

Beam Instrumentation & Diagnostics Part 2 CAS Introduction to Accelerator Physics Santa Susanna, 1st of October 2024 Peter Forck Gesellschaft für Schwerionenforschnung (GSI) p.forck@gsi.de

2nd part of this lecture covers:

- Transverse profile techniques
- Emittance determination at transfer lines
- Diagnostics for bunch shape determination

Beam Instrumentation & Diagnostics, Part 2

The beam width can be changed by focusing via quadruples.

Transverse matching between ascending accelerators is done by focusing. → Profiles have to be controlled at many locations.

Synchrotrons: Lattice functions β (s) and D(s) are fixed \Rightarrow width σ and emittance ε are:

$$\sigma_x^2(s) = \varepsilon_x \beta_x(s) + \left(D(s)\frac{\Delta p}{p}\right)^2$$
 and $\sigma_y^2(s) = \varepsilon_y \beta_y(s)$ (no vertical bend)

Transfer lines: Lattice functions are 'smoothly' defined due to variable input emittance. *Typical beam sizes:*

e⁻-beam: typically Ø 0.01 to 3 mm, protons: typically Ø 1 to 30 mm

A great variety of devices are used:

> Optical techniques: Scintillating screens (all beams),

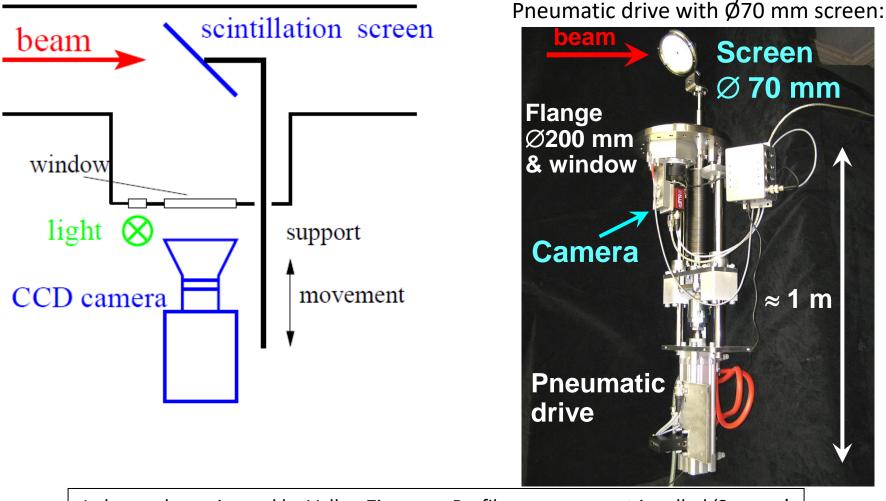
synchrotron light monitors (e^-), optical transition radiation (e^- , high-energetic p), ionization profile monitors (protons)

> Electronics techniques: Secondary electron emission SEM grids, wire scanners (all beams)

Outline:

Scintillation screens:

emission of light, universal usage, limited dynamic range


- Optical Transition Radiation
- > SEM-Grid
- Wire scanner
- Ionization Profile Monitor
- Synchrotron Light Monitors
- Summary

Scintillation: Particle's energy loss in matter causes emission of light

 \rightarrow the most direct way of profile observation as used from the early days on!

In beam dynamics and by Volker Ziemann: Profile measurement is called 'Screens'

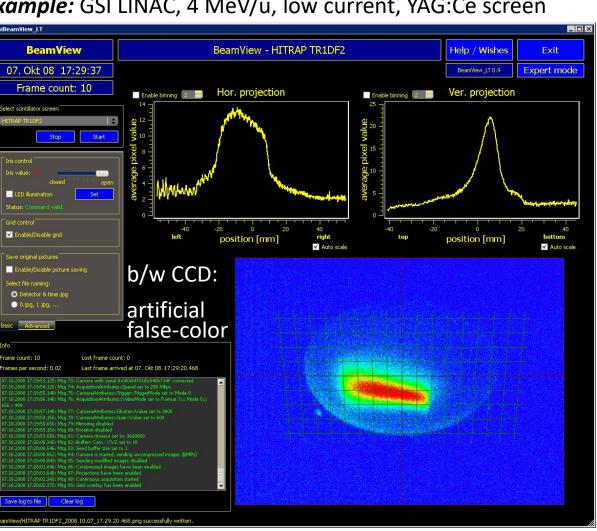
5

Advantage of screens:

- Direct 2-dim measurement
- ➢ High spatial resolution
- ➤ Cheap realization
- \Rightarrow widely used at transfer lines

Disadvantage of screens:

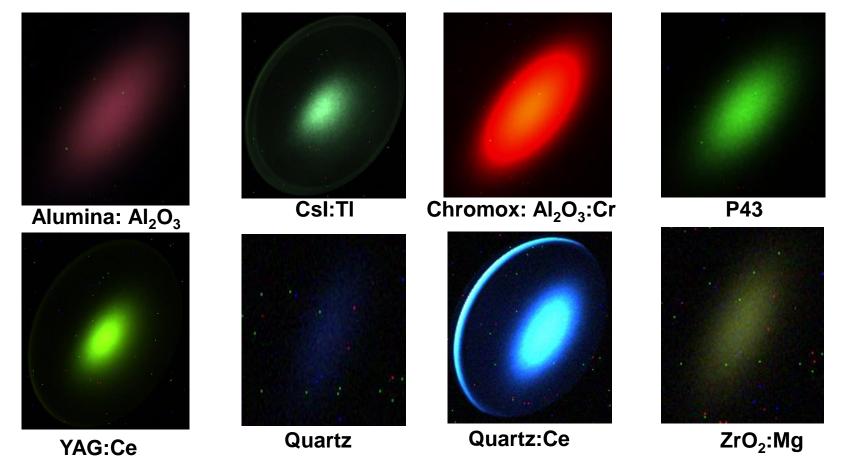
- Intercepting device
- Some material might be brittle
- Possible low dynamic range
- Might be destroyed


LINAC

- by the beam (radiation damage)
- Observation with CMOS camera Scintillation Screen (beam stopped)

LINAC

Example: GSI LINAC, 4 MeV/u, low current, YAG:Ce screen



Light output from various Scintillating Screens

Example: Color CCD camera: Images at different particle intensities determined for U at 300 MeV/u

Very different light yield i.e. photons per ion's energy loss

Different wavelength of emitted light

Some materials and their basic properties:

Standard drive with P43 screen

Туре	Name	Material	Activ.	Max. λ	Decay
Cera-	Chromox	Al ₂ O ₃	Cr	700nm	≈ 10ms
mics	Alumina	Al ₂ O ₃	Non	380nm	≈ 10ns
Crystal	YAG:Ce	$Y_3AI_5O_{12}$	Ce	550nm	200ns
	LYSO	Lu _{1.8} Y _{.2} SiO ₅	Ce	420nm	40ns
Powder	P43	Gd ₂ O ₃ S	Tb	545nm	1ms
of gains	P46	$Y_3AI_5O_{12}$	Ce	530nm	300ns
Ø≈10μm on glass	P47	Y ₂ SiO ₅	Ce&Tb	400nm	100ns

Properties of a good scintillator:

- Large light output at optical wavelength
 - ightarrow standard camera can be used
- \blacktriangleright Large dynamic range \rightarrow usable for different currents
- \blacktriangleright Short decay time \rightarrow observation of variations
- \succ Radiation hardness → long lifetime
- → Good mechanical properties → typ. size up to Ø 10 cm

(Phosphor Pxx grains of $\not{Q} \approx 10 \ \mu m$ on glass or metal).

Outline:

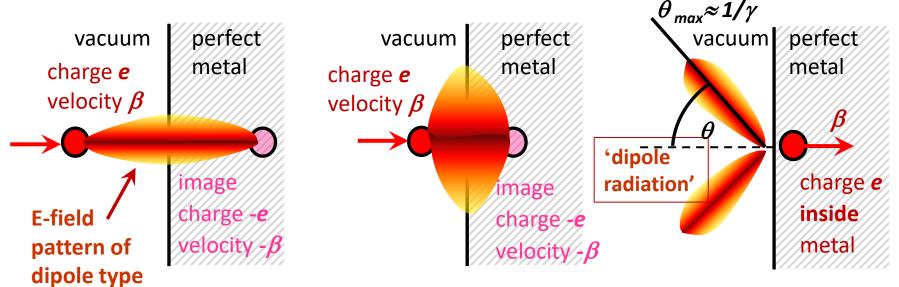
Scintillation screens:

emission of light, universal usage, limited dynamic range

Optical Transition Radiation:

light emission due to crossing material boundary, mainly for relativistic beams

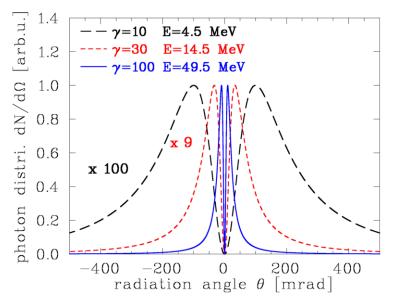
- > SEM-Grid
- ➤Wire scanner
- Ionization Profile Monitor
- > Synchrotron Light Monitors
- > Summary



Optical Transition Radiation OTR for a single charge *e*:

Assuming a charge *e* approaches an ideal conducting boundary e.g. metal foil:

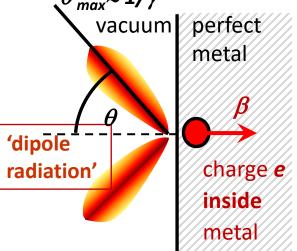
- Image charge is created by electric field
- Dipole type field pattern
- Field distribution depends on velocity β and Lorentz factor γ due to relativistic trans. field increase
- Penetration of charge through surface within t < 10 fs: sudden change of source distribution</p>
- > Emission of radiation with dipole characteristic


sudden change charge distribution rearrangement of sources ⇔ radiation

Other physical interpretation: Impedance mismatch at boundary leads to radiation

Optical Transition Radiation OTR can be described in classical physics:

Approximated formula for normal incidence & in-plane polarization:



Angular distribution of radiation in optical spectrum:

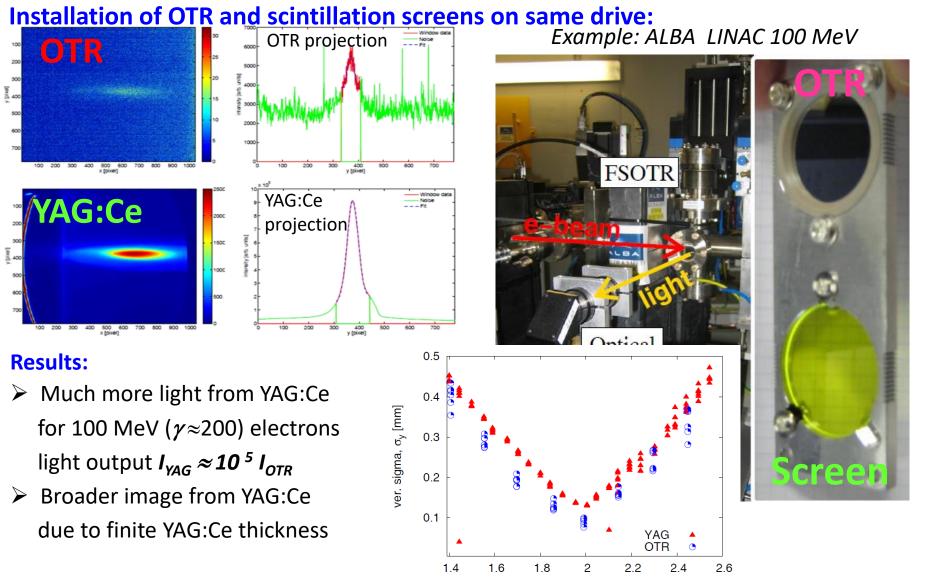
- Lope emission pattern depends on velocity or Lorentz factor γ
- \blacktriangleright Peak at angle $\theta \approx 1/\gamma$
- Emitted energy i.e. amount of photons scales with $W \propto \beta^2$
- Broad wave length spectrum (i.e. no dependence on ω)
- \rightarrow Suited for high energy electrons

 $\frac{d^2 W}{d\theta \, d\omega} \approx \frac{2e^2\beta^2}{\pi \, c} \cdot \frac{\sin^2 \theta \cdot \cos^2 \theta}{\left(1 - \beta^2 \cos^2 \theta\right)^2}$ ω : frequency of wave $\theta_{max} \approx 1/\gamma$ vacuum perfect

W: radiated energy

sudden change charge distribution rearrangement of sources ⇔ radiation

Technical Realization of Optical Transition Radiation OTR



OTR is emitted by charged particle passage through a material boundary. Photon distribution: $\frac{dN_{photon}}{d\Omega} = N_{beam} \cdot \frac{2e^2\beta^2}{\pi c} \cdot \log\left(\frac{\lambda_{begin}}{\lambda_{end}}\right) \cdot \frac{\theta^2}{\left(\nu^{-2} + \theta^2\right)^2}$ within a solid angle $d\Omega$ and Wavelength interval λ_{begin} to λ_{end} \blacktriangleright Detection: Optical 400 nm < λ < 800 nm mirror \triangleright Larger signal for relativistic beam $\gamma \gg 1$ lens + filter sensitive \blacktriangleright Low divergence for $\gamma \gg 1 \Longrightarrow$ large signal θ window CCD camera \Rightarrow Well suited for e⁻ beams \Rightarrow p-beam used for $E_{kin} \gtrsim 10 \text{ GeV} \Leftrightarrow \gamma \gtrsim 10$ beam pipe radiation cone beam OTR screen Insertion of thin Al-foil under 45°

Observation of low light by CCD.

Optical Transition Radiation compared to Scintillation Screen

Courtesy of U. Iriso et al., DIPAC'09

quad current, iq [A]

Comparison between Scintillation Screens and OTR

Quantity	OTR screen	Scintillation screen
Physics basis	Electrodynamic process → intensity linear to # photons, high radiation hardness	Complex atomic process → saturation possible, Possibility: low radiation hardness

Quantity	OTR screen	Scintillation screen
Physics basis	Electrodynamic process → intensity linear to # photons, high radiation hardness	Complex atomic process → saturation possible, Possibility: low radiation hardness
Target property	Thin foil Al or Al on Mylar, down to 0.25 µm thickness → minimizes beam scattering	Thickness ≈ 1 mm inorganic, fragile material, not always radiation hard
Signal strength	Low number of photons \rightarrow expensive image intensified cam.	Large number of photons \rightarrow simple camera sufficient
Photon distribution	Complex angular distribution \rightarrow resolution limited	Isotropic photon distribution \rightarrow simple interpretation
Application	Large γ needed \rightarrow e ⁻ -beam with $E_{kin} > 100$ MeV, proton-beam with $E_{kin} > 100$ GeV	For all beams

Remark: OTR is **not** suited for LINAC-FEL due to **coherent** light emission (not covered here) but scintillation screens can be used.

Outline:

Scintillation screens:

emission of light, universal usage, limited dynamic range

Optical Transition Radiation:

light emission due to crossing material boundary, mainly for relativistic beams

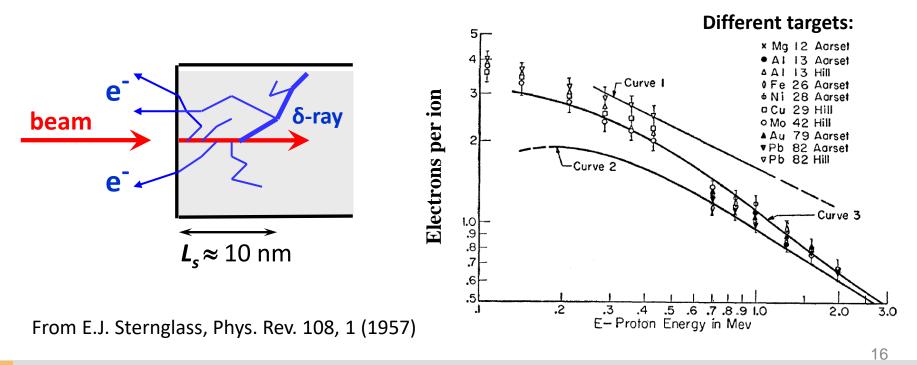
SEM-Grid:

emission of electrons, workhorse, limited resolution

- Wire scanner
- Ionization Profile Monitor
- Synchrotron Light Monitors
- Summary

Secondary Electron Emission by Ion Impact

Energy loss of ions in metals close to a surface:

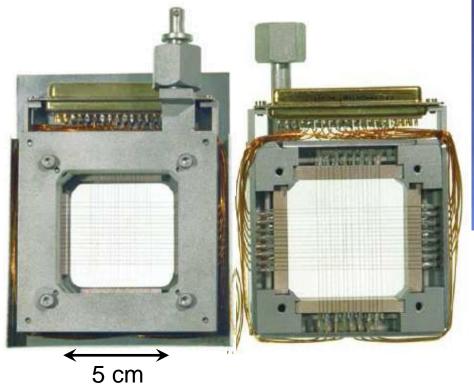

Closed collision with large energy transfer: \rightarrow fast e⁻ with $E_{kin} >> 100 \text{ eV}$

Distant collision with low energy transfer : \rightarrow slow e⁻ with $E_{kin} \leq 10 \text{ eV}$

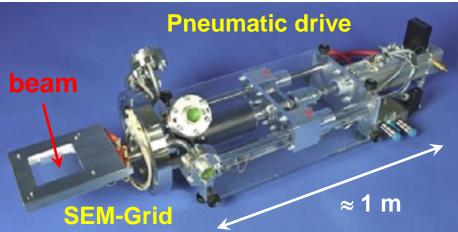
- \rightarrow 'diffusion' & scattering with other e⁻: scattering length $L_s \approx 1 10$ nm
- \rightarrow at surface \approx 90 % probability for escape

Secondary **electron yield** and energy distribution comparable for all metals!

 \Rightarrow **Y** = const. * dE/dx (Sternglass formula)



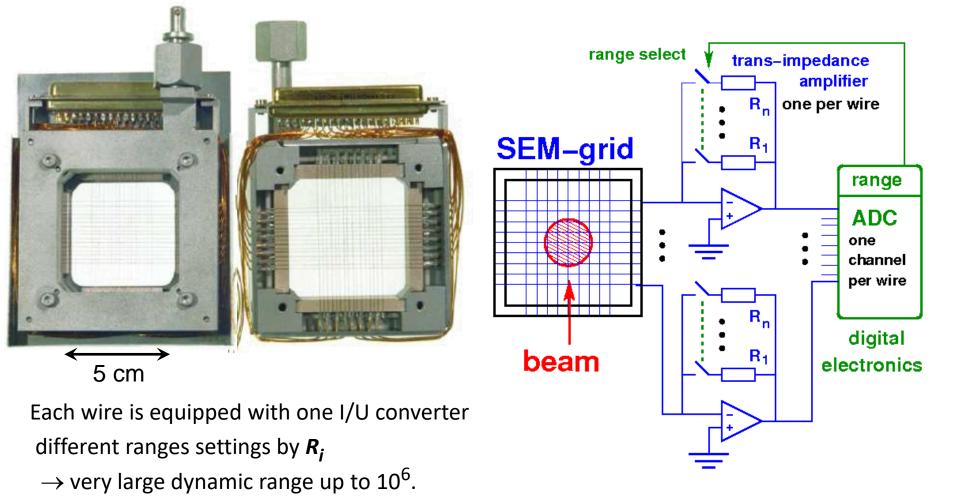
Secondary Electron Emission Grids = SEM-Grid



Beam surface interaction: e^- emission \rightarrow measurement of current.

Example: 15 wire spaced by 1.5 mm:

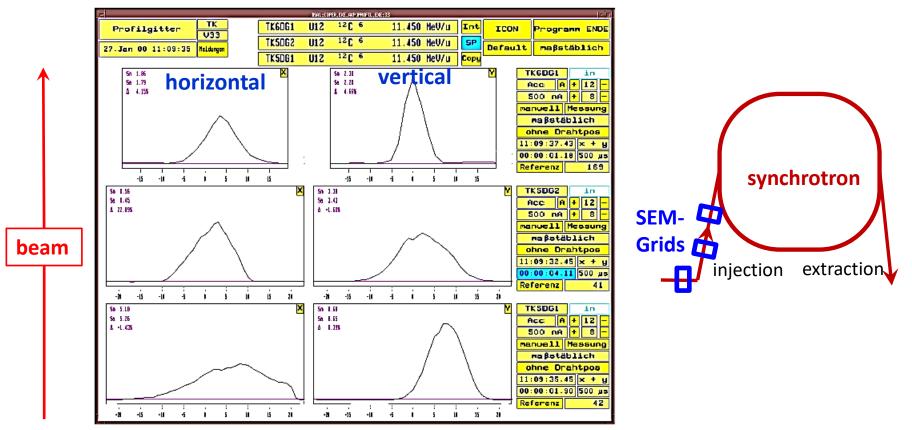
SEM-Grid drive on \varnothing 200 mm flange:



Parameter	Typ. value
# wires per plane	10100
Active area	(520 cm) ²
Wire \varnothing	25100 μm
Spacing	0.32 mm
Material	e.g. W or Carbon
Max. beam power	1 W/mm

Beam surface interaction: e^- emission \rightarrow measurement of current.

Example: 15 wire spaced by 1.5 mm:



Example of Profile Measurement with SEM-Grids

Even for low energies, several SEM-Grid can be used due to the \approx 80 % transmission \Rightarrow frequently used instrument beam optimization: setting of quadrupoles, energy....

Example: C⁶⁺ beam of 11.4 MeV/u at different locations at GSI-LINAC

Outline:

Scintillation screens:

emission of light, universal usage, limited dynamic range

> Optical Transition Radiation:

light emission due to crossing material boundary, mainly for relativistic beams

> SEM-Grid:

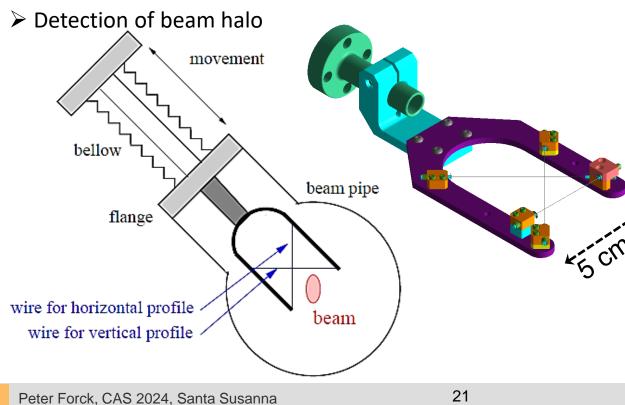
emission of electrons, workhorse, limited resolution

Wire scanner:

emission of electrons, workhorse, scanning method

- Ionization Profile Monitor
- Synchrotron Light Monitors
- > Summary

Slow, linear Wire Scanner

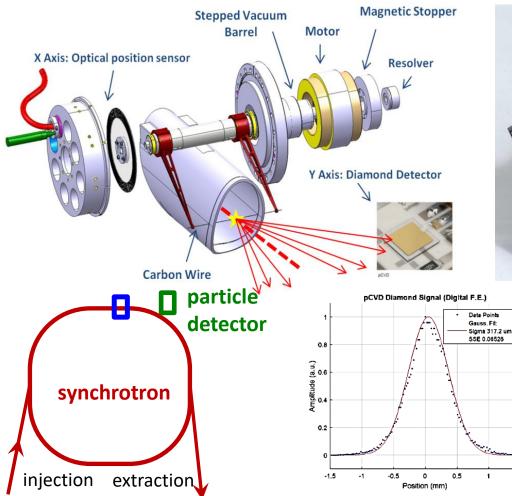

Idea: One wire is scanned through the beam!

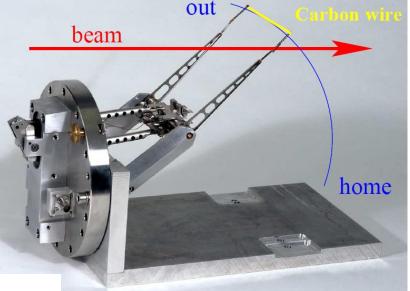
Wire diameter 100 μ m < d_{wire} < 10 μ m

Slow, linear scanner are used for:

Low energy protons

→ High resolution measurements for e⁻ beam by de-convolution $\sigma_{beam}^2 = \sigma_{meas}^2 + r_{wire}^2$ \Rightarrow resolution down to 1 µm range can be reached


Example: Wires scanner at CERB LINAC4


Be

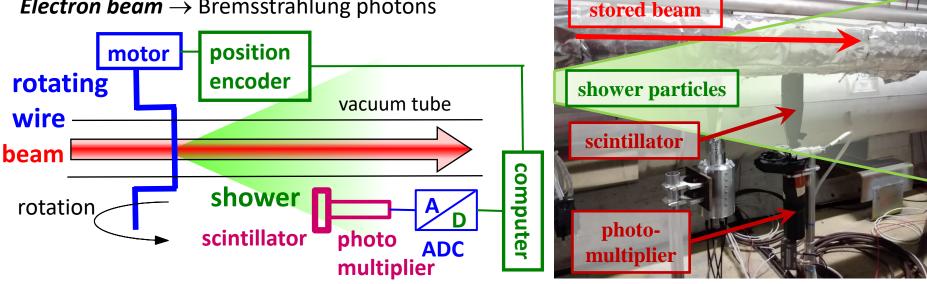
In a synchrotron <u>one</u> wire is scanned though the beam as fast as possible.

Fast pendulum scanner for synchrotrons; sometimes it is called 'flying wire':

From <u>https://twiki.cern.ch/twiki/</u> bin/viewauth/BWSUpgrade/

1.5

Usage of Flying Wire Scanners


Material: Carbon or SiC \rightarrow low Z-material for low energy loss and high temperature. *Thickness*: Down to 10 μ m \rightarrow high resolution.

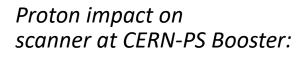
Detection: High energy secondary particles with a detector like a beam loss monitor

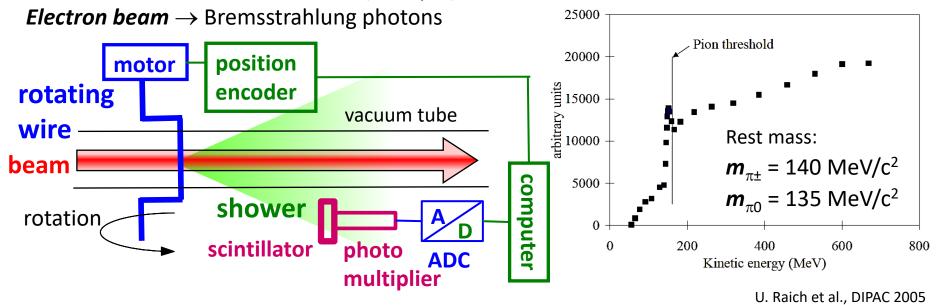
Secondary particles:

Proton beam \rightarrow hadrons shower (π , n, p...) **Electron beam** \rightarrow Bremsstrahlung photons

Detector in LHC:

Usage of Flying Wire Scanners


Proton beam \rightarrow hadrons shower (π , n, p...)



Material: Carbon or SiC \rightarrow low Z-material for low energy loss and high temperature. *Thickness*: Down to 10 μ m \rightarrow high resolution.

Detection: High energy secondary particles with a detector like a beam loss monitor

Secondary particles:

Kinematics of flying wire:

Velocity during passage typi. 10 m/s = 36 km/h & typical beam size \varnothing 10 mm

- \Rightarrow time for traversing the beam $t \approx 1$ ms
- Challenges: Wire stability for fast movement with high acceleration

Quantity	Grid	Linear scanner
Time resolution	Measurement at a single moment in time	Scanning method \rightarrow fast variations can't be monitored

Quantity	Grid	Linear scanner
Time resolution	Measurement at a single moment in time	Scanning method \rightarrow fast variations can't be monitored
Spatial resolution	Fixed by the wire distance (typically 1 mm)	Fixed by the wire thickness (typically 0.1 mm)
Electronics	Multi-channel , one for each wire \rightarrow expensive	Single channel \rightarrow cheap
Mechanics	Pneumatics for in \leftrightarrow out \rightarrow cheap	Stepping motor required → expensive
Application	Required for pulsed beams	Required for small beams
	However, related to tradition at laboratory	

Flying wire scanner:

Grid: Not adequate at synchrotrons for stored beam parametersScanner: At high energy synchrotrons: flying wire scanners are nearly non-destructive

Outline:

Scintillation screens:

emission of light, universal usage, limited dynamic range

> Optical Transition Radiation:

light emission due to crossing material boundary, mainly for relativistic beams

27

> SEM-Grid:

emission of electrons, workhorse, limited resolution

> Wire scanner:

emission of electrons, workhorse, scanning method

Ionization Profile Monitor:

secondary particle detection from interaction beam-residual gas

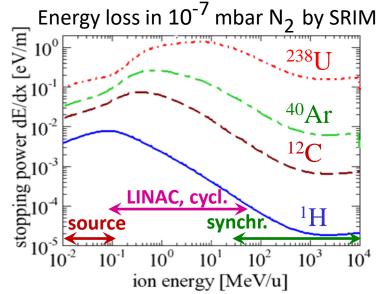
- Synchrotron Light Monitors
- > Summary

Interaction between Residual Gas and the Beams

Physics: Energy loss of ions in gas *dE/dx*

 \Rightarrow Profile determination from residual gas

Ionization:

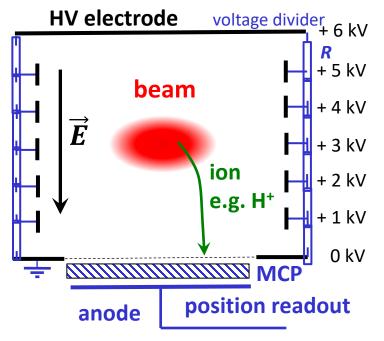

in average roughly \approx 100 eV/ionization

> Excitation followed by photon emission: in average roughly \approx 300 eV/event e.g. N₂ However, depends strongly on gas molecule

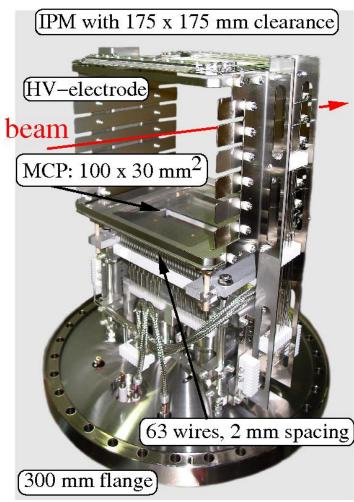
Typical vacuum pressure & ideal gas law $pV = nk_BT$ Transfer line:

N₂ pressure $p \approx 10^{-8} \dots 10^{-6}$ mbar ⇔ density $\rho_{gas} \approx 3 \cdot 10^{8} \dots 3 \cdot 10^{10} \text{ cm}^{-3}$ Synchrotron: H₂ pressure $p \approx 10^{-11} \dots 10^{-9}$ mbar ⇔ density $\rho_{gas} \approx 3 \cdot 10^{5} \dots 3 \cdot 10^{7}$ cm⁻³

beam pipe res. gas atom e⁻ o e⁻ o e⁻ ionization e⁻ o e⁻ beam e⁻ excitation e⁻ o e⁻

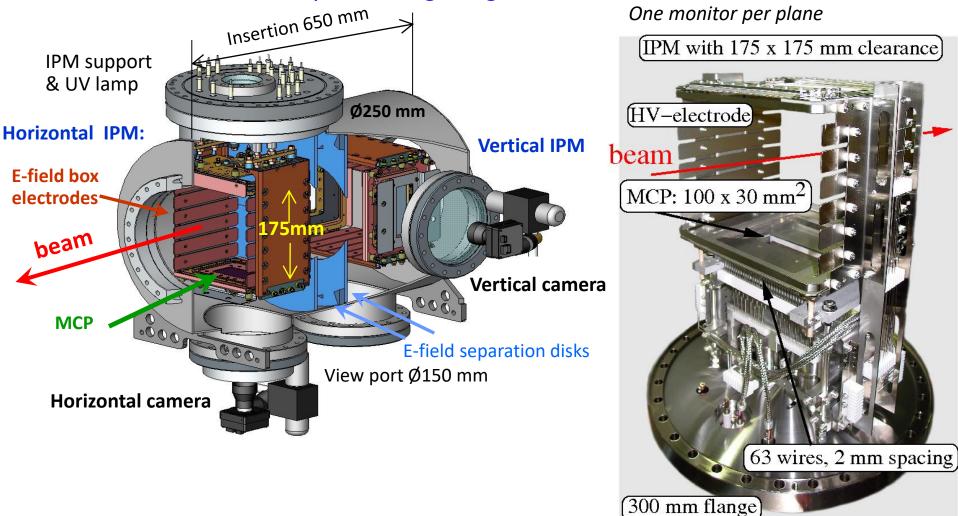

Beam density for comparison: Proton accelerator at 1 GeV, 100 mA, trans. width $\sigma = 300 \ \mu m$, coasting beam \Rightarrow density $\rho_{beam} \approx 10^8 \ \text{cm}^{-3} \rightarrow \text{beam density might be lower the vacuum density!}$

Ionization Profile Monitor at GSI Synchrotron

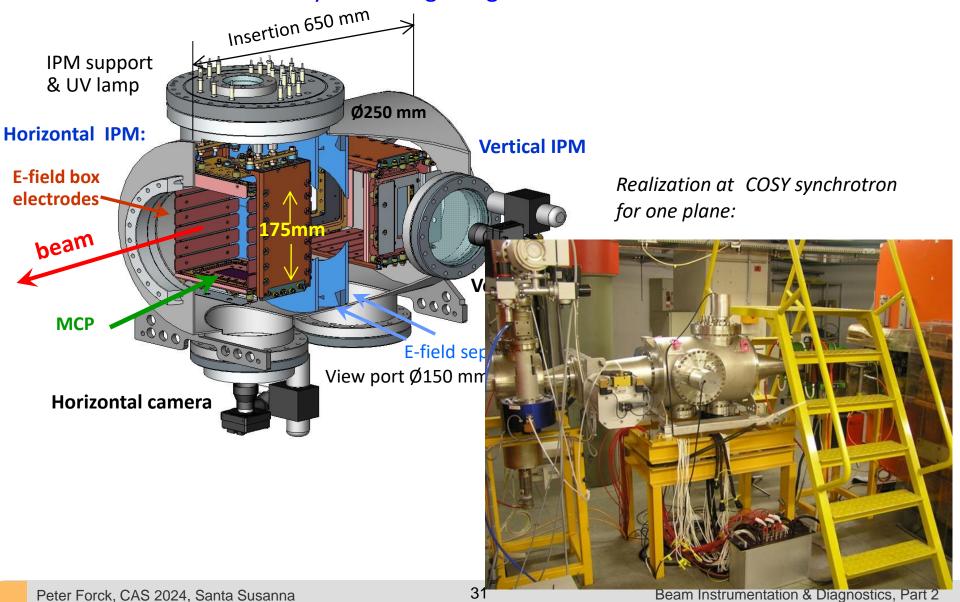


Non-destructive device for proton synchrotron:

- > Beam ionizes the residual gas by electronic stopping
- \succ Gas ions or e⁻ accelerated by E -field ≈1 kV/cm
- Spatial resolved single particle detection


Realization at GSI synchrotron: One monitor per plane

Ionization Profile Monitor Realization


The realization for the heavy ion storage ring ESR at GSI: Realization at GSI synchrotron:

Ionization Profile Monitor Realization

The realization for the heavy ion storage ring ESR at GSI:

Outline:

Scintillation screens:

emission of light, universal usage, limited dynamic range

> Optical Transition Radiation:

light emission due to crossing material boundary, mainly for relativistic beams

> SEM-Grid:

emission of electrons, workhorse, limited resolution

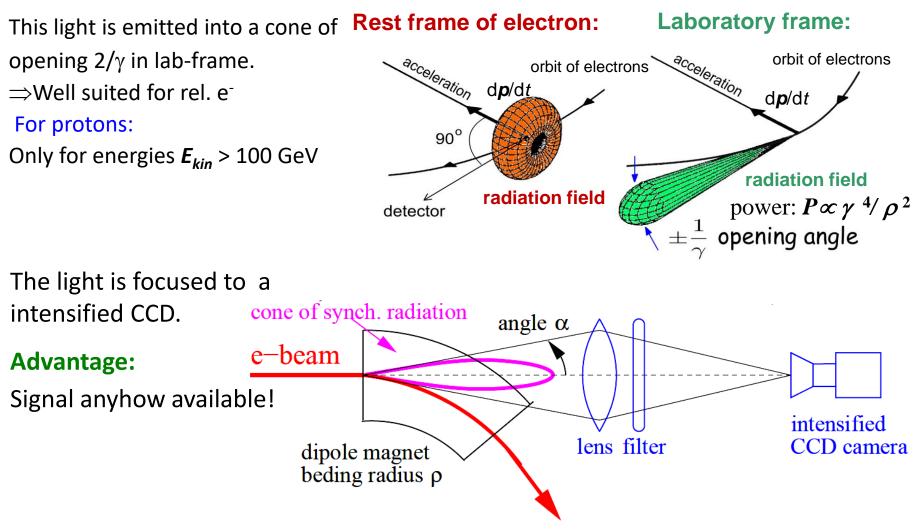
> Wire scanner:

emission of electrons, workhorse, scanning method

Ionization Profile Monitor:

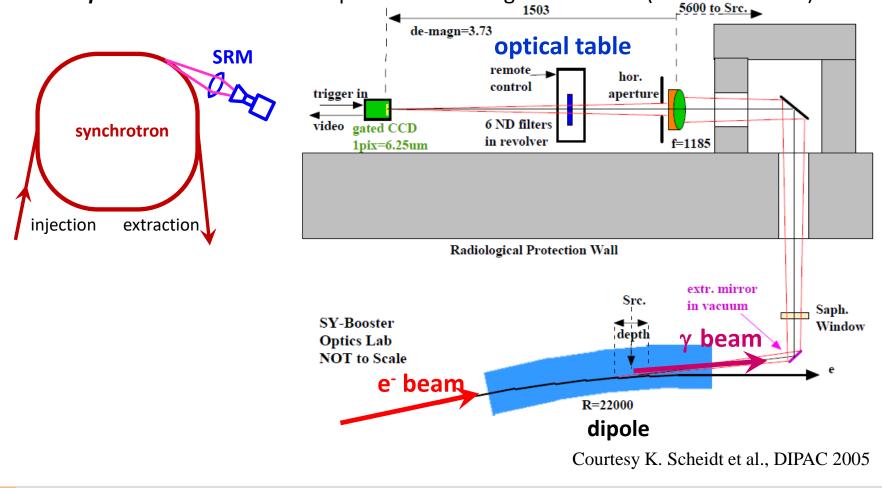
secondary particle detection from interaction beam-residual gas

Synchrotron Light Monitors:


photon detection of emitted synchrotron light in optical and X-ray range

> Summary

An electron bent (i.e. accelerated) by a dipole magnet emit synchrotron light see lecture 'Electron Beam Dynamics' by Lenny Rivkin


Realization of a Synchrotron Radiation Monitor

Extracting out of the beam's plane by a (cooled) mirror

- ightarrow Focus to a slit + wavelength filter for optical wavelength
- ightarrow Image intensified CCD camera

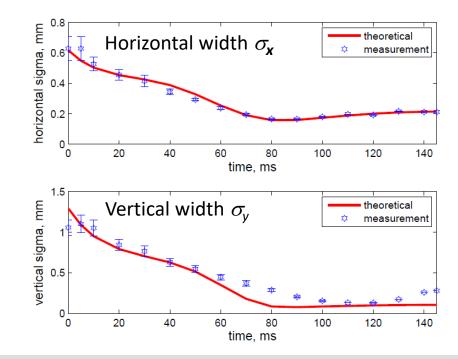

Example: ESRF monitor from dipole with bending radius 22 m (blue or near UV)

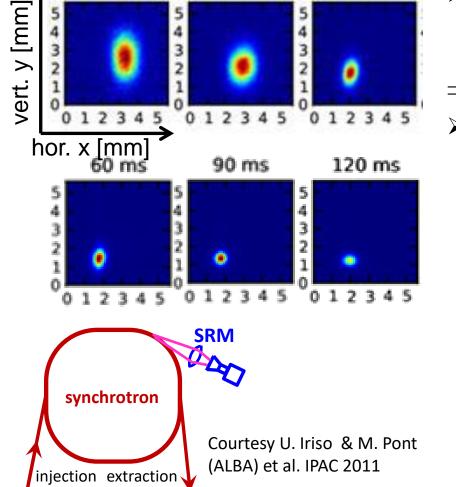
Result from a Synchrotron Light Monitor

Advantage: Direct measurement of 2-dim distribution, good optics for visible light Realization: Optics outside of vacuum pipe

Disadvantage: Resolution limited by the diffraction due to finite apertures in the optics.

'Adiabatic Damping' for an Electron Beam

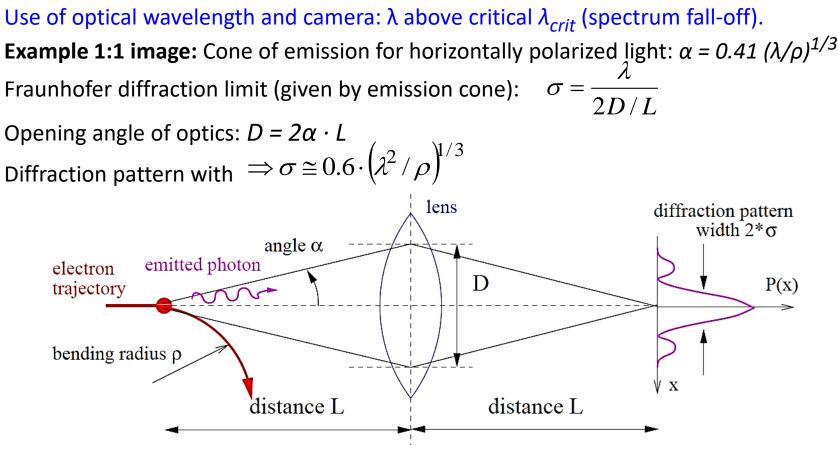

Example: Booster at the light source ALBA acceleration from $0.1 \rightarrow 3$ GeV within 130 ms Profiles from synchrotron radiation monitor: The beam emittance in influenced by:


30 ms

- Adiabatic damping
- ► Longitudinal momentum contribution via dispersion $D(s) \Rightarrow \Delta x_D(s) = D(s) \cdot \frac{\Delta p}{p}$

$$\Rightarrow$$
 total width $\sigma_{tot}(s) = \sqrt{\epsilon\beta(s) + \left(D(s) \cdot \frac{\Delta p}{p}\right)^2}$

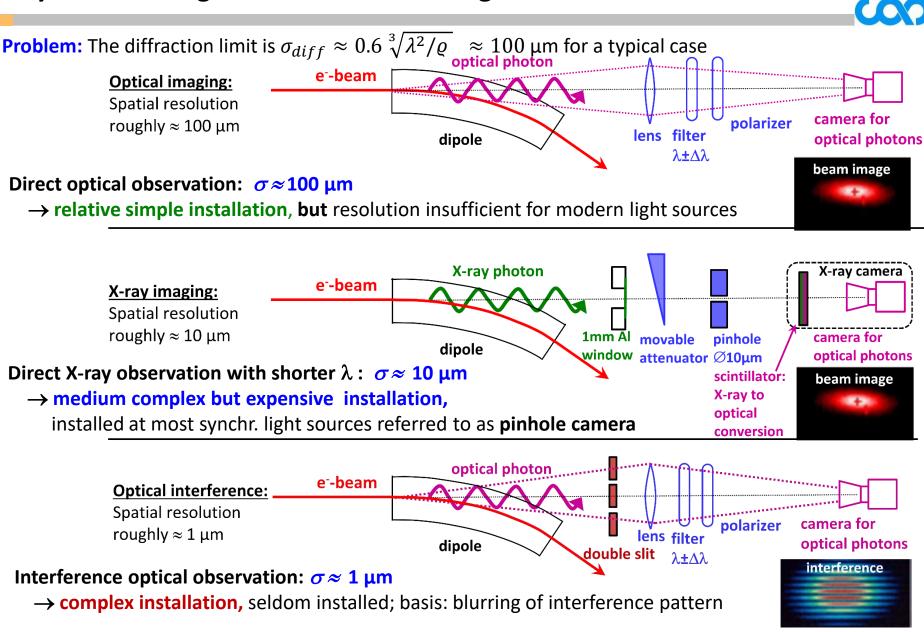
Quantum fluctuation due to light emission

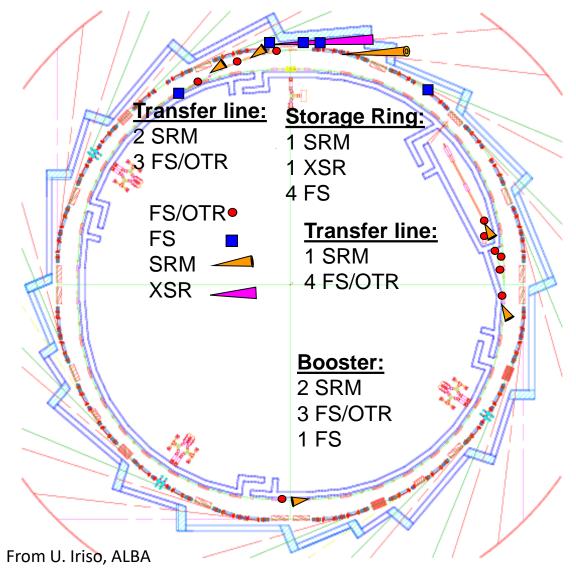


10 ms

Peter Forck, CAS 2024, Santa Susanna

0 ms




A good resolution for:

- \succ large dipole bending radius ρ , **but** fixed by the accelerator
- > short wavelength, **but** good optics only for λ > 300 nm

Synchrotron Light Monitor overcoming Diffraction Limit

Appendix: The Synchrotron Light Facility ALBA: Profile Measurement

Transverse profile:

- Many location in transport line
- Single location in ring
- Different devices used

Abbreviation:

FS: Fluorescence Screen
OTR: Optical Trans. Rad. Screen
FS & OTR are destructive
SRM: Synchr. Radiation Monitor
XSR: X-ray pin hole camera
both non-destructive

Different techniques are suited for different beam parameters:

- e⁻-beam: typically Ø 0.01 to 3 mm, protons: typically Ø 1 to 30 mm
- Intercepting ↔ non-intercepting methods

Direct observation of electrodynamics processes:

- > Optical synchrotron radiation monitor: non-destructive, for e⁻-beams, complex, limited res.
- ➤ X-ray synchrotron radiation monitor: non-destructive, for e⁻-beams, very complex
- > OTR screen: nearly non-destructive, large relativistic γ needed, e⁻-beams mainly

Detection of secondary photons, electrons or ions:

- Scintillation screen: destructive, large signal, simple setup, all beams
- Ionization profile monitor: non-destructive, expensive, limited resolution, for protons

Wire based electronic methods:

- SEM-grid: partly destructive, large signal and dynamic range, limited resolution
- Wire scanner: partly destructive, large signal and dynamics, high resolution, slow scan.

Outline of this lecture:

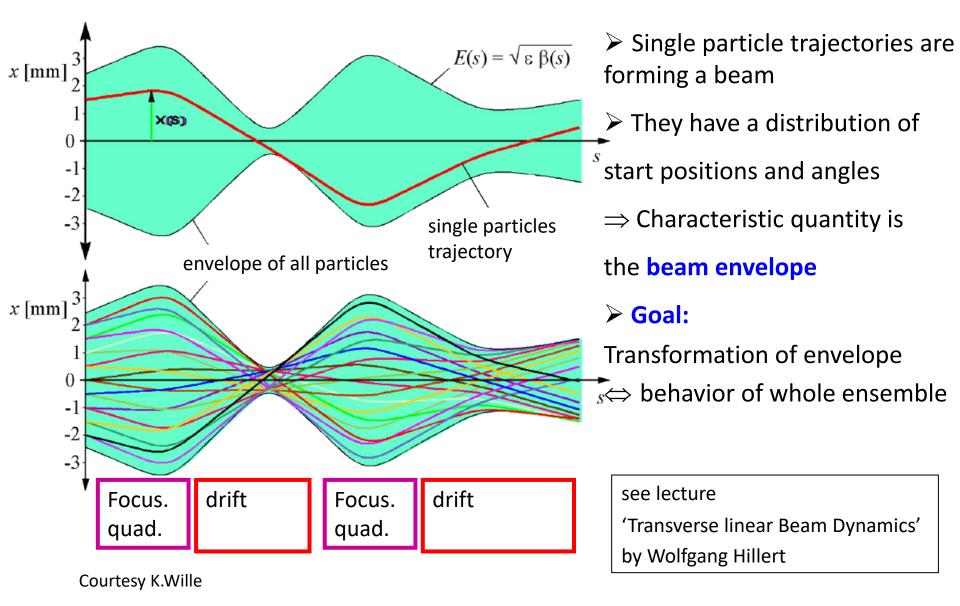
- Transverse profile techniques
- Emittance determination at transfer lines
- Diagnostics for bunch shape determination

The emittance characterizes the whole beam quality, assuming linear behavior as described by second order differential equation. It is defined within the phase space as: $\varepsilon_x = \frac{1}{\pi} \int_A dx dx'$

The measurement is based on determination of:

Either profile width σ_x and angular width σ_x' at one location **Or** profile width σ_x at different locations and linear transformations.

Different devices are used at transfer lines:

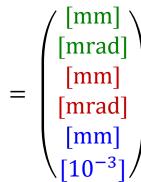

- > Lower energies E_{kin} < 100 MeV/u: slit-grid device, pepper-pot (suited in case of non-linear forces).
- All beams: Quadrupole variation method using linear transformations (not well suited in the presence of non-linear forces)

Synchrotron: lattice functions results in stability criterion

 $\Rightarrow \text{ beam width delivers emittance: } \varepsilon_x = \frac{1}{\beta_x(s)} \left[\sigma_x^2 - \left(D(s) \frac{\Delta p}{p} \right) \right] \text{ and } \varepsilon_y = \frac{\sigma_y^2}{\beta_y(s)}$

Trajectory and Characterization of many Particles

Definition of Coordinates and basic Equations



The basic vector is 6 dimensional:

al:
$$\begin{pmatrix} x \\ x' \\ y \\ y' \\ l \\ \delta \end{pmatrix}$$
 =

(hori. spatial deviation horizontal divergence vert. spatial deviation vertical divergence long. deviation momentum deviation

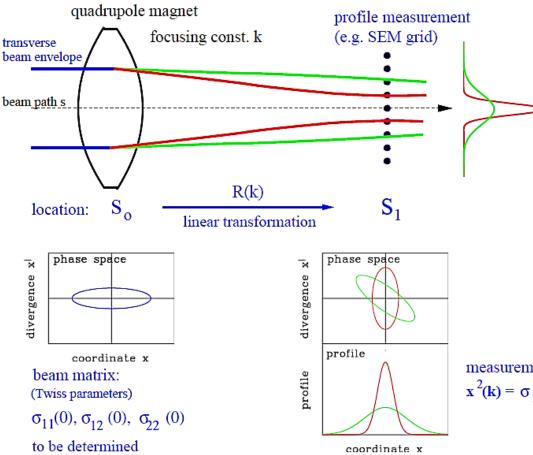
Beam width for

The transformation of a single particle from a location s_0 to s_1 is given by the Transfer Matrix R: $\vec{x}(s_1) = \mathbf{R}(s) \cdot \vec{x}(s_0)$ The transformation of a the envelope from a location s_0 to s_1 is given by the Beam Matrix σ : $\sigma(s_1) = \mathbf{R}(s) \cdot \sigma(s_0) \cdot \mathbf{R}^{\mathrm{T}}(s)$

6-dim Beam Matrix with <u>decoupled</u> hor., vert. and long. plane:

$$\sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} & 0 & 0 & 0 & 0 \\ \sigma_{12} & \sigma_{22} & 0 & 0 & 0 & 0 \\ 0 & 0 & \sigma_{33} & \sigma_{34} & 0 & 0 \\ 0 & 0 & \sigma_{34} & \sigma_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & \sigma_{55} & \sigma_{56} \\ 0 & 0 & 0 & 0 & \sigma_{56} & \sigma_{66} \end{pmatrix}$$
horizontal coordinates: beam matrix: beam matrix: $x_{rms} = \sqrt{\sigma_{11}} \quad \sigma_{11} = \langle x^2 \rangle$
longitudinal hor.-long. coupling $y_{rms} = \sqrt{\sigma_{33}} \quad \sigma_{12} = \langle x x' \rangle$
 $\rightarrow 9 \text{ values} \quad \downarrow_{rms} = \sqrt{\sigma_{55}} \quad \sigma_{22} = \langle x'^2 \rangle$

Outline:


- > Definition and some properties of transverse emittance
- Quadrupole strength variation and position measurement

emittance from several profile measurement and beam optical calculation

Slit-Grid device: scanning method

From a profile determination, the emittance can be calculated via linear transformation, if a well known and constant distribution (e.g. Gaussian) is assumed.

Measurement of beam width

$$x^2_{max} = \sigma_{11}(s_1, k)$$

- matrix **R**(*k*) describes the focusing.
- With the drift matrix the transfer is $\mathbf{R}(k_i) = \mathbf{R}_{\text{drift}} \cdot \mathbf{R}_{\text{focus}}(k_i)$
- Transformation of the beam matrix

 $\sigma(s_1,k_i) = \mathbf{R}(k_i) \cdot \sigma(s_0) \cdot \mathbf{R}^{\mathsf{T}}(k_i)$

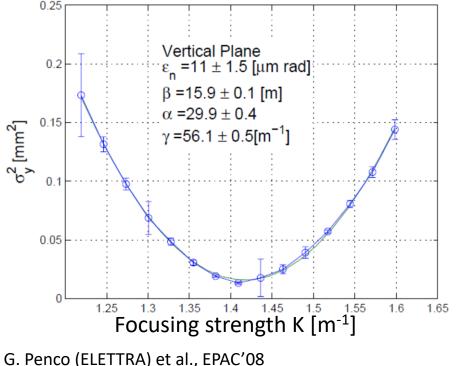
Task: Calculation of matrix $\sigma(s_0)$

at entrance s_o, i.e. three elements

measurement:

 $x^{2}(k) = \sigma_{11}(1,k)$

see lecture 'Linear Imperfections' by Volker Ziemann



Using the 'thin lens approximation' i.e. the quadrupole has a focal length of *f*:

$$\mathbf{R}_{focus}(K) = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ -\mathbf{1}/f & \mathbf{1} \end{pmatrix} \equiv \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ K & \mathbf{1} \end{pmatrix} \implies \mathbf{R}(L, K) = \mathbf{R}_{drift}(L) \cdot \mathbf{R}_{focus}(K) = \begin{pmatrix} \mathbf{1} + LK & L \\ K & \mathbf{1} \end{pmatrix}$$

Measurement of matrix-element $\sigma_{11}(s_1, K)$ from matrices $\sigma(s_1, K_i) = \mathbf{R}(K_i) \cdot \sigma(s_0) \cdot \mathbf{R}^{\mathsf{T}}(K_i)$ **Example:** Square of the beam width at

ELETTRA 100 MeV e⁻ Linac, YAG:Ce:

For completeness: The relevant formulas $\sigma_{11}(1, K) = L^2 \sigma_{11}(0) \cdot K^2$

$$+2 \cdot (L\sigma_{11}(0) + L^2\sigma_{12}(0)) \cdot K$$
$$+L^2\sigma_{22}(0) + \sigma_{11}(0)$$
$$\equiv a \cdot K^2 - 2ab \cdot K + ab^2 + c$$
$$= a \cdot (K - b)^2 + c$$

A fit delivers the beam matrix elements $\sigma_{ij}(s_0)$

Assumptions:

- 'Regular' phase space distribution
- Well aligned beam, no steering
- > No emittance blow-up due to space charge

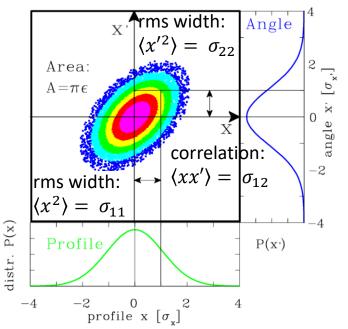
Improved methods:

Based on e.g. tomographic reconstruction

Outline:

- Definition and some properties of transverse emittance
- Quadrupole strength variation and position measurement emittance from several profile measurement and beam optical calculation
- Slit-Grid device: scanning method

scanning slit \rightarrow beam position & grid \rightarrow angular distribution

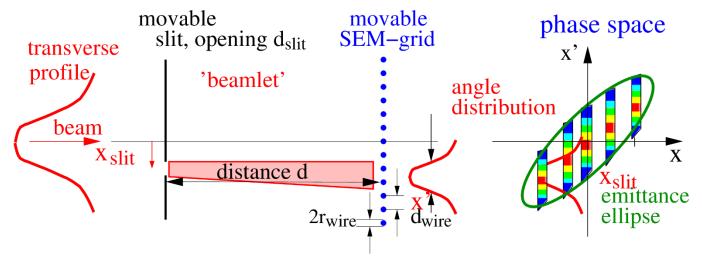


The beam distribution can be non-Gaussian, e.g. at:

- Beams behind ion source
- Space charged dominated beams at LINAC & synchrotron
- Cooled beams in storage rings

Generally: Emittance by 2nd statistical moments of 2-dim distribution:

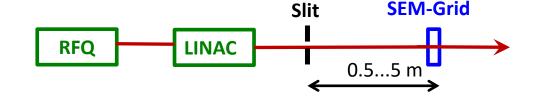
Beam matrix: $\boldsymbol{\sigma} = \begin{pmatrix} \langle x^2 \rangle & \langle xx' \rangle \\ \langle xx' \rangle & \langle x'^2 \rangle \end{pmatrix}$ Emittance: $\varepsilon_{rms} = \sqrt{\det \boldsymbol{\sigma}}$ $\varepsilon_{rms} = \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2}$ Variances Covariance i.e. correlation It describes the value for 1 standard derivation.



Slit-Grid: Direct determination of position and angle distribution.

Used for protons with $E_{kin} < 100 \text{ MeV/u} \Rightarrow \text{range } R < 1 \text{ cm}$.

Hardware



Slit: position *P(x)* with typical width: 0.1 to 0.5 mm

Distance: typ. 0.5 to 5 m (depending on beam energy 0.1 ... 100 MeV)

SEM-Grid: angle distribution **P(x')**

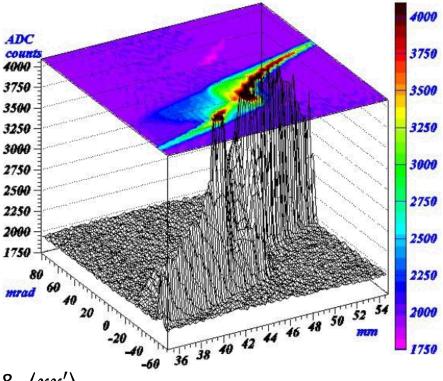
Display of Measurement Results

The distribution is depicted as a function of position [mm] & angle [mrad] The distribution can be visualized by

- Mountain plot
- Contour plot

Calc. of 2nd moments $\langle x^2 \rangle$, $\langle x'^2 \rangle$ & $\langle xx' \rangle$

Emittance value $\boldsymbol{\varepsilon}_{rms}$ from


$$\boldsymbol{\varepsilon_{rms}} = \sqrt{\langle x^2 \rangle \cdot \langle x'^2 \rangle - \langle xx' \rangle^2}$$

Problems:

- Finite binning results in limited resolution
- ▶ **Background** → large influence on $\langle x^2 \rangle$, $\langle x'^2 \rangle$ & $\langle xx' \rangle$
- Or fit of distribution with an ellipse
- \Rightarrow Effective emittance only

Remark: Behind a ion source the beam might be non-Gaussian due to plasma density and aberration at quadrupoles

See lecture 'Sources' by dan Faircloth

Beam: Ar⁴⁺, 60 keV, 15 μA

at Spiral2 Phoenix ECR source.

P. Ausset, DIPAC 2009

Emittance is the important quantity for comparison to theory.

It includes absolute value (value of $\boldsymbol{\varepsilon}$) & orientation in phase space (σ_{ii} or $\boldsymbol{\alpha}$, $\boldsymbol{\beta}$ and $\boldsymbol{\gamma}$)

three independent values $\varepsilon_{rms} = \sqrt{\sigma_{11} \cdot \sigma_{22} - \sigma_{12}} \equiv \sqrt{\langle x^2 \rangle \langle x'^2 \rangle} - \langle xx' \rangle^2$

assuming **no** coupling between horizontal, vertical and longitudinal planes

Transfer line, all beams → profile measurement + linear transformation:

Quadrupole variation: one location, different setting of a quadrupole
Assumptions: > well aligned beam, no steering

no emittance blow-up due to space charge

Transfer line, low energy beams \rightarrow direct measurement of x- and x'-distribution:

- > *Slit-grid:* movable slit $\rightarrow x$ -profile, grid $\rightarrow x'$ -profile
- ▶ Requirement: Beam is stopped in \approx 1cm \Leftrightarrow protons $E_{kin} \leq 100$ MeV

Remark: Non-linear transformation possible via tomographic reconstruction **Important remark:** For a synchrotron with a *stable beam storage*,

width measurement is sufficient using $x_{rms} = \sqrt{\varepsilon_{rms} \cdot \beta}$

Outline of this lecture:

- Transverse profile techniques
- Emittance determination at transfer lines
- > Diagnostics for bunch shape determination and longitudinal parameters

Measurement of longitudinal Parameters

GSI

Measurement of longitudinal parameter:

Bunch length measurement at

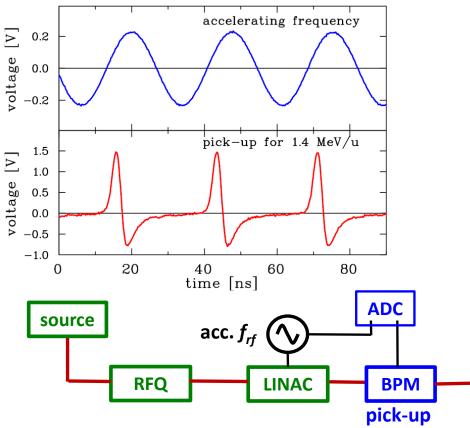
- Synchrotron light sources: Streak camera
- Linear light sources: Electro-optical modulator
- > Summary

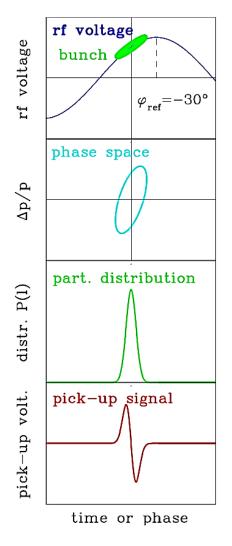
Longitudinal \leftrightarrow transverse correspondences:

position relative to rf

- \leftrightarrow transverse center-of-mass
- bunch structure in time
 - n time \leftrightarrow transverse profile
- \succ momentum or energy spread \leftrightarrow transverse divergence
- \succ longitudinal emittance \leftrightarrow transverse emittance.

The Bunch Position measured by a Pick-Up

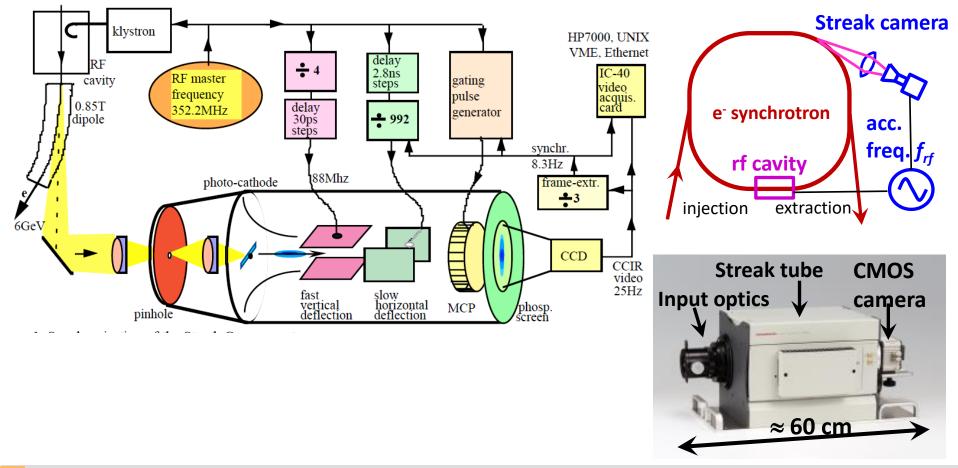



The *bunch position* is given relative to the accelerating rf.

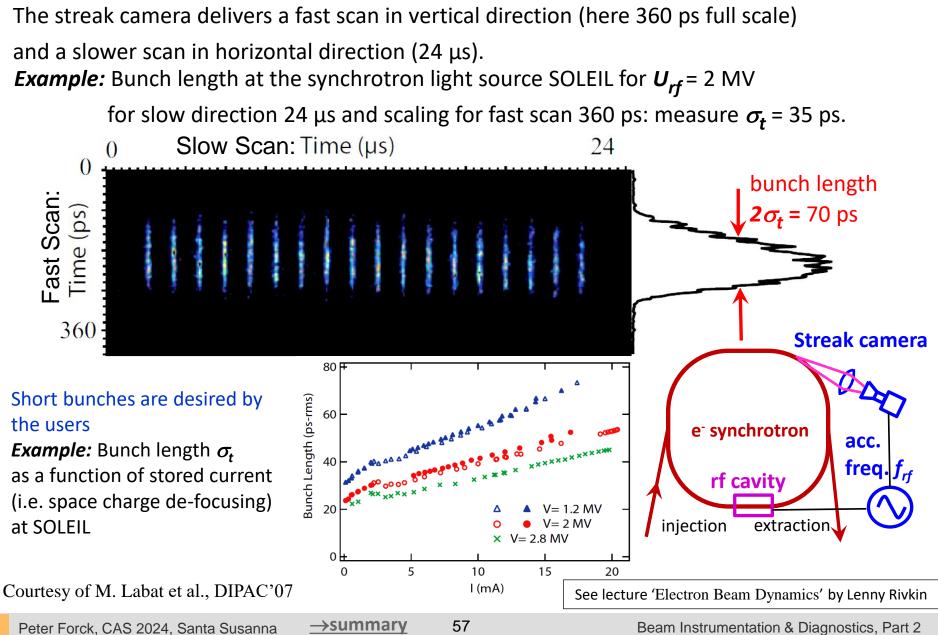
e.g. $\boldsymbol{\varphi_{ref}}$ =-30° inside a rf cavity

must be well aligned for optimal acceleration Transverse correspondence: Beam position

Example: Pick-up signal for f_{rf} = 36 MHz rf at GSI-LINAC:



Electron bunches are too short (σ_t < 100 ps) to be covered by the bandwidth of


pick-ups ($f < 3 \text{ GHz} \Leftrightarrow t_{rise} > 100 \text{ ps}$) for structure determination.

 \rightarrow Time resolved observation of synchr. light with a streak camera: Resolution \approx 1 ps. Scheme of a streak camera

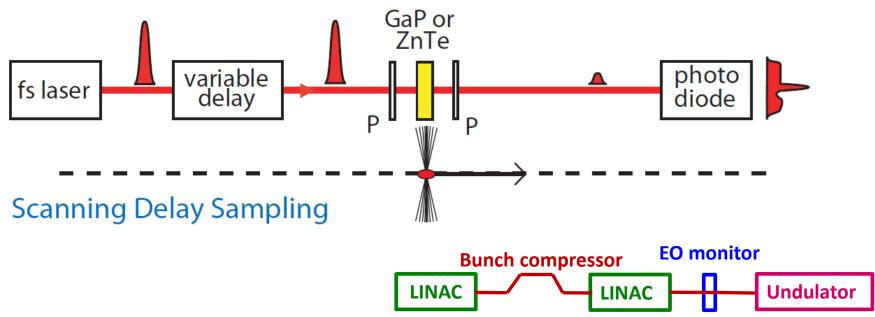
Results of Bunch Length Measurement by a Streak Camera

Measurement of longitudinal Parameters

Measurement of longitudinal parameter:

Bunch length measurement at

- Synchrotron light sources: Streak camera
- Linear light sources: Electro-optical modulators
- > Summary


Bunch Length Measurement by electro-optical Method

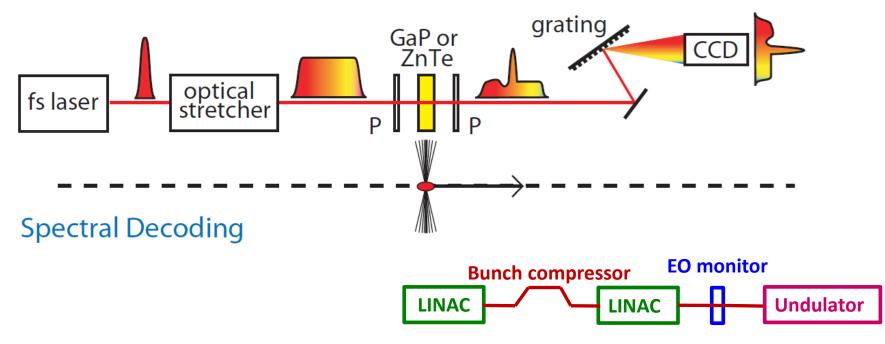
For Free Electron Lasers \rightarrow bunch length below 1 ps is achieved

- Below the resolution of streak camera
- \blacktriangleright Short laser pulses with $t \approx 10 \text{ fs}$ and electro-optical modulator

Electro optical modulator: Birefringent, rotation angle depends on external electric field Relativistic electron bunch: transverse ele. field $E_{\perp,lab} = \gamma E_{\perp,rest}$ carries the time information Scanning of delay between bunch and laser \rightarrow time profile after several pulses.

Courtesy S.P.Jamison et al., EPAC 2006

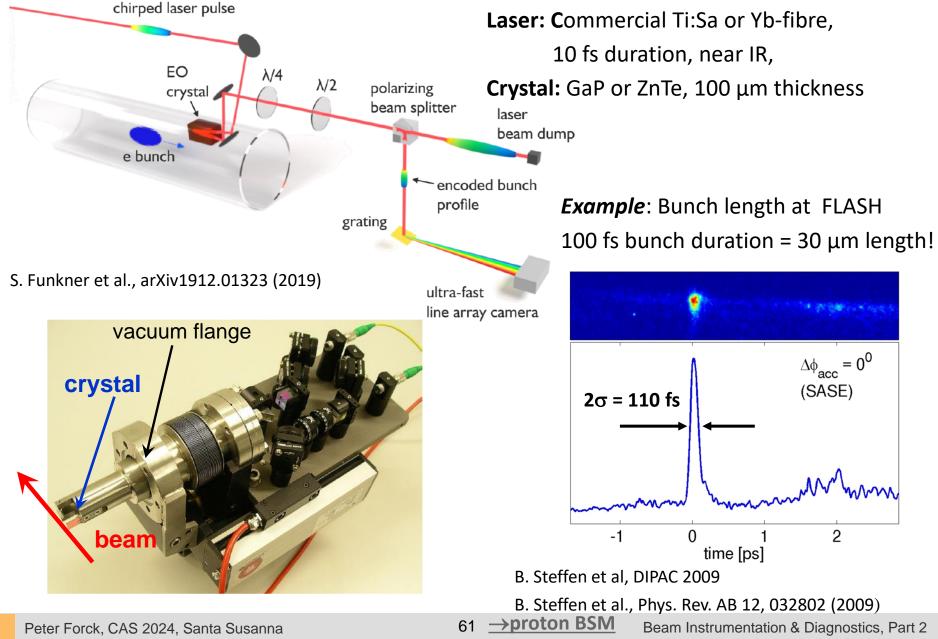
See lecture 'Synchrotron light circular machines & FELs' by Eduard Prat



For Free Electron Lasers \rightarrow bunch length below 1 ps is achieved

Short laser pulse ⇔ broad frequency spectrum (property of Fourier Transformation)

Optical stretcher: Separation of colors by different path length


 \Rightarrow different colors at different time \Rightarrow single-shot observation

Courtesy S.P.Jamison et al., EPAC 2006

Hardware of a spectral-decoded EOSD Scanning Setup

Devices for bunch length at light sources:

Streak cameras:

- Time resolved monitoring of synchrotron radiation
 - \rightarrow for relativistic e⁻-beams, 10 ps < t_{bunch} < 1 ns

Time resolution limit of streak camera \approx 1 ps

Laser-based electro-optical modulation:

Electro-optical modulation of short laser pulse

 \rightarrow very high time resolution down to some fs time resolution

Technical complex installation

 \rightarrow BLM

Diagnostics is the 'sensory organ' for the beam.

It required for operation and development of accelerators

Several categories of demands leads to different installations:

- Quick, non-destructive measurements leading to a single number or simple plots
- Complex instrumentation used for hard malfunction and accelerator development
- > Automated measurement and control of beam parameters i.e. feedback

The goal and a clear interpretation of the results is a important design criterion.

General comments:

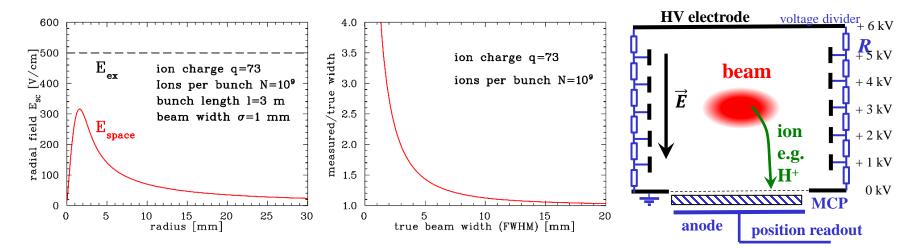
- > Quite different technologies are used, based on various physics processes
- > Accelerator development goes parallel to diagnostics development
- (\Rightarrow it makes fun as many skills are required).

Thank you for your attention!

- > H. Schmickler (Ed.) *Beam Instrumentation*, Proc. CERN Accelerator School, Tuusula 2018.
- D. Brandt (Ed.), Beam Diagnostics for Accelerators, Proc. CERN Accelerator School, Dourdan, CERN-2009-005, 2009.
- Proceedings of several CERN Acc. Schools (introduction & advanced level, special topics).
- V. Smaluk, Particle Beam Diagnostics for Accelerators: Instruments and Methods,
 VDM Verlag Dr. Müller, Saarbrücken 2009.
- > P. Strehl, *Beam Instrumentation and Diagnostics*, Springer-Verlag, Berlin 2006.
- M.G. Minty and F. Zimmermann, Measurement and Control of Charged Particle Beams, Springer-Verlag, Berlin 2003.
- S-I. Kurokawa, S.Y. Lee, E. Perevedentev, S. Turner (Eds.), Proceeding of the School on Beam Measurement, Proceedings Montreux, World Scientific Singapore (1999).
- > P. Forck, *Lecture Notes on Beam Instrumentation and Diagnostics*, JUAS School, JUAS Indico web-site.
- > Contributions to conferences, in particular to International Beam Instrumentation Conference IBIC.

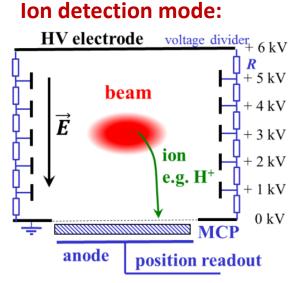
Backup slides

Influence of the residual gas ion trajectory by :

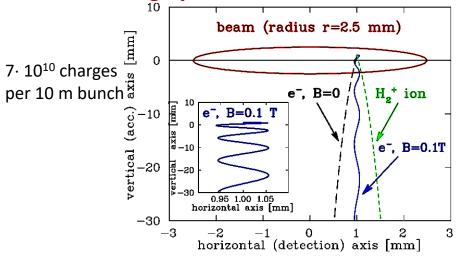

- External electric field E_{ex}
- Electric field of the beam's space charge E_{space}

e.g. Gaussian density distribution for round beam: $E_{space}(r) = \frac{1}{2\pi\varepsilon_0} \cdot \frac{qeN}{l} \cdot \frac{1}{r} \cdot \left| 1 - \exp\left(-\frac{r^2}{2\sigma^2}\right) \right|$

Estimation of correction: $\sigma_{corr}^2 \approx \frac{e^2 \ln 2}{4\pi\varepsilon_0 \sqrt{m_r c^2}} \cdot \frac{qN}{l} \cdot d_{gap} \cdot \sqrt{\frac{1}{eU_{er}}} \propto N \cdot d_{gap} \cdot \sqrt{\frac{1}{U_{er}}}$

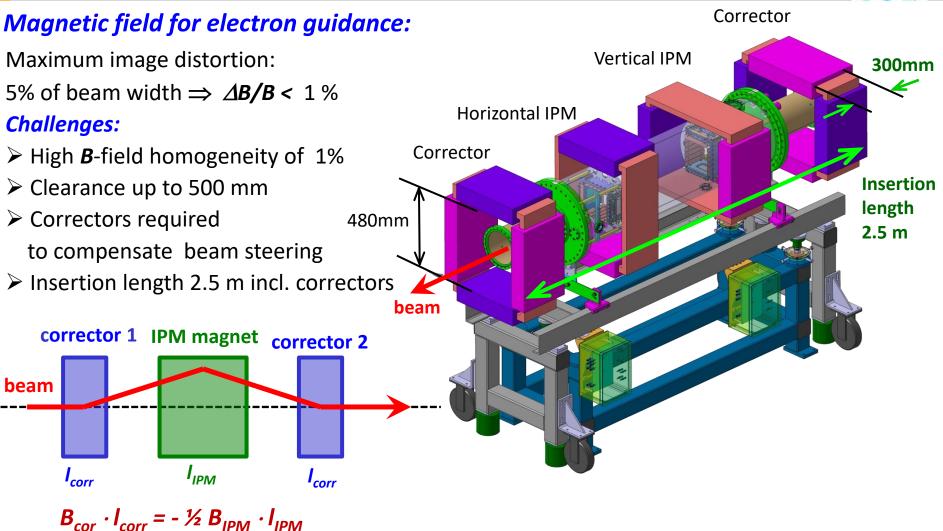

With the measured beam width is given by convolution: $\sigma_{meas}^2 = \sigma_{true}^2 + \sigma_{corr}^2$

Example: U⁷³⁺, 10⁹ particles per 3 m bunch length, cooled beam with σ_{true} = 1 mm FWHM.



Electron Detection and Guidance by Magnetic Field

\Rightarrow broadening by beam's electric field

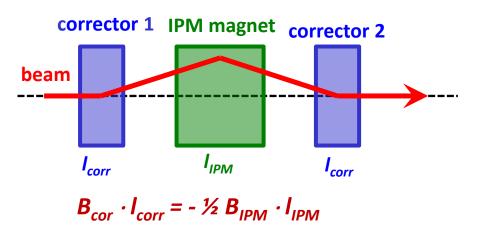


Electron detection mode: HV electrode voltage divider 6 kV R -5 kV -4 kV -3 kV -2 kV -1 kV 0 kVanode position readout

e⁻ detection in an external magnetic field \rightarrow cyclotron radius $r_C = \frac{mv_\perp}{eB}$ for $E_{kin,\perp} = 10$ eV & B = 0.1 T $\Rightarrow r_c \approx 100 \mu m$ E_{kin} from atomic physics, $\approx 100 \mu m$ resolution of MCP

Time-of-flight: $\approx 1 - 2$ ns $\Rightarrow 2 - 3$ cycles. **B-field**: Dipole with large aperture \rightarrow IPM is expensive & large device!

GSI


Remark: For MCP wire-array readoutlower clearance required



Magnetic field for electron guidance:

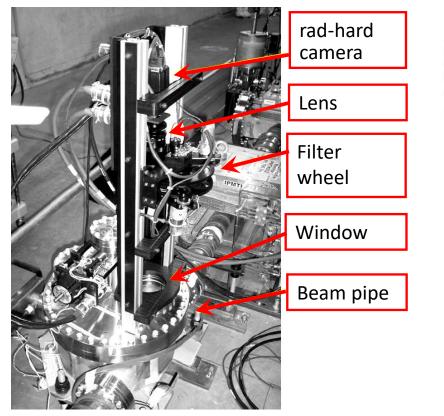
Maximum image distortion: 5% of beam width $\Rightarrow \Delta B/B < 1\%$ Challenges:

- ➢ High **B**-field homogeneity of 1%
- Clearance up to 500 mm
- Correctors required to compensate beam steering
- ➢ Insertion length 2.5 m incl. correctors

Magnet: B = 250 mT, Gap 220 mm IPM: Profile 32 strips, 2.5 mm width

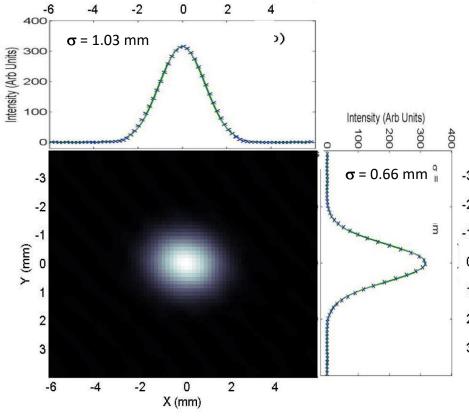
Remark for electron beams:

Resolution of 50 µm is insufficient, but sometimes used for photon beams


Remark: For MCP wire-array readout lower clearance required

Example of realization at TERATRON:

Insertion of foil

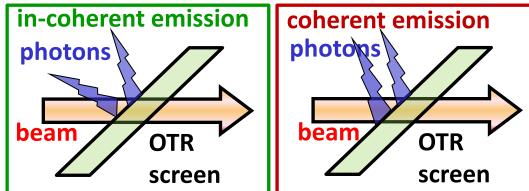

e.g. 5 μ m Kapton coated with 0.1 μ m Al Advantage: thin foil \Rightarrow low heating & straggling 2-dim image visible

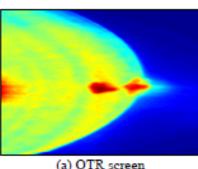
Results at FNAL-TEVATRON synchrotron

with 150 GeV proton

Using fast camera: Turn-by-turn measurement

Courtesy V.E. Scarpine (FNAL) et al., BIW'06


GS II


Observation of coherent OTR for compressed bunches at LINAC based light sources

Reason: Coherent emission **if** bunch length \approx wavelength (t_{bunch} =2 fs \Leftrightarrow I_{bunch} =600 nm)

or bunch fluctuations ≈ wavelength Parameter reach for most LINAC-based FELs!

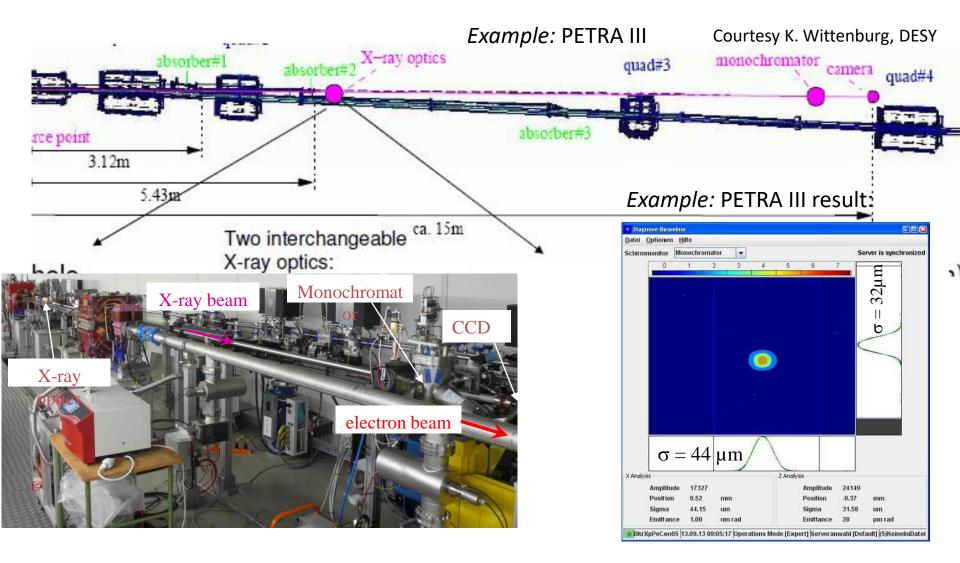
Beam parameter: FLASH, 700 MeV, 0.5 nC, with bunch compression OTR screen scint. screen

(c) LuAG screen

(c) LuAG screen (d) LuAG screen, +100ns delay

71

prompt emission for OTR and scint. screen
→ coherent and in-coherent OTR

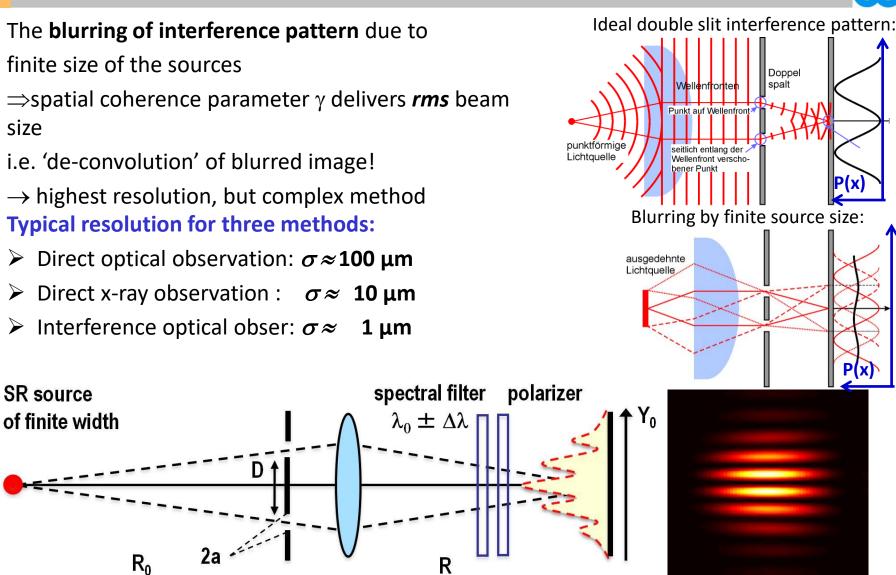

 100 ns delayed emission
 → no OTR as expected (classical process)
 → emission by scint. screen due to lifetime ⇔ correct profile image!

Contrary of M. Yan et al., DIPAC'11 & S. Wesch, DIPAC'11

X-ray Pin-Hole Camera

GSI

The diffraction limit is $\Rightarrow \sigma \cong 0.6 \cdot (\lambda^2 / \rho)^{1/3} \Rightarrow$ shorter wavelength by X-rays.

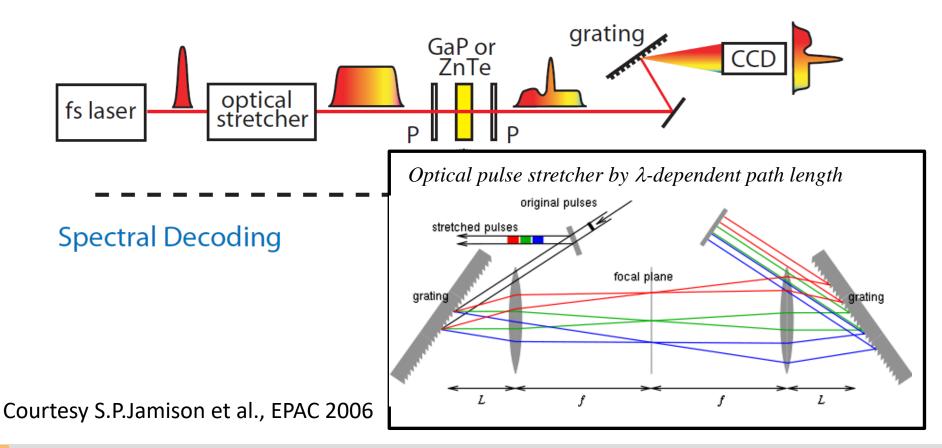


Beam Instrumentation & Diagnostics, Part 2

Double Slit Interference for Radiation Monitors

Х

size

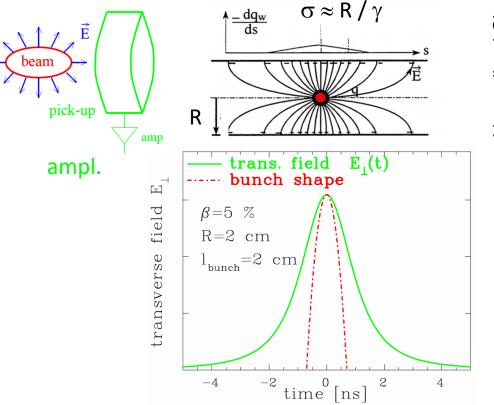

 \succ

For Free Electron Lasers \rightarrow bunch length below 1 ps is achieved

Short laser pulse ⇔ broad frequency spectrum (property of Fourier Transformation) **Optical stretcher**: Separation of colors by different path length

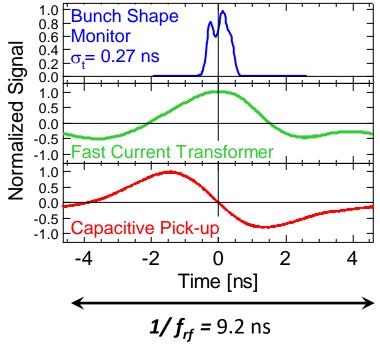
 \Rightarrow different colors at different time \Rightarrow single-shot observation

Bunch Structure at low *E_{kin}*: Not possible with Pick-Ups



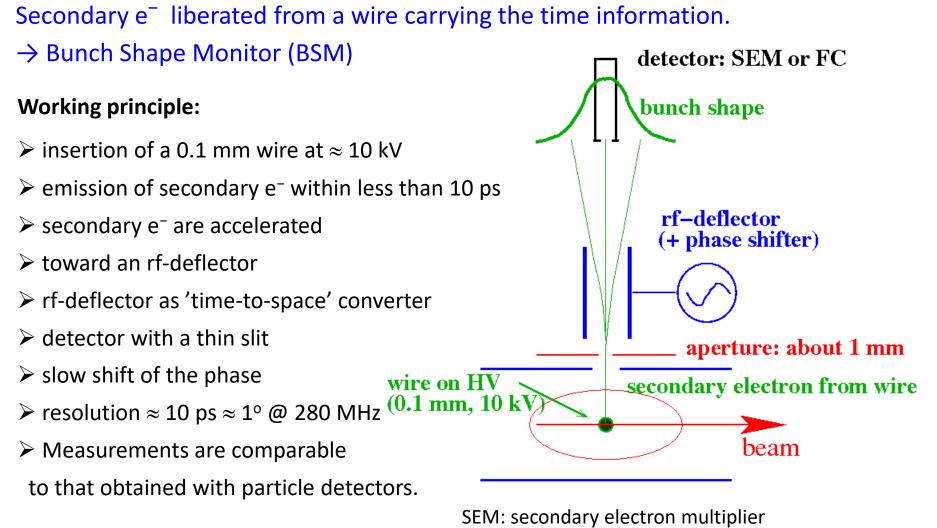
Pick-ups are used for:

precise for bunch-center relative to rf
 course image of bunch shape


But:

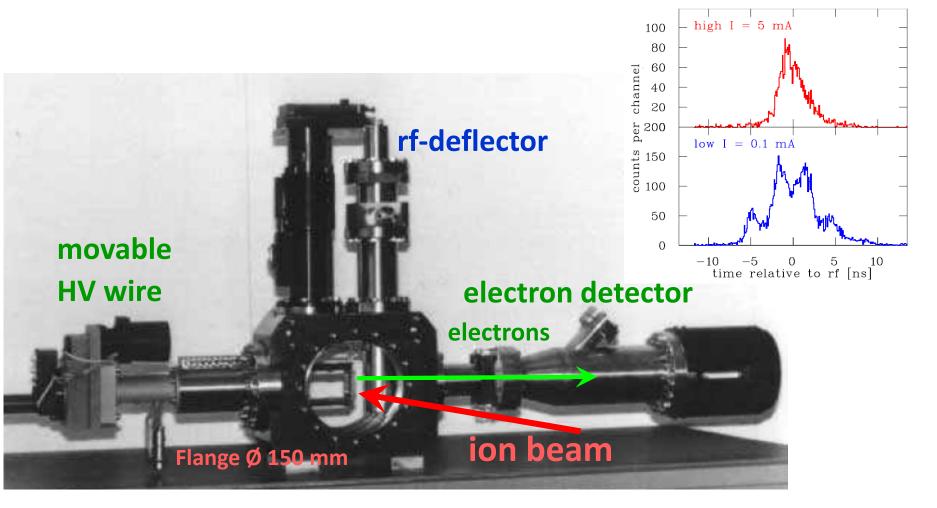
For $\beta << 1 \rightarrow$ long. *E*-field significantly modified:

Example: Comparison pick-up – particle counter:


Ar beam of 1.4 MeV/u (θ = 5.5%) , f_{rf} = 108 MHz

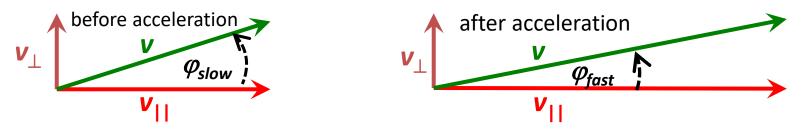
 \Rightarrow the pick-up signal is insensitive to bunch 'fine-structure'

Bunch Structure using secondary Electrons for low Ekin Protons



Realization of Bunch Shape Monitor at CERN LINAC2

Example: The bunch shape behind RFQ with120 keV/u:


Peter Forck, CAS 2024, Santa Susanna

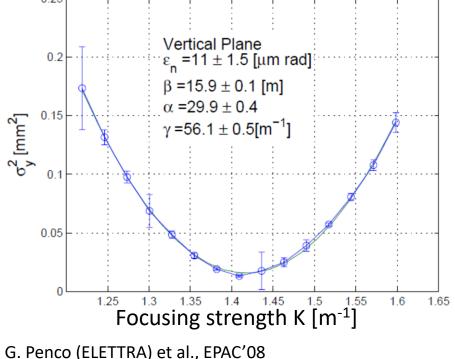
77 → back: Conclusion Beam Instrumentation & Diagnostics, Part 2

'Adiabatic' Damping during Acceleration

After acceleration the longitudinal velocity is increased \Rightarrow angle φ is smaller The angle is expressed in momenta: $x' = p_{\perp} / p_{\parallel}$ the emittance is $\langle xx' \rangle = 0$: $\varepsilon = x \cdot x' = x \cdot p_{\perp} / p_{\parallel}$ \Rightarrow under ideal conditions the emittance can be normalized to the momentum $p_{\parallel} = \gamma \cdot m \cdot \beta c$ \Rightarrow normalized emittance $\varepsilon_{norm} = \beta \gamma \cdot \varepsilon$ is preserved with the Lorentz factor γ and velocity $\beta = v/c$ **Example:** Acceleration in GSI-synchrotron for C⁶⁺ from шш injection 1.2 $6.7 \rightarrow 600 \text{ MeV/u} \ (\beta = 12 \rightarrow 79 \%) \text{ observed by IPM}$ 1.0 distribution theoretical width: $\langle x \rangle_f = \sqrt{\frac{\beta_i \cdot \gamma_i}{\beta_f \cdot \gamma_f}} \cdot \langle x \rangle_i$ =0.23 s vidth at extraction 2 0.8 0.1.2.3.4.5.6 $= 0.33 \cdot \langle x \rangle_i$ 0.6 time [s **IPM** norm. measured width: $\langle x \rangle_f \approx 0.37 \cdot \langle x \rangle_i$ 0.4 synchrotron with IPM is well suited acceleration 0.2 for long time observations 0.0 without beam disturbance -200 20 40 -40coordinate [mm] injection extraction. \rightarrow mainly used at proton synchrotrons

Peter Forck, CAS 2024, Santa Susanna


78 *→magnetic field* Beam Instrumentation & Diagnostics, Part 2


GSX COO

Using the 'thin lens approximation' i.e. the quadrupole has a focal length of *f*:

$$\mathbf{R}_{focus}(K) = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ -\mathbf{1}/f & \mathbf{1} \end{pmatrix} \equiv \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ K & \mathbf{1} \end{pmatrix} \implies \mathbf{R}(L, K) = \mathbf{R}_{drift}(L) \cdot \mathbf{R}_{focus}(K) = \begin{pmatrix} \mathbf{1} + LK & L \\ K & \mathbf{1} \end{pmatrix}$$

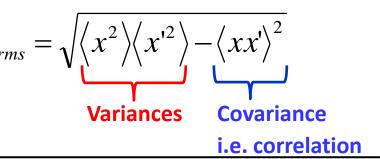
Measurement of matrix-element $\sigma_{11}(s_1, K)$ from matrices $\sigma(s_1, K_i) = \mathbf{R}(K_i) \cdot \sigma(s_0) \cdot \mathbf{R}^{\mathsf{T}}(K_i)$ **Example:** Square of the beam width at

For completeness: The relevant formulas $\sigma_{11}(1, K) = L^2 \sigma_{11}(0) \cdot K^2$ $+ 2 \cdot (L \sigma_{11}(0) + L^2 \sigma_{12}(0)) \cdot K$ $+ L^2 \sigma_{22}(0) + \sigma_{11}(0)$ $= a \cdot K^2 - 2ab \cdot K + ab^2 + c$

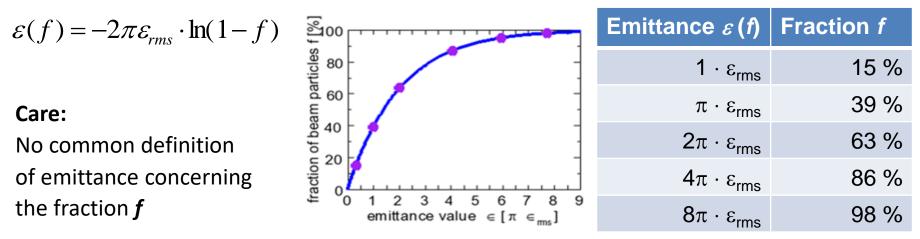
$$= a \cdot \mathbf{K} - 2ab \cdot \mathbf{K} + ab + c$$
$$= a \cdot (K - b)^2 + c$$

The three matrix elements at the quadrupole: $\sigma_{11}(0) = \frac{a}{L^2}$ $\sigma_{12}(0) = -\frac{a}{L^2} \left(\frac{1}{L} + b\right)$ $\sigma_{22}(0) = \frac{1}{L^2} \left(ab^2 + c + \frac{2ab}{L} + \frac{a}{L^2}\right)$ $\varepsilon_{rms} \equiv \sqrt{\det \sigma(0)} = \sqrt{\sigma_{11}(0) \cdot \sigma_{22}(0)} - \frac{\sigma_{12}^2(0)}{\sigma_{12}^2(0)} = \sqrt{ac} / L^2$

The Emittance for Gaussian and non-Gaussian Beams

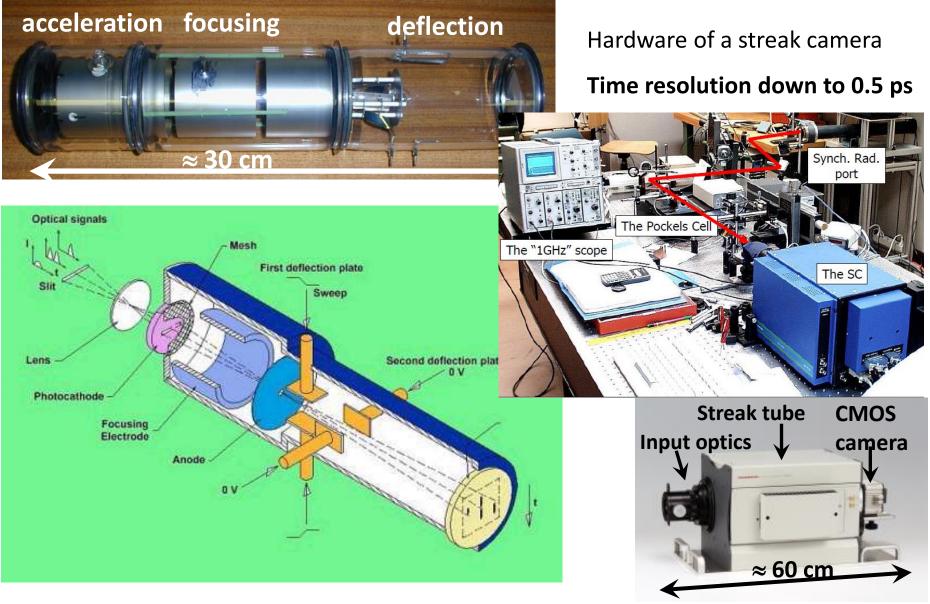


The beam distribution can be non-Gaussian, e.g. at:

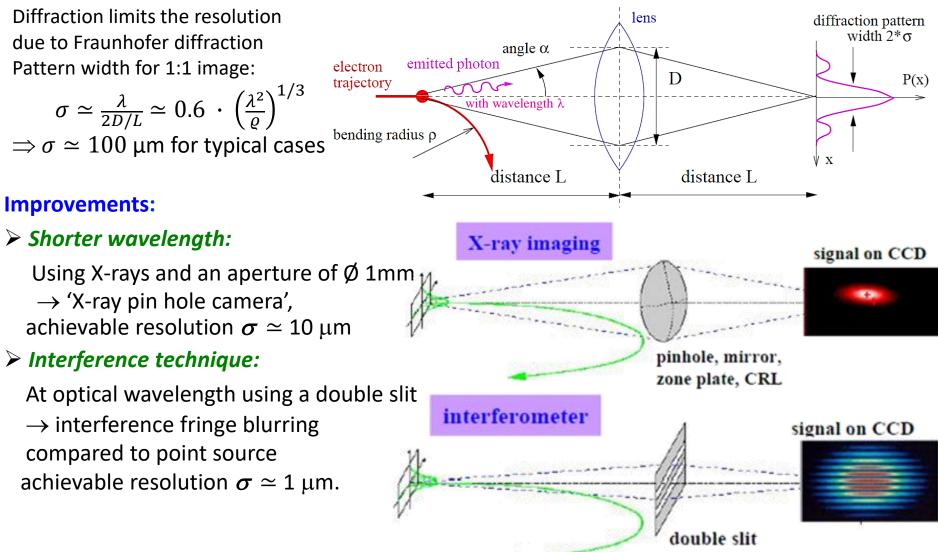

- Beams behind ion source
- Space charged dominated beams at LINAC & synchrotron
- Cooled beams in storage rings

General description of emittance by statistical moments of 2-dim distribution: \mathcal{E}_{rms}

It describes the value for 1 standard derivation

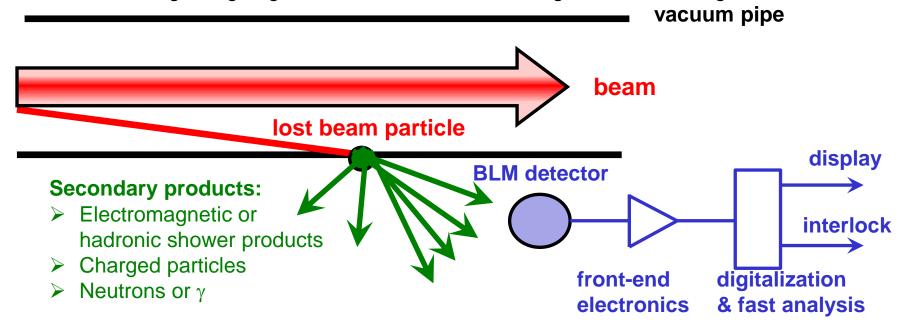


For <u>Gaussian</u> beams only: $\varepsilon_{rms} \leftrightarrow$ interpreted as area containing a fraction **f** of ions:


Technical Realization of a Streak Camera

Limitations:

Basic idea for Beam Loss Monitors BLM:


A loss beam particle must collide with the vacuum chamber or other insertions

 \Rightarrow Interaction leads to some shower particle:

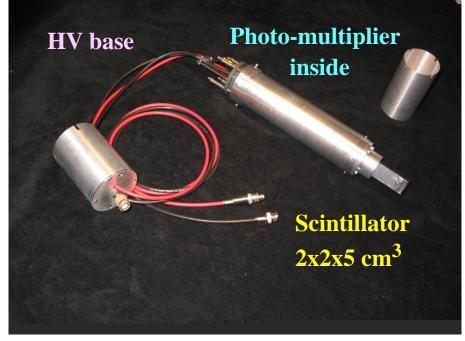
e⁻, γ, protons, neutrons, excited nuclei, fragmented nuclei

- \rightarrow Detection of these secondaries by an appropriate detector outside of beam pipe
- \rightarrow Relative cheap detector installed at many locations

Remark: Due to grazing angle a thin vacuum chamber might be a 'thick target'

Plastics or liquids are used:

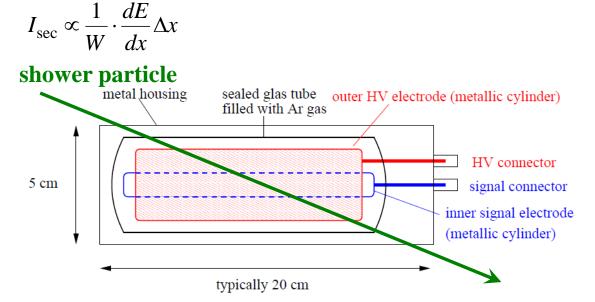
- Detection of charged particles by electronic stopping
- Detection of neutrons by elastic collisions n on p in plastics and fast p electronic stopping.


Scintillator + photo-multiplier:

counting (large PMT amplification) or analog voltage ADC (low PMT amplification) Radiation hardness: plastics 1 Mrad = 10^4 Gy liquid $10 \text{ Mrad} = 10^5 \text{ Gy}$

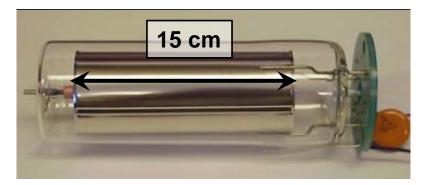
STRAHLAUSLENKUNG

84



Energy loss of charged particles in gases \rightarrow electron-ion pairs \rightarrow current meas.

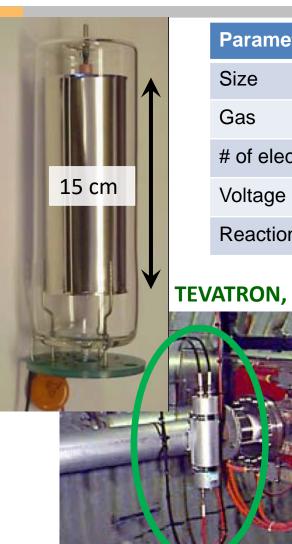
W is average energy for creation for one e^{-} -ion pair:


Gas	Ionization Pot. [eV]	W-Value [eV]
Ar	15.7	26.4
N_2	15.5	34.8
O ₂	12.5	30.8
Air		33.8

Sealed tube Filled with Ar or N_2 gas:

- Creation of Ar+-e⁻ pairs, average energy W = 32 eV/pair
- measurement of this current
- Slow time response

due to \approx 10 µs drift time of Ar⁺.

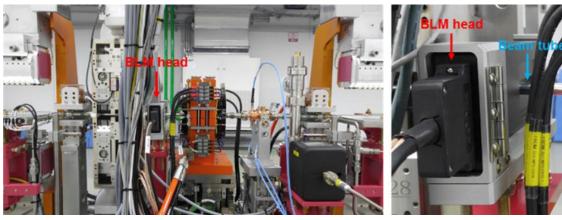

Per definition: Direct measurement of dose !

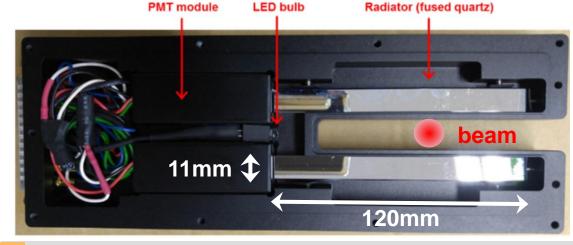
Ionization Chamber as BLM: TEVATRON and CERN Type

38 cm

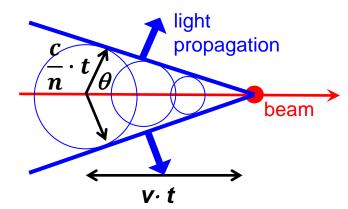
Parameter	TEVATRON, RHIC	CERN type	
Size	15cm, \varnothing 6 cm	50 cm, \varnothing 9 cm	
Gas	Ar at 1.1 bar	N ₂ at 1.1 bar	
# of electrodes	3	61	
Voltage	1000 V	1500 V	
Reaction time	3 µs	0.3 µs	
4000 BLMs at LHC⇔ each ≈ 6m			

TEVATRON, RHIC type


CERN type


Cherenkov Light Detectors as Beam Loss Monitors

Cherenkov detectors:


Passage of a charged particle v faster than propagation of light $v > c_{medium} = c / n$ **Technical:** Quartz rod n=1.5 & photomultiplier Example: Korean XFEL behind undulator

Cherenkov light emission:

For $v > c_{medium} = c / n$ light wave-front like a wake broadband light emission

Advantage:

Detection of fast electrons only

not sensitive to γ & synch. photons

- No saturation effects
- Prompt light emission
 Usage: Mainly at FELs for short and intense pulses

H. Yang, D.C. Shin, FEL Conf. 2017

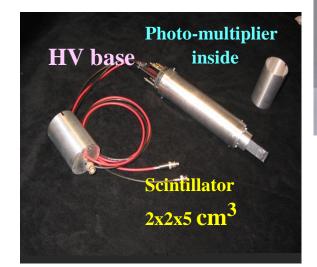
Peter Forck, CAS 2024, Santa Susanna

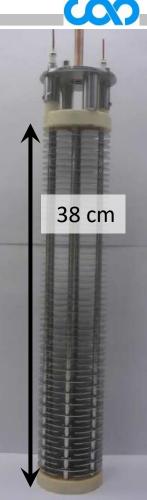
Different detectors are sensitive to various physical processes very different count rate, but basically proportional to each other

Typical choice of the detector type:

Ionization Chamber:

Advantage:


- Measurement of absolute dose


Disadvantage:

- Low signal (low γ , eff, no neutron detection),
- Sometimes slow, ion drift time 10 ... 100 μs
- \Rightarrow Often used at **proton** accelerators

Scintillator, Cherenkov detector: Advantage:

- Fast current reading or particle counting
- Can be fabricated in any shape, cheap **Disadvantage:**
- Need calibration in many cases
- Might suffer from radiation
- \Rightarrow Often used at **electron** accelerators

88