amplifier & filter or mixing unit
- Signal conditioning (filter, decimation, averaging) on FPGA

Advantage of DSP: Versatile operation, flexible adoption without hardware modification Disadvantage of DSP: non, good engineering skill requires for development, expensive

Comparison of BPM Readout Electronics (simplified)

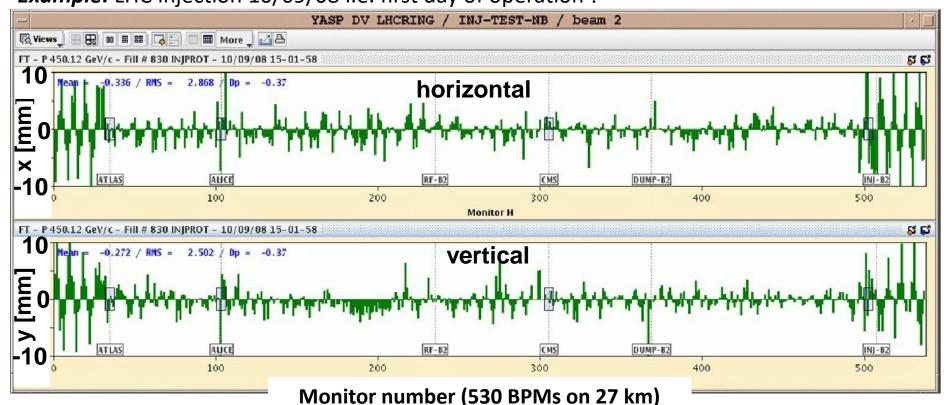
Туре	Usage	Precaution	Advantage	Disadvantage
Broadband	p-sychr.	Long bunches	Bunch structure signal Post-processing possible Required for transfer lines with few bunches	Resolution limited by noise
Narrowband	all synchr.	Stable beams >100 rf-periods	High resolution	No turn-by-turn Complex electronics
Digital Signal Processing	all	ADC sample typ. 250 MS/s	Very flexible & versatile High resolution Trendsetting technology for future demands	Basically non! Limited time resolution by ADC → under-sampling Man-power intensive

Pick-Ups for bunched Beams

Outline:

- ➤ Signal generation → transfer impedance
- Capacitive button BPM for high frequencies used at most proton LINACs and electron accelerators
- ➤ Electronics for position evaluation analog signal conditioning to achieve small signal processing
- > BPMs for measurement of closed orbit, tune and further lattice functions frequent application of BPMs
- Summary

Trajectory Measurement with BPMs



Trajectory:

The position delivered by an individual bunch within a transfer line or a synchrotron.

Main task: Control of matching (center and angle), first-turn diagnostics

Example: LHC injection 10/09/08 i.e. first day of operation!

Courtesy R. Jones (CERN)

Tune values at LHC: $Q_h = 64.3$, $Q_v = 59.3$

Closed Orbit Feedback: Typical Noise Sources

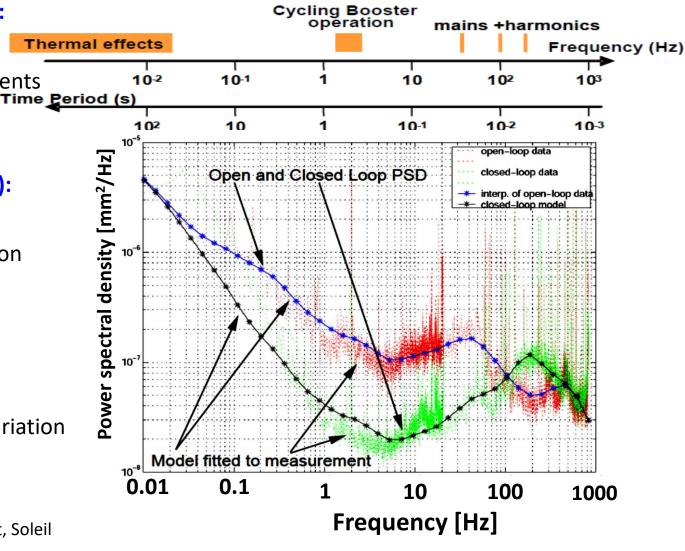
Short term (min to 10 ms):

≻Traffic

➤ Machine (crane) movements

➤ Water & vacuum pumps

> 50 Hz main power net


Medium term (day to min):

- ➤ Movement of chambers due to heating by radiation
- ➤ Day-night variation
- > Tide, moon cycle

Long term (> days):

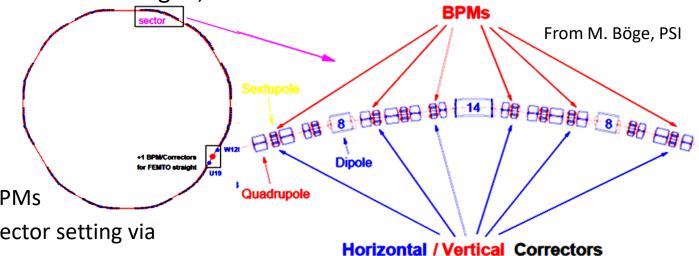
- ➤ Ground settlement
- ➤ Seasons, temperature variation

Courtesy M. Böge, PSI, N. Hubert, Soleil

Ground vibrations

Experimental hall activities

Insertion Devices


Close Orbit Feedback: BPMs and magnetic Corrector Hardware

feedback

Orbit feedback: Synchrotron light source \rightarrow spatial stability of light beam

Example: SLS-Synchrotron at Villigen, Switzerland

Feedback loop:

1. Position from all BPMs

2. Calculation of corrector setting via Orbit Response Matrix

3. Change of magnet setting

1.' New positon measurement

 \Rightarrow regulation time down to 10 ms

 \Rightarrow Role od thumb: \approx 4 BPMs per betatron wavelength

Uncorrected orbit: typ. $\langle x \rangle_{rms} \approx 1 \text{ mm}$

typ. $\langle x \rangle_{rms} \approx 1 \, \mu \text{m}$ up to $\approx 100 \, \text{Hz}$ bandwidth! **Corrected orbit:**

Orbit Response Matrix: See lecture 'Imperfections and Corrections' by Volker Ziemann

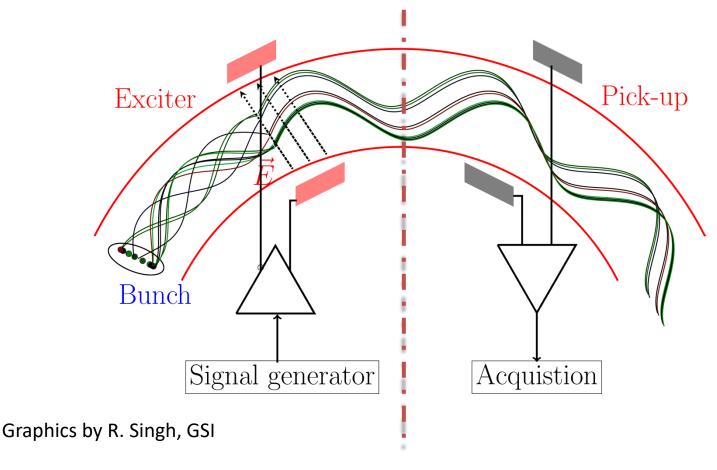
Acc. optics

Position from all BPMs

Calculation of corrector strength

Setting of correctors

Tune Measurement: General Considerations

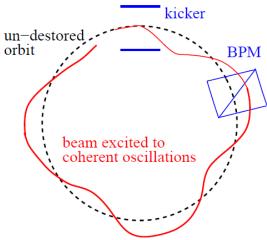


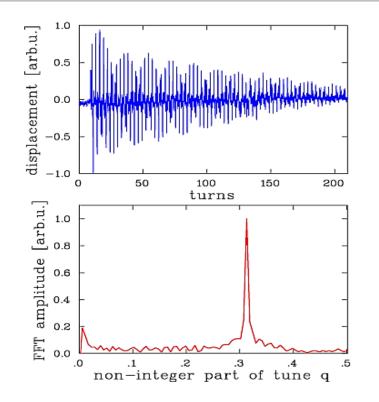
Coherent excitations are required for the detection by a BPM

Beam particle's *in-coherent* motion ⇒ center-of-mass stays constant

Excitation of **all** particles by rf \Rightarrow **coherent** motion

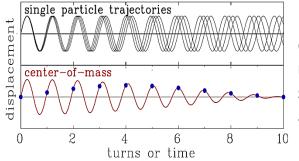
⇒ center-of-mass variation turn-by-turn i.e. center acts as **one** macro-particle




Tune Measurement: The Kick-Method in Time Domain

The beam is excited to coherent betatron oscillation:

- → Beam position measured each revolution ('turn-by-turn')
- → Fourier Trans. gives non-integer tune **q**. Short kick compared to revolution.



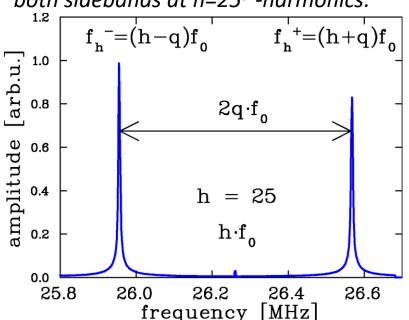
The de-coherence time limits the **resolution**:

N non-zero samples

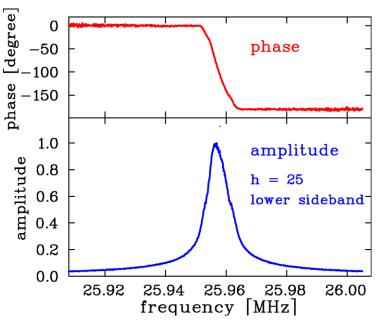
 \Rightarrow General limit of discrete FFT: $\Delta q > \frac{1}{2N}$

Here: $N = 200 \text{ turn} \Rightarrow \Delta q > 0.003$ (tune spreads can be $\Delta q \approx 0.001$!)

Decay is caused by de-phasing, **not** by decreasing single particle amplitude.


See lecture 'Time and Frequency Domain Signals' by Hermann Schmickler

Tune Measurement: Frequency Chirp Measurement



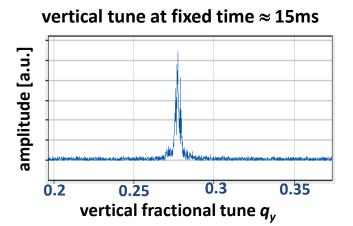
Principle: Slowly scan of the excitation frequency \rightarrow beam acts as driven oscillator! (sometimes refer to as **B**eam **T**ransfer **F**unction **BTF** measurement)

SIS-synchrotron: A wide scan with both sidebands at $h=25^{th}$ -harmonics:

A detailed scan for the **lower** sideband → beam acts like a driven oscillator:

From the position of the sidebands q = 0.306 is determined.

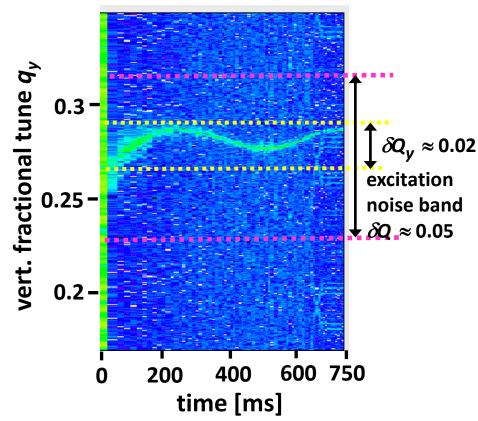
Advantage: High resolution for tune and tune spread (also for de-bunched beams)


Disadvantage: Long sweep time (up to several seconds).

Tune Measurement: Gentle Excitation with Wideband Noise

Instead of a sine wave, noise with adequate bandwidth can be applied

- → beam picks out its resonance frequency:
- ightharpoonup Broadband excitation with white noise of \approx 10 kHz bandwidth
- > Turn-by-turn position measurement
- > Fourier transformation of the recorded data
- ⇒ Continues monitoring with low disturbance



Advantage:

Fast scan with good time resolution

Disadvantage: Lower tune resolution

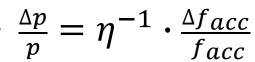
Example: Vertical tune within 4096 turn duration $\simeq 15$ ms at GSI synchrotron $11 \rightarrow 300$ MeV/u in 0.7 s vertical tune versus time

U. Rauch et al., DIPAC 2009

→Conclusion

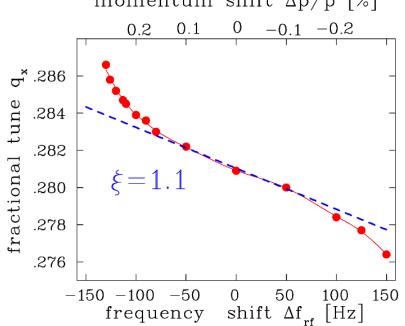
Chromaticity Measurement from Closed Orbit Data

Chromaticity ξ: Change of tune for off-momentum particle


Two step measurement procedure:

- 1. Change of momentum p by detuned rf-frequency
- 2. Excitation of coherent betatron oscillations and tune measurement (kick-method, BTF, noise excitation):

Plot of $\Delta Q/Q$ as a function of $\Delta p/p$


 \Rightarrow slope is dispersion ξ .

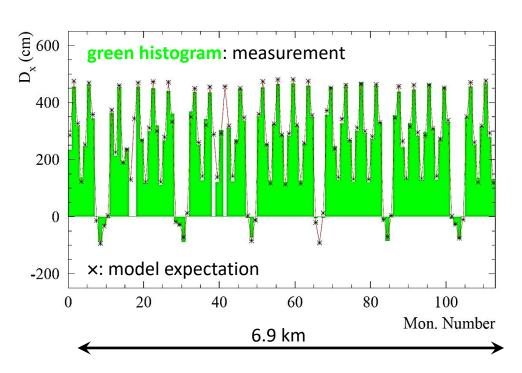
From M Minty, F. Zimmermann, Measurement and Control of charged Particle Beam, Springer Verlag 2003

Example: Measurement at LEP:

momentum shift $\Delta p/p |\%|$

→ Conclusion

Dispersion Measurement from Closed Orbit Data


Dispersion D(s_i): Change of momentum p by detuned rf-cavity

- \rightarrow Position reading at one location $x_i = D(s_i) \cdot \frac{\Delta p}{p}$:
- \rightarrow Result from plot of x_i as a function of $\Delta p/p \Rightarrow$ slope is local dispersion $D(s_i)$

Example: Dispersion measurement **D(s)** at BPMs at CERN SPS

Theory-experiment correspondence after correction of

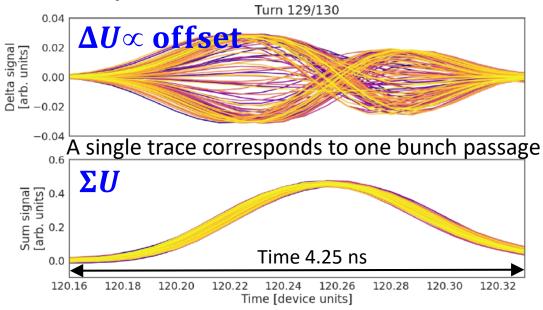
- BPM calibration
- quadrupole calibration

From J. Wenninger: CAS on BD, CERN-2009-005 & J. Wenninger CERN-AB-2004-009

See lecture 'Imperfections and Corrections' by Volker Ziemann

→Conclusion

Intra-Bunch Observation

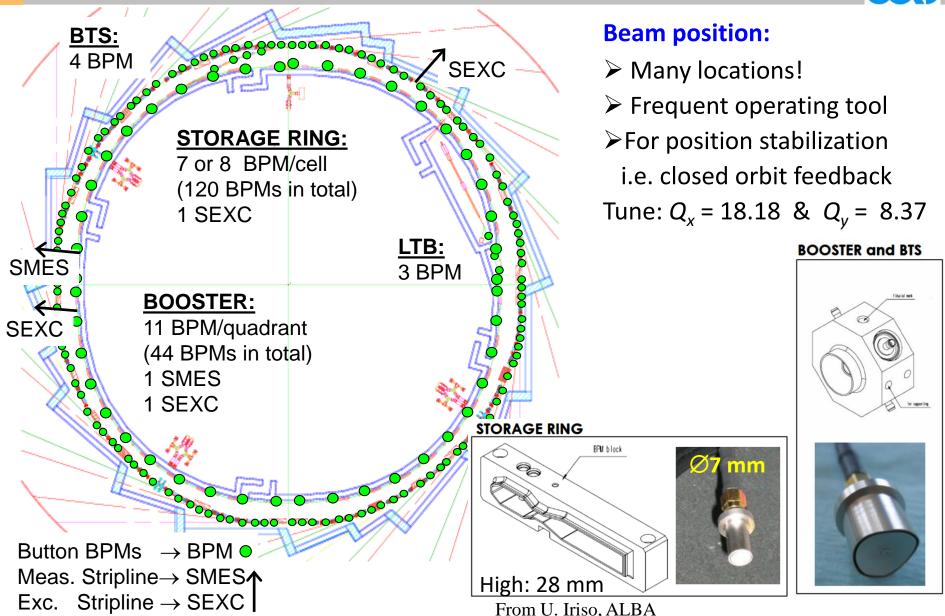


High band-width measurements delivers:

- \triangleright Bunch shape given by the sum $\Sigma U(t) = U_{right}(t) + U_{left}(t)$ of two plates
- Intra-bunch movement of the **center** by $x_{center}(t) \propto \Delta U(t) = U_{right}(t) U_{left}(t)$

Example: Single bunch observation on turn-by-turn basis with beam excitation at SPS

Goal: Monitoring instabilities


(a) Headtail mode 1 for chromaticity $\xi = 0.2$

Courtesy Kevin Li, CAS Proceedings 2022

See lecture 'Collective Effects' by Kevin Li

Appendix: Synchrotron Light F. ALBA: Position, tune etc. Measure

Summary Pick-Ups for bunched Beams

The electric field is monitored for bunched beams using rf-technologies ('frequency domain'). Beside transformers they are the most often used instruments!

Differentiated or proportional signal: rf-bandwidth ← beam parameters

Proton synchrotron: 1 to 100 MHz, mostly 1 M Ω \rightarrow proportional shape

LINAC, e⁻-synchrotron: 0.1 to 3 GHz, 50 Ω \rightarrow differentiated shape

Important quantity: Transfer impedance $Z_t(\omega, \beta)$.

Types of capacitive pick-ups:

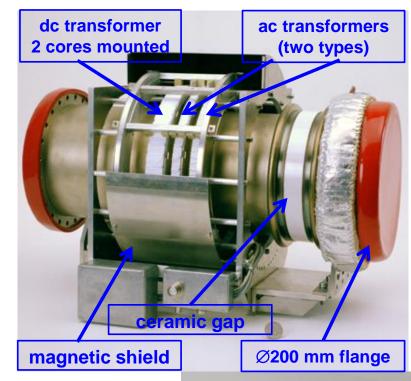
Linear-cut (p-synch.), button (p-LINAC, e⁻-LINAC and synch.)

Position reading: Difference signal of two or four pick-up plates (BPM):

- ightharpoonup Non-intercepting reading of center-of-mass ightharpoonup online measurement and control Synchrotron: Fast reading, 'bunch-by-bunch' ightharpoonup trajectory, slow reading ightharpoonup closed orbit
- **Synchrotron:** Excitation of **coherent** betatron oscillations \Rightarrow tune **q**, ξ , β (s), D(s)...

Remark: BPMs have high pass characteristic ⇒ no signal for dc-beams

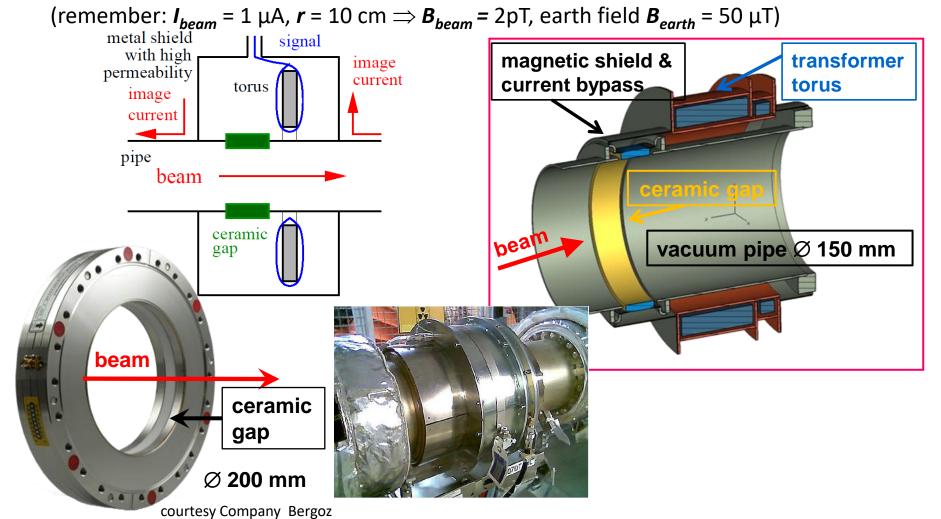
Thank you for your attention!


Backup slides

The dc Transformer Realization

Example: The DCCT at GSI synchrotron

T	405
Torus radii	$r_i = 135 \text{ mm } r_o = 145 \text{ mm}$
Torus thickness	d = 10 mm
Torus permeability	$\mu_{\rm r} = 10^5$
Saturation inductance	B _{sat} = 0.6 T
Number of windings	16 for modulation & sensing 12 for feedback
Resolution	I ^{min} _{beam} = 2 µA
Bandwidth	$\Delta f = dc \dots 20 \text{ kHz}$
Rise time constant	$\tau_{rise} = 10 \ \mu s$
Temperature drift	1.5 μA/°C



Shielding of a Transformer

Task of the shield:

- The image current of the walls have to be bypassed by a gap and a metal housing.
- > This housing uses μ-metal and acts as a shield of external B-field

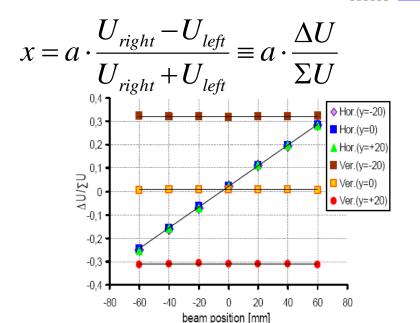
Pick-Ups for bunched Beams

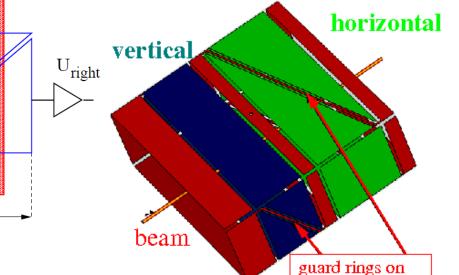
Outline:

- ➤ Signal generation → transfer impedance
- Capacitive button BPM for high frequencies used at most proton LINACs and electron accelerators
- ➤ Capacitive *linear-cut* BPM for low frequencies used at most proton synchrotrons due to linear position reading
- Electronics for position evaluation
- > BPMs for measurement of closed orbit, tune and further lattice functions
- Summary

Linear-cut BPM for Proton Synchrotrons

Frequency range: 1 MHz < f_{rf} < 100 MHz \Rightarrow bunch-length >> BPM length.




$$l_{\text{right}} = (a+x) \cdot \tan \alpha, \quad l_{\text{left}} = (a-x) \cdot \tan \alpha$$

$$l_{\text{right}} - l_{\text{left}}$$

$$\Rightarrow x = a \cdot \frac{l_{\text{right}} - l_{\text{left}}}{l_{\text{right}} + l_{\text{left}}} \qquad \qquad U_{\text{left}} \qquad 1$$

In ideal case: linear reading

Linear-cut BPM:

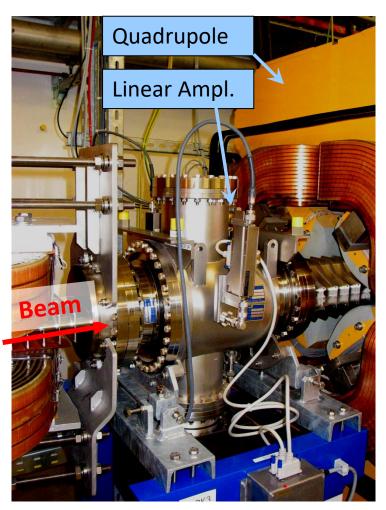
beam

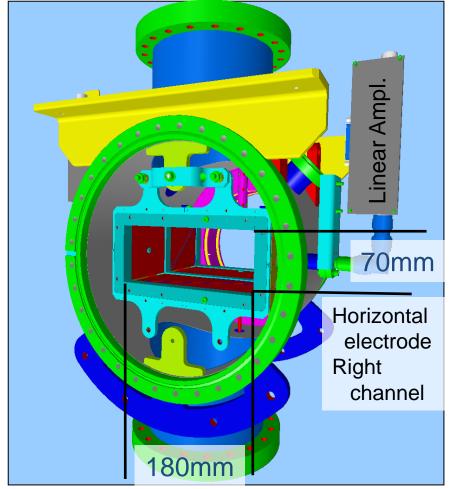
Advantage: Linear, i.e. constant position sensitivity S

⇔ no beam size dependence

Disadvantage: Large size, complex mechanics

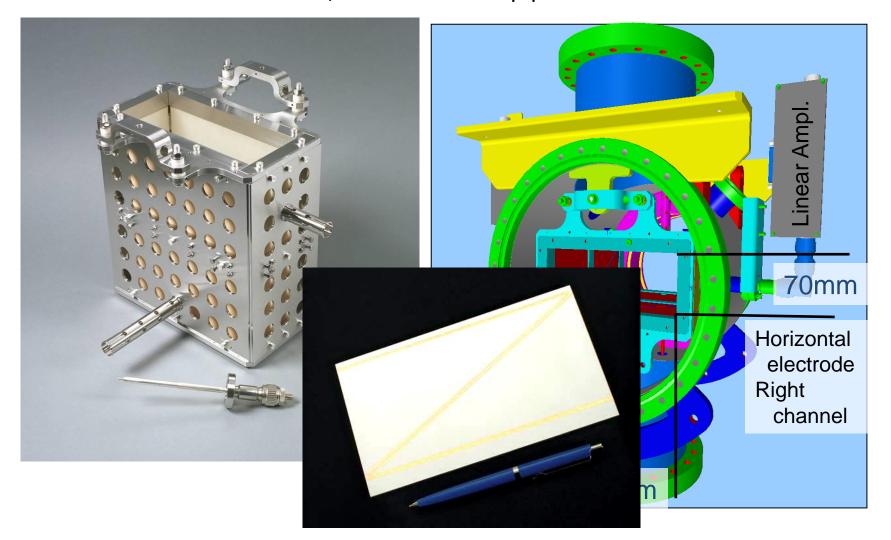
high capacitance


Size: 200x70 mm²


ground potential

Technical Realization of a linear-cut BPM

Technical realization at HIT synchrotron of 46 m length for 7 MeV/u \rightarrow 440 MeV/u BPM clearance: 180x70 mm², standard beam pipe diameter: 200 mm.



Technical Realization of a linear-cut BPM

Technical realization at HIT synchrotron of 46 m length for 7 MeV/u \rightarrow 440 MeV/u BPM clearance: 180x70 mm², standard beam pipe diameter: 200 mm.

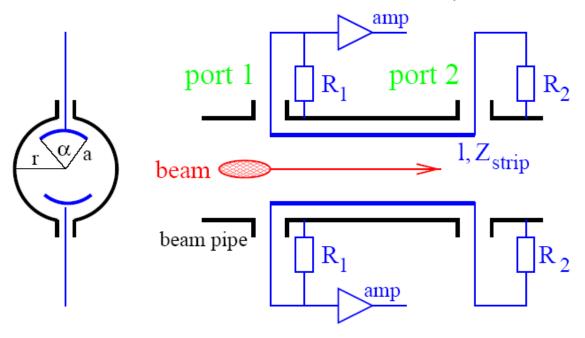
Comparison linear-cut and Button BPM

	Linear-cut BPM	Button BPM
Precaution	Bunches longer than BPM	Bunch length comparable to BPM
BPM length (typical)	10 to 20 cm length per plane	\varnothing 1 to 5 cm per button
Shape	Rectangular or cut cylinder	Orthogonal or planar orientation
Bandwidth (typical)	0.1 to 100 MHz	100 MHz to 5 GHz
Coupling	1 M Ω or \approx 1 k Ω (transformer)	50 Ω
Cutoff frequency (typical)	0.01 10 MHz (<i>C</i> =30100pF)	0.3 1 GHz (<i>C</i> =210pF)
Linearity Very good, no x-y coupling		Non-linear, x-y coupling
Sensitivity	Good, care: plate cross talk	Good, care: signal matching
Usage	At proton synchrotrons,	All electron acc., proton Linacs, f_{rf}
	f_{rf} < 10 MHz vertical	> 100 MHz

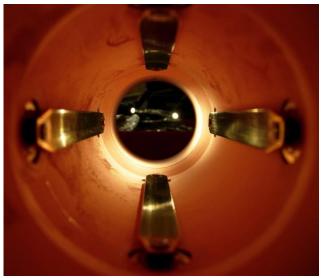
Remark: Other types are also some time used: e.g. strip-line, wall current monitors, inductive antenna, BPMs with external resonator, cavity BPM, slotted wave-guides etc.

Pick-Ups for bunched Beams

Outline:


- ➤ Signal generation → transfer impedance
- Capacitive button BPM for high frequencies used at most proton LINACs and electron accelerators
- Stripline BPMs for hight frequencies used at colliders with counter-propagating beams
- Electronics for position evaluation
- > BPMs for measurement of closed orbit, tune and further lattice functions
- Summary

Stripline BPM: General Idea



For short bunches, the *capacitive* button deforms the signal

- ightarrow Relativistic beam $\beta \approx 1 \Rightarrow$ field of bunches nearly TEM wave
- → Bunch's electro-magnetic field induces a **traveling pulse** at the strips
- \rightarrow Assumption: Bunch shorter than BPM, $Z_{strip} = R_1 = R_2 = 50 \Omega$ and $v_{beam} = c_{strip}$

LHC stripline BPM, *I* = 12 cm

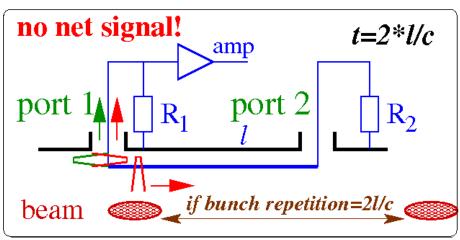
From C. Boccard, CERN

Stripline BPM: General Idea

For relativistic beam with $\beta \approx 1$ and short bunches:

- → Bunch's electro-magnetic field induces a **traveling pulse** at the strip
- \rightarrow **Assumption:** $I_{bunch} << I$, $Z_{strip} = R_1 = R_2 = 50 \Omega$ and $v_{beam} = c_{strip}$

Signal treatment at upstream port 1:


t=0: Beam induced charges at **port 1**:

 \rightarrow half to R_1 , half toward port 2

t=l/c: Beam induced charges at **port 2**:

- \rightarrow half to R_2 , **but** due to different sign, it cancels with the signal from **port 1**
- → half signal reflected

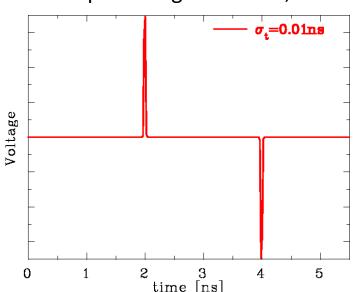
t=2·l/c: reflected signal reaches port 1

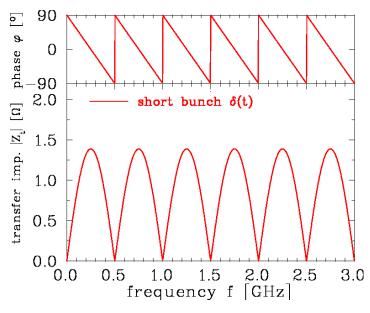
$$\Rightarrow U_1(t) = \frac{1}{2} \cdot \frac{\alpha}{2\pi} \cdot Z_{strip} \left(I_{beam}(t) - I_{beam}(t - 2l/c) \right)$$

If beam repetition time equals 2·I/c: reflected preceding port 2 signal cancels the new one:

- → no net signal at **port 1**
- Signal at downstream port 2: Beam induced charges cancel with traveling charge from port 1
- ⇒ Signal depends on direction ⇔ can distinguish between counter-propagation beams

Stripline BPM: Transfer Impedance



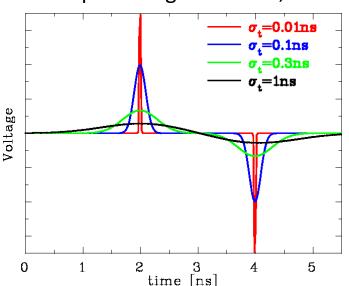

The signal from port 1 and the reflection from port 2 can cancel \Rightarrow minima in Z_t

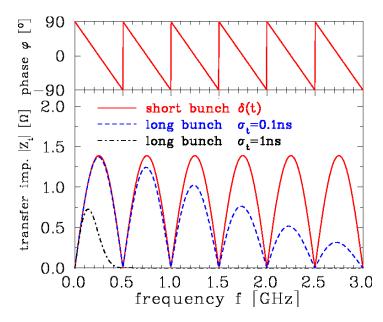
For short bunches $I_{beam}(t) \rightarrow Ne \cdot \delta(t)$: $Z_t(\omega) = Z_{strip} \cdot \frac{\alpha}{2\pi} \cdot \sin(\omega l/c) \cdot e^{i(\pi/2 - \omega l/c)}$

$$Z_{t}(\omega) = Z_{strip} \cdot \frac{\alpha}{2\pi}$$

Stripline length I=30 cm, $\alpha=10^{\circ}$

- \geq Z_t show maximum at $l=c/4f=\lambda/4$ i.e. 'quarter wave coupler' for bunch train \Rightarrow I has to be matched to v_{beam}
- \triangleright No signal for $l=c/2f=\lambda/2$ i.e. destructive interference with **subsequent** bunch
- \triangleright Around maximum of $|Z_t|$: phase shift $\varphi=0$ i.e. direct image of bunch
- $F_{center} = 1/4 \cdot c/l \cdot (2n-1)$. For first lope: $f_{low} = 1/2 \cdot f_{center}$, $f_{high} = 3/2 \cdot f_{center}$ i.e. bandwidth $\approx 1/2 \cdot f_{center}$
- \triangleright Precise matching at feed-through required t o preserve 50 Ω matching.


Stripline BPM: Transfer Impedance

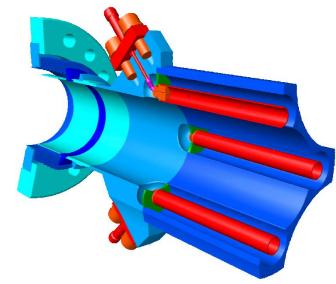


The signal from port 1 and the reflection from port 2 can cancel \Rightarrow minima in Z_t .

For bunches of length
$$\sigma$$
: $\Rightarrow Z_t(\omega) = Z_{strip} \cdot \frac{\alpha}{2\pi} \cdot e^{-\omega^2 \sigma^2/2} \cdot \sin(\omega l/c) \cdot e^{i(\pi/2 - \omega l/c)}$

Stripline length I=30 cm, $\alpha=10^{\circ}$

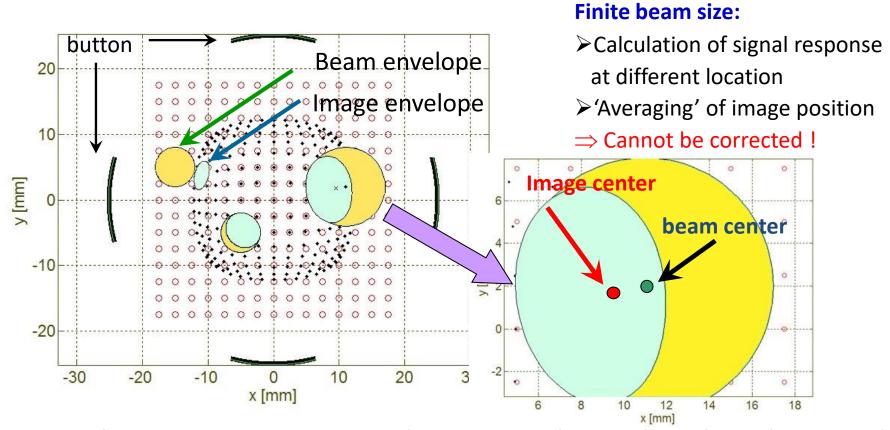
- $> Z_t(\omega)$ decreases for higher frequencies
- > If total bunch is too long $\pm 3\sigma_t > I$ destructive interference leads to signal damping **Cure:** length of stripline has to be matched to bunch length


Further advantage: Linear phase propagation ⇒ good for coupled bunch feedback

Comparison: Stripline and Button BPM (simplified)

	Stripline	Button
Idea	traveling wave	electro-static
Requirement	Careful \mathbf{Z}_{strip} = 50 Ω matching	
Signal quality	Less deformation of bunch signal	Deformation by finite size and capacitance
Bandwidth	Broadband, but minima	Highpass, but f_{cut} < 1 GHz
Signal strength	Large Large longitudinal and transverse coverage possible	Small Size <∅3cm, to prevent signal deformation
Mechanics	Complex	Simple
Installation	Inside quadrupole possible ⇒improving accuracy	Compact insertion
Directivity	YES	No

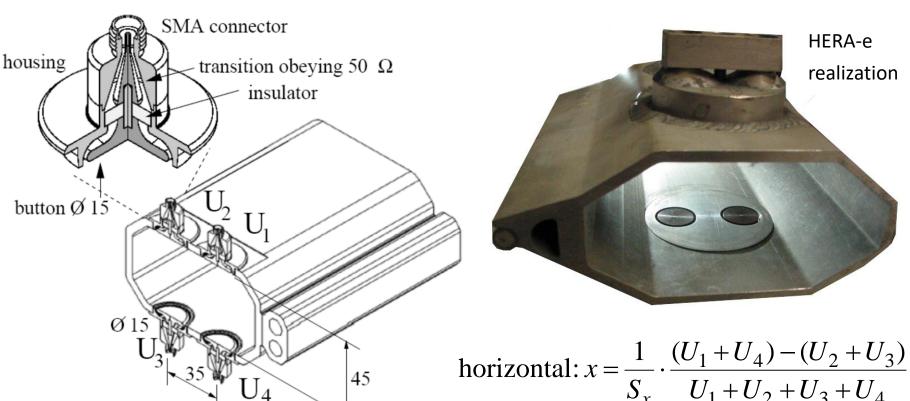
FLASH BPM inside quadrupole


From . S. Vilkins, D. Nölle (DESY)

Estimation of finite Beam Size Effect for Button BPM

Ideal 2-dim model:

Due to the non-linearity, the beam size enters in the position reading.

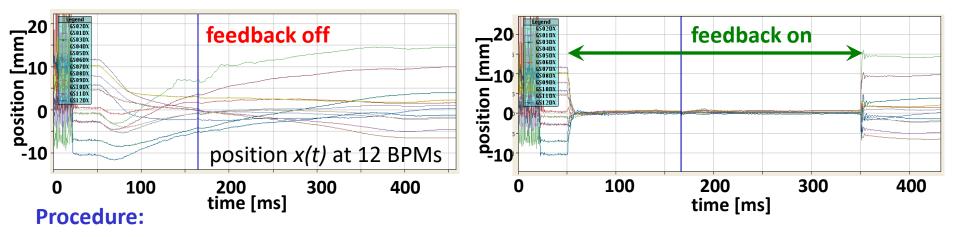


Remark: For most LINACs: Linearity is less important, because beam has to be centered Position correction as feed-forward for next macro-pulse.

Button BPM at Synchrotron Light Sources

Due to synchrotron radiation, the button insulation might be destroyed \Rightarrow buttons only in vertical plane possible \Rightarrow increased non-linearity

PEP-realization: N. Kurita et al., PAC 1995


vertical:
$$y = \frac{1}{S_y} \cdot \frac{(U_1 + U_2) - (U_3 + U_4)}{U_1 + U_2 + U_3 + U_4}$$

Close Orbit Feedback: Results

Orbit feedback:

Example: 12 beam positions at GSI-SIS during ramping from 8.6 to 500 MeV/u for Ar¹⁸⁺

- 1. Position from all 12 BPMs
- **2.** Calculation of corrector setting on fast (FPGA-based) electronics
- **3.** Submission to corrector magnets
- **4.** New position measurement
- ⇒ regulation time down to 10 ms

Role of thumb:

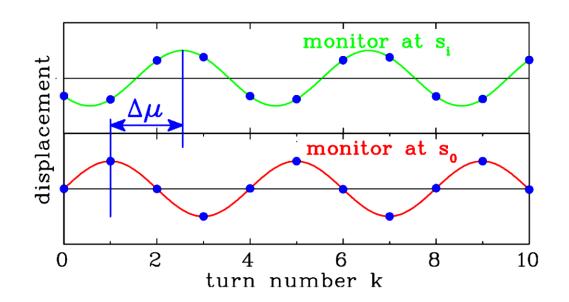
Movement related to tune i.e. 'natural oscillations by periodic focusing'

To determine the 'sine-like' oscillation 4 BPMs per oscillation are required

⇒ 4 BPMs per tune value (but detailed investigation required to determine the # of BPMs)

β -Function Measurement from Bunch-by-Bunch BPM Data

Excitation of **coherent** betatron oscillations:


→ Time-dependent position reading results the phase advance between BPMs

The phase advance is:

$$\Delta \mu = \mu_i - \mu_0$$

 β - function from

$$\Delta \mu = \int_{S0}^{Si} \frac{ds}{\beta(s)}$$

Remark: Determination of β -function with 3 BPMs:

$$\beta_{meas}(BPM_1) = \beta_{model}(BPM_1) \cdot \frac{\cot[\mu_{meas}(1 \to 2)] - \cot[(\mu_{meas}(1 \to 3)]]}{\cot[\mu_{model}(1 \to 2)] - \cot[\mu_{model}(1 \to 3)]}$$

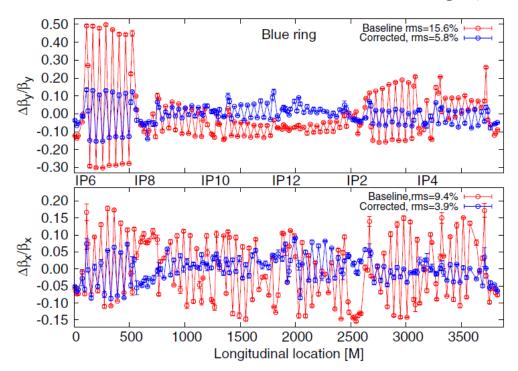
See e.g.: R. Tomas et al., Phys. Rev. Acc. Beams 20, 054801 (2017)

A. Wegscheider et al., Phys. Rev. Acc. Beams **20**, 111002 (2017)

See lecture 'Imperfections and Corrections' by Volker Ziemann

'Beta-beating' from Bunch-by-Bunch BPM Data

Example: 'Beta-beating' at BPM $\Delta \beta = \beta_{meas} - \beta_{model}$ with measured β_{meas} & calculated β_{model} for each BPM at BNL for RHIC (proton-proton or ions circular collider with 3.8 km length)


Result concerning 'beta-beating':

- Model doesn't fit reality completely e.g. caused by misalignments
- Corrections executed
- Increase of the luminosity

Remark:

Measurement accuracy depends on

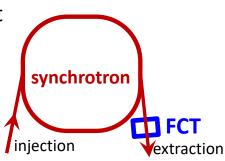
- BPM accuracy
- Numerical evaluation method

From X. Shen et al., Phys. Rev. Acc. Beams **16**, 111001 (2013)

See lecture 'Imperfections and Corrections' by Volker Ziemann

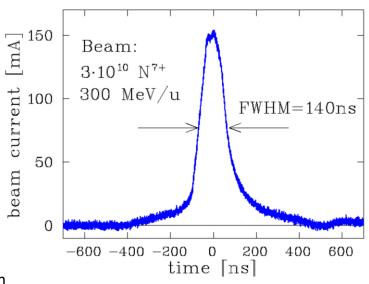
→Conclusion

Example for Fast Current Transformer From

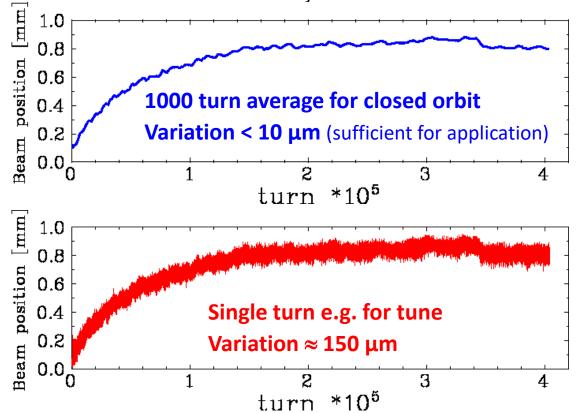

For bunch beams e.g. during accel. in a synchrotron typical bandwidth of 2 kHz < f < 1 GHz

 \Leftrightarrow 10 ns < t_{bunch} < 1 μ s is well suited Example: GSI Fast Current Transformer FCT:

Inner / outer radius	70 / 90 mm
Permeability	$\mu_r \approx 10^5$ for f < 100 kHz $\mu_r \propto 1/f$ above
Windings	10
Sensitivity	4 V/A for R = 50Ω
Droop time $\tau_{droop} = L/R$	0.2 ms
Rise time $\tau_{rise} = \sqrt{L_S C_S}$	1 ns
Bandwidth	2 kHz 500 MHz


Numerous application e.g.:

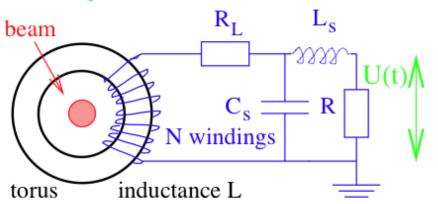
- > Transmission optimization
- Bunch shape measurement
- Input for synchronization of 'beam phase'

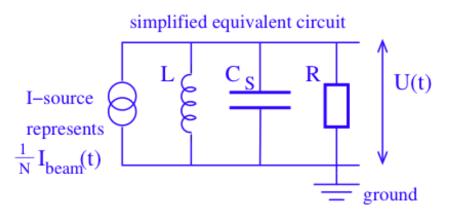

Fast extraction from GSI synchrotron:

Comparison: Filtered Signal ↔ **single Turn**

Example: GSI Synchr.: U^{73+} , $E_{inj} = 11.5$ MeV/u $\rightarrow E_{out} = 250$ MeV/u within 0.5 s, 10^9 ions

- Position resolution < 30 μm(BPM diameter d=180 mm)
- average over 1000 turns corresponding to ≈1 ms
 or ≈1 kHz bandwidth


➤ Turn-by-turn data have much larger variation


However: Not only noise contributes but additionally **beam movement** by betatron oscillation ⇒ broadband processing i.e. turn-by-turn readout for tune determination.

Fast Current Transformer FCT (also called Passive Transformer)

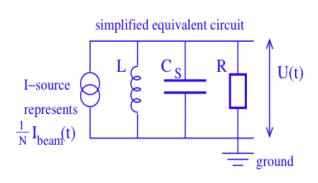
Simplified electrical circuit of a passively loaded transformer:

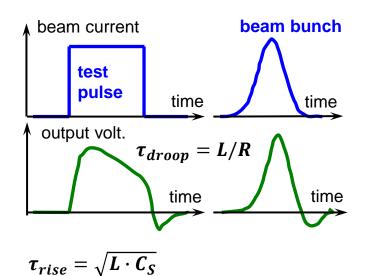
passive transformer

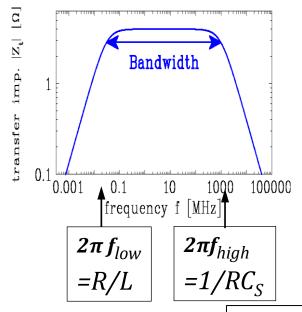
Equivalent circuit for analysis of sensitivity and bandwidth (disregarding the loss resistivity R_i)

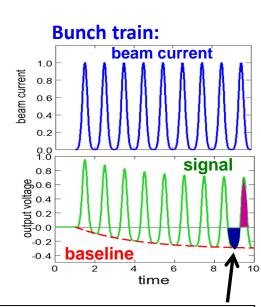
A voltages is measured: $U = R \cdot I_{sec} = R / N \cdot I_{beam} \equiv S \cdot I_{beam}$ with S sensitivity [V/A] to determine beam current I_{beam} equivalent to transfer function or transfer impedance Z

Response of the Passive Transformer: Rise and Droop Time


Time domain description:


Droop time: $\tau_{droop} = 1/(2\pi f_{low}) = L/R$

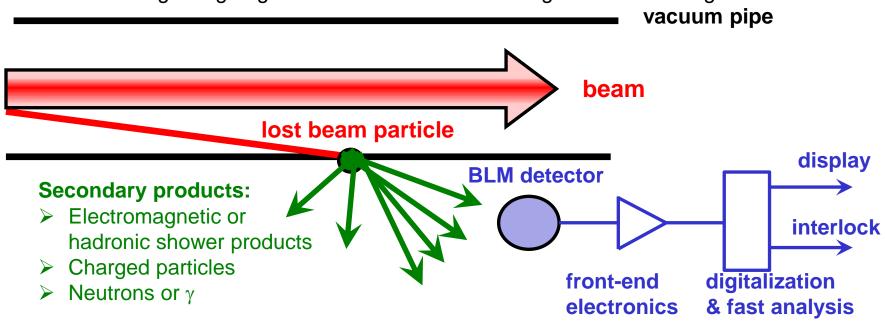

Rise time: $\tau_{rise} = 1/(2\pi f_{high}) = RC_s$ (ideal without cables)


Rise time: $\tau_{rise} = 1/(2\pi f_{high}) = \sqrt{L_S C_S}$ (with cables)

 R_L : loss resistivity, R: for measuring.

Baseline: $U_{base} \propto 1 - \exp(-t/\tau_{droop})$ positive & negative areas are equal

Basic Idea of Beam Loss Monitors



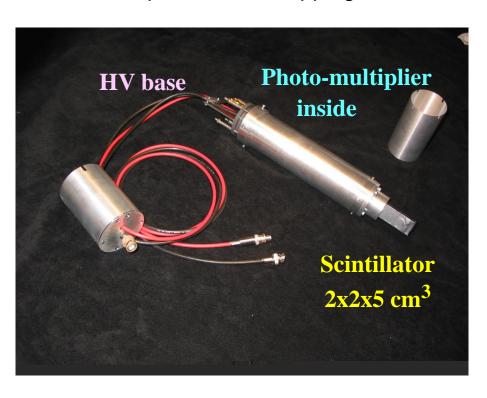
Basic idea for Beam Loss Monitors BLM:

A loss beam particle must collide with the vacuum chamber or other insertions

- Interaction leads to some shower particle:
 e⁻, γ, protons, neutrons, excited nuclei, fragmented nuclei
- → Detection of these secondaries by an appropriate detector outside of beam pipe
- → Relative cheap detector installed at many locations

Remark: Due to grazing angle a thin vacuum chamber might be a 'thick target'

Scintillators as Beam Loss Monitors

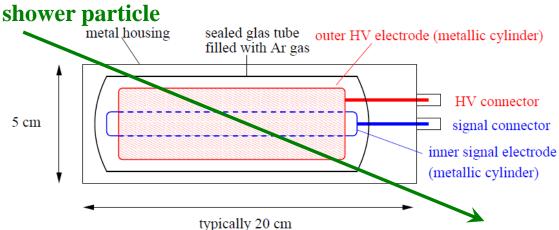

Plastics or liquids are used:

- Detection of charged particles by electronic stopping
- Detection of neutrons by elastic collisions n on p in plastics and fast p electronic stopping.

Scintillator + photo-multiplier:

counting (large PMT amplification) or analog voltage ADC (low PMT amplification) Radiation hardness:

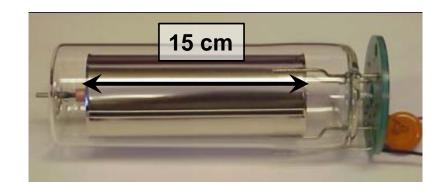
plastics 1 Mrad = 10^4 Gy liquid 10 Mrad = 10^5 Gy



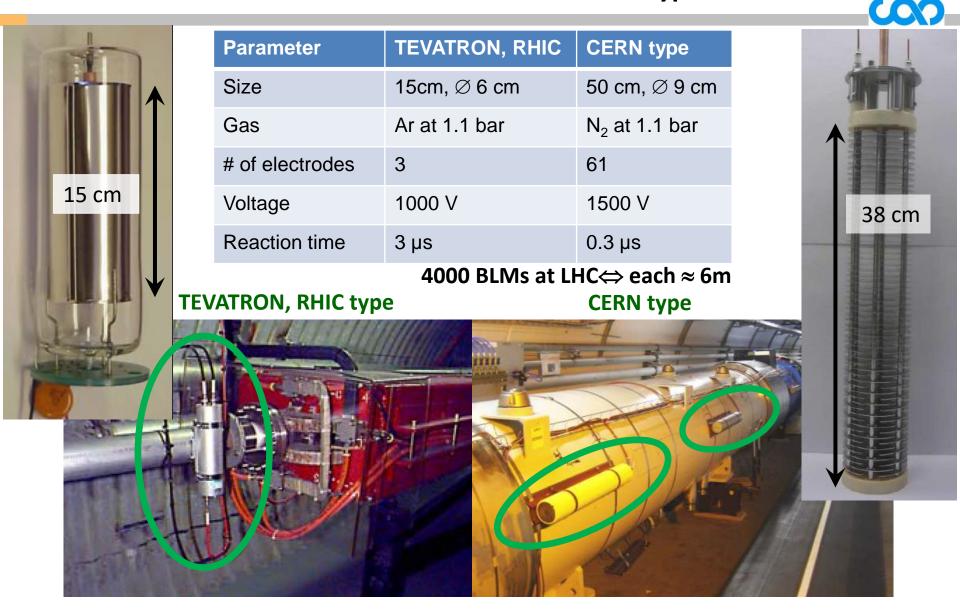
Ionization Chamber as Beam Loss Monitors

Energy loss of charged particles in gases \rightarrow electron-ion pairs \rightarrow current meas.

$$I_{\rm sec} \propto \frac{1}{W} \cdot \frac{dE}{dx} \Delta x$$


W is average energy for creation for one e⁻ -ion pair:

Gas	Ionization Pot. [eV]	W-Value [eV]
Ar	15.7	26.4
N_2	15.5	34.8
O_2	12.5	30.8
Air		33.8

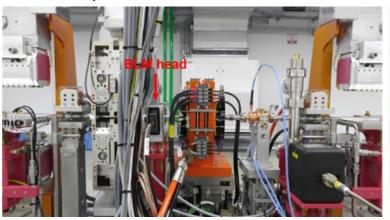

Sealed tube Filled with Ar or N₂ gas:

- Creation of Ar⁺-e⁻ pairs, average energy **W** = 32 eV/pair
- measurement of this current
- ➤ Slow time response due to ≈ 10 µs drift time of Ar⁺.

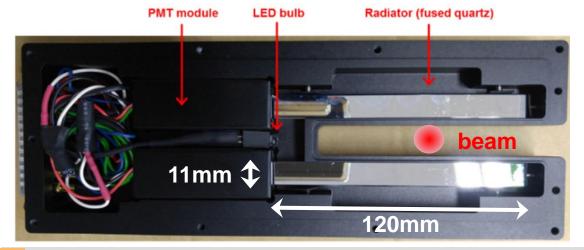
Per definition: Direct measurement of dose!

Ionization Chamber as BLM: TEVATRON and CERN Type

Cherenkov Light Detectors as Beam Loss Monitors

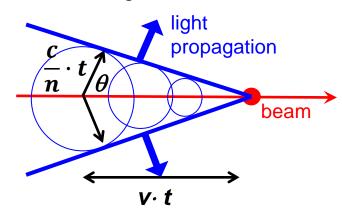


Cherenkov detectors:


Passage of a charged particle v faster than propagation of light $v > c_{medium} = c/n$

Technical: Quartz rod *n*=1.5 & photomultiplier

Example: Korean XFEL behind undulator



Cherenkov light emission:

For $\mathbf{v} > \mathbf{c}_{medium} = \mathbf{c} / \mathbf{n}$ light wave-front like a wake broadband light emission

Advantage:

- Petection of fast electrons only not sensitive to γ & synch. photons
- No saturation effects
- Prompt light emission

Usage: Mainly at FELs for short and intense pulses

H. Yang, D.C. Shin, FEL Conf. 2017

Comparison of different Types of BLMs

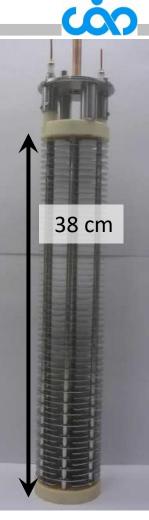
Different detectors are sensitive to various physical processes very different count rate, but basically proportional to each other

Typical choice of the detector type:

> Ionization Chamber:

Advantage:

- Measurement of absolute dose


Disadvantage:

- Low signal (low γ , eff, no neutron detection),
- Sometimes slow, ion drift time 10 ... 100 µs
- ⇒ Often used at **proton** accelerators
- Scintillator, Cherenkov detector:

Advantage:

- Fast current reading or particle counting
- Can be fabricated in any shape, cheap
- **Disadvantage:**
- Need calibration in many cases
- Might suffer from radiation
- ⇒ Often used at **electron** accelerators

91