Longitudinal Hands-on Calculations RF System Design

H. Damerau, L. Intelisano, F. Tecker, M. Zampetakis

CERN

Introduction to Accelerator Physics

30 September 2024

Agenda of the afternoon

14h50 - 15h20

Introduction to exercises

15h20 - 15h50

RF system design

Coffee break

16h20 - 16h35

Intermediate wrap-up

16h35 - 17h40

RF system design

17h40 - 18h25

Discussion on solutions of exercises

Outline

- Introduction
 - Interaction between beam and RF system
- Design of RF systems
 - Design flow and constraints
 - Examples of RF systems at CERN
- Summary

Introduction

Study interaction between beam and RF

Complementary approaches for the same problem

(Semi-)Analytical

- Describe particle motion by differential equations
- → Continuous trajectories of particle motion
- → Deduce useful parameters for stable acceleration:
 - → RF bucket
 - → Synchrotron frequency
 - → Stable phase
 - \rightarrow ...

Study interaction between beam and RF

Complementary approaches for the same problem

(Semi-)Analytical	Numerical: tracking
 Describe particle motion by differential equations → Continuous trajectories of particle motion → Deduce useful parameters for stable acceleration: → RF bucket → Synchrotron frequency → Stable phase 	 Track particle parameters from turn to turn → Profit from discretization of motion: turn-by-turn, RF station-by-RF station → No notion of RF bucket, synchrotron frequency, stable phase, etc.
\rightarrow	→ Follow ensemble of particles to study evolution of bunch

Study interaction between beam and RF

Complementary approaches for the same problem

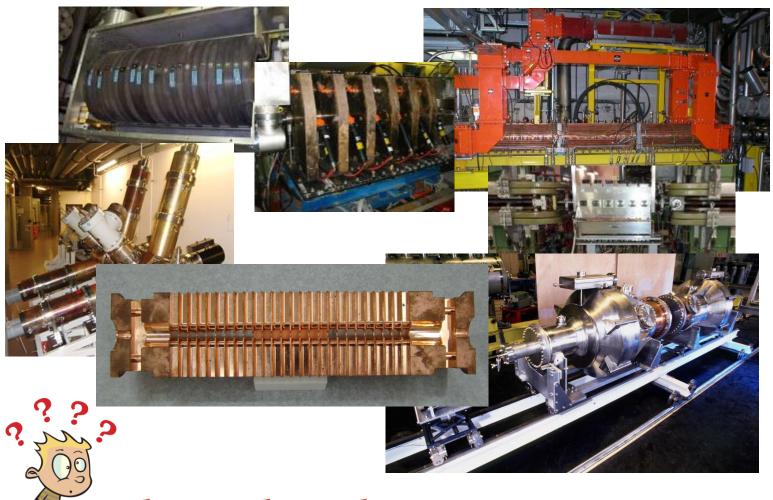
(Semi-)Analytical	Numerical: tracking
 Describe particle motion by differential equations → Continuous trajectories of particle motion → Deduce useful parameters for stable acceleration: → RF bucket → Synchrotron frequency → Stable phase → 	 Track particle parameters from turn to turn → Profit from discretization of motion: turn-by-turn, RF station-by-RF station → No notion of RF bucket, synchrotron frequency, stable phase, etc. → Follow ensemble of particles to study evolution of bunch
→ Classical Today of longitudinal beam dynamics	Tomorrow afternoon

Objectives of longitudinal hands-on

Design RF system (upgrade)

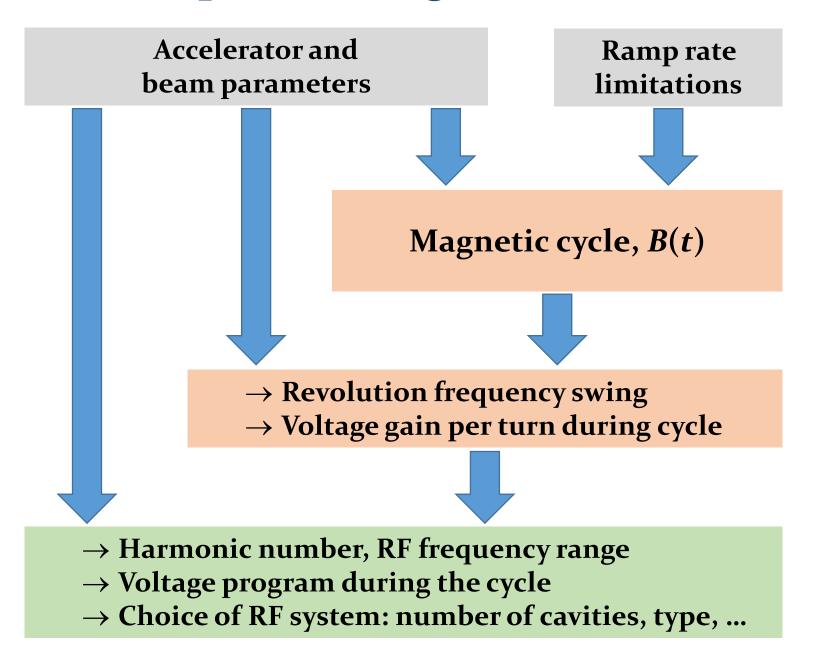
LongitudinalHandsOnRFSystemCalculations_empty.ipynb

- Study boundary conditions
- Derive requirements for RF system
- Choose main components
- Compare with existing facilities


2. Play with longitudinal beam dynamics

LongitudinalHandsOnTracking_empty.ipynb

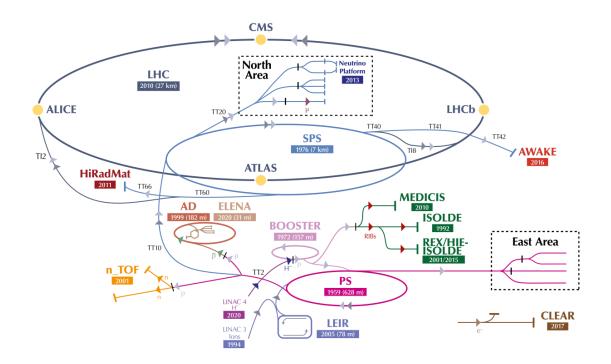
- Build your own particle tracker
- Understand motion of particles in longitudinal phase space
- Transition from single particle motion to evolution of an entire bunch


RF system design

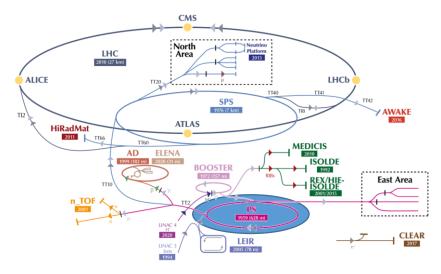
Introduction

What to do to design an RF system? How to choose the right one?

Simplified design work flow


RF parameters of existing accelerators

Try to follow design choices of existing accelerator


- Can we understand the arguments?
- Are the choices reasonable?

Good design?

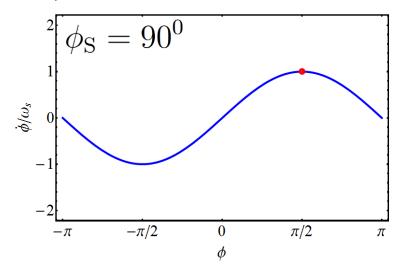
Proton Synchrotron

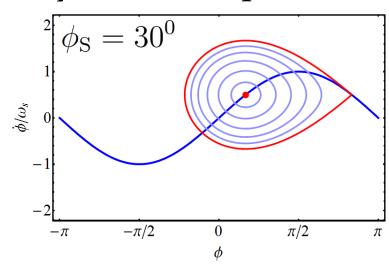
Example: RF System for CERN PS

• Attention

- → Present RF system designed in ~1969
- \rightarrow Not the same energy range as today

Parameter	Value
Circumference, $2\pi R$	$2\pi \cdot 100 \text{ m} = 628 \text{ m}$
Acceleration time, t_{cycle}	1 S
Maximum ramp rate, dB/dt	2.3 T/s
Injection energy, $E_{\rm kin}$	45 MeV
Flat-top energy, $E_{\rm tot}$	initially 28 GeV

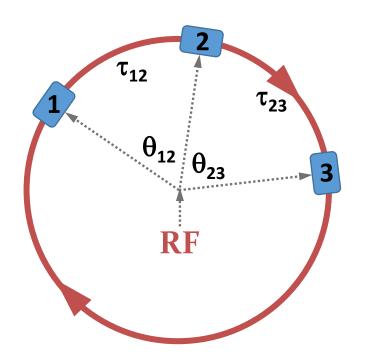



Example: CERN PS - choice of RF voltage

→ Energy gain per turn defined by size and ramp rate

$$\Delta E_{\rm turn} = 2\pi q \rho R \dot{B}$$

- → At 2.3 T/s ramp rate: ~100 keV gain per turn
- → Just sufficient to accelerate synchronous particle



 \rightarrow Over-voltage for bucket area: $V_{\rm RF} = -$

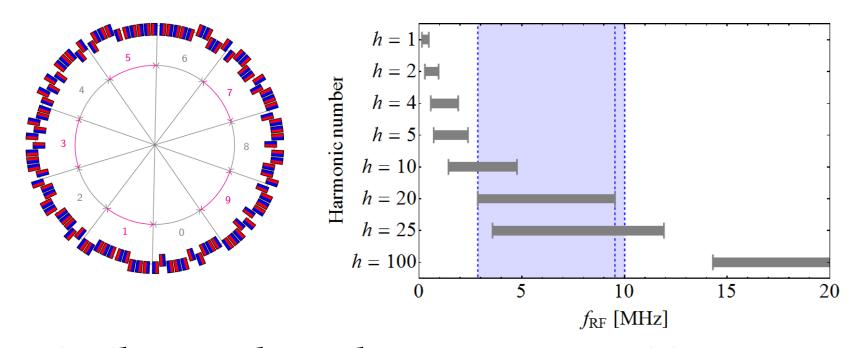
$$V_{\rm RF} = \frac{1}{\sin \phi_{\rm S}} \frac{\Delta E}{q} \simeq 200 \text{ kV}$$

Example: CERN PS - choice of RF harmonic

- → Operate RF stations in phase with respect to beam
- → Use common RF signal

• Time of flight, τ_{nm} between RF cavities:

→ Multiple of RF period

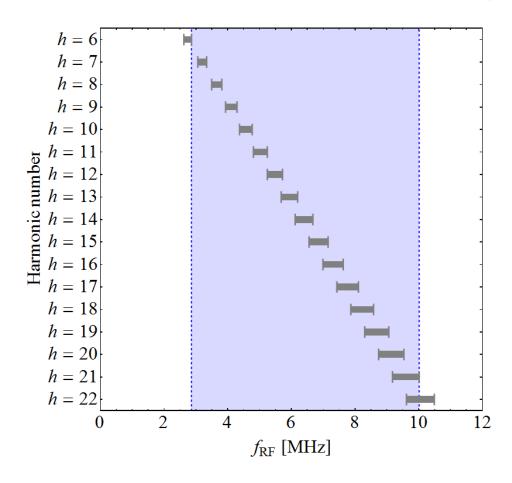

$$\rightarrow \tau_{\rm pq} = n \cdot T_{\rm RF} = n/hT_{\rm rev}$$

$$\theta_{\rm pq} = n \cdot 2\pi/h$$

 \rightarrow RF stations must be located an multiples of $2\pi/h$

Example: CERN PS - choice of harmonic

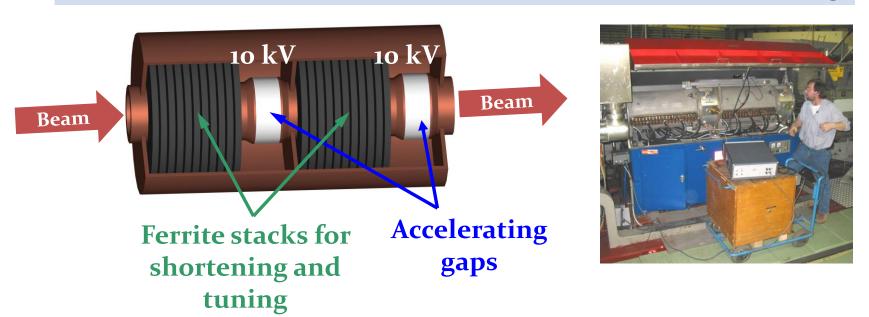

- → Main elements: 100 bending magnets
- \rightarrow 100 possible location for RF stations in-between
- \rightarrow 100 = 2 · 2 · 5 · 5, hence divisible by 2, 4, 5, 10, 20, 25, 50


- → Distribute total RF voltage over many cavities
- \rightarrow Possible harmonic numbers 20 or 25 \rightarrow h = 20 retained

Example: CERN PS choice of harmonic

- \rightarrow Distance between RF stations: multiples of $2\pi/20$
- → No need to use common RF with today's technology
- \rightarrow Injection energy at 2 GeV (1.4 GeV) \rightarrow 5% (10%) swing

- \rightarrow Early design choices based on h = 20
- → Today's flexibility


Example: CERN PS choice of cavity

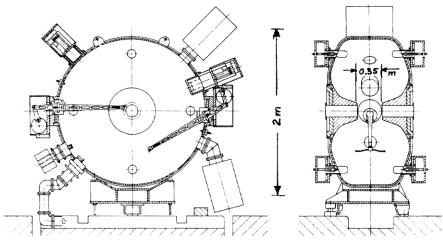
→ RF system parameters:

Parameter	
Harmonic, h	7, 20 , 21
Frequency, f_{RF}	2.8-10 MHz
Voltage, $V_{\rm RF}$	10 (+1) × 20 kV

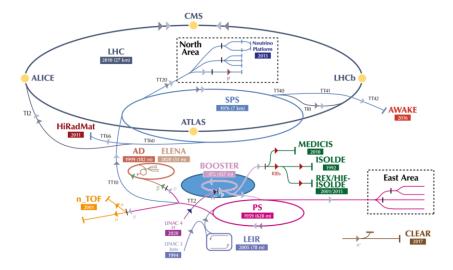
→ Distribute voltage over 10 RF stations: 20 kV/cavity

Shortened $\lambda/4$ coaxial resonators with ferrite tuning

Electrons in the PS


- As an injector of LEP electrons were accelerated in the PS to E = 3.5 GeV
- Is the RF system for acceleration of protons usable?

$$\Delta E_{\text{turn}} = \frac{e^2}{3\epsilon_0 (m_0 c^2)^4} \frac{E^4}{\rho} \simeq 190 \text{ keV/turn}$$
 $\epsilon_0 \simeq 8.85 \cdot 10^{-12} \text{ As/Vm}$


- → Bucket area too small and bunches too long at 3.5 GeV
- → Optimized RF system for electron acceleration

Parameter	
Harmonic, h	240
Frequency, f_{RF}	114 MHz
Voltage, $V_{\rm RF}$	1 MV

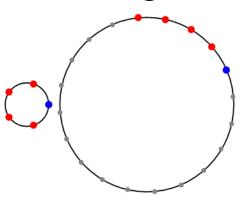
(5 × more than 10 MHz cavities)

PS Booster

Example: RF System for CERN PS Booster

- PS injector synchrotron
 - $\rightarrow 2\pi R_{\rm PSB} = 2\pi R_{\rm PS}/4$
 - → Sandwich of 4 rings
 - → Total length as PS circumference

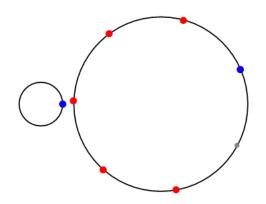
Parameter	Value
Circumference, $2\pi R$	$2\pi \cdot 25 \text{ m} = 157 \text{ m}$
Acceleration time, t_{cycle}	~0.5 s
Maximum ramp rate, dB/dt	2.3 T/s
Injection energy, $E_{\rm kin}$	50/160 MeV
Flat-top energy, $E_{\rm kin}$	0.8/1.0/1.4/2.0 GeV



Example: CERN PS Booster (PSB)

Circumference

$$2\pi R_{PSB} = 2\pi R_{PS}/4 = 157 \text{ m}$$

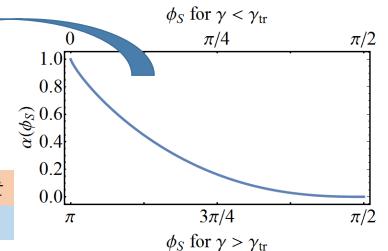

Initial design as PS injector

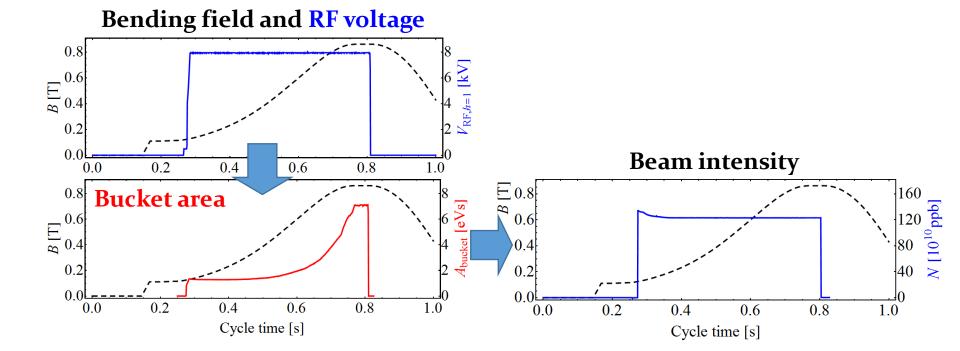
$$f_{RF,PSB} = f_{RF,PS}$$

$$h_{PSB} = h_{PS}/4 = 5$$

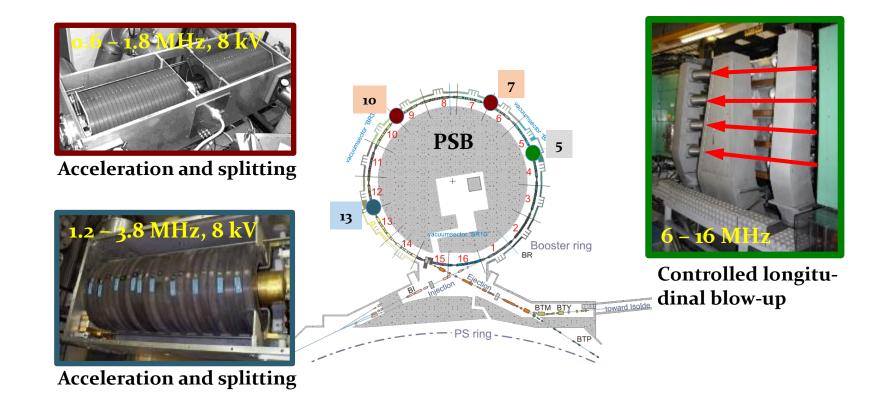
→ Modifications as preinjector to LHC:

Parameter	
Harmonic, h	1 or/and 2
Frequency, f_{RF}	0.6/11.8 MHz
Voltage, $V_{\rm RF}$	820 kV

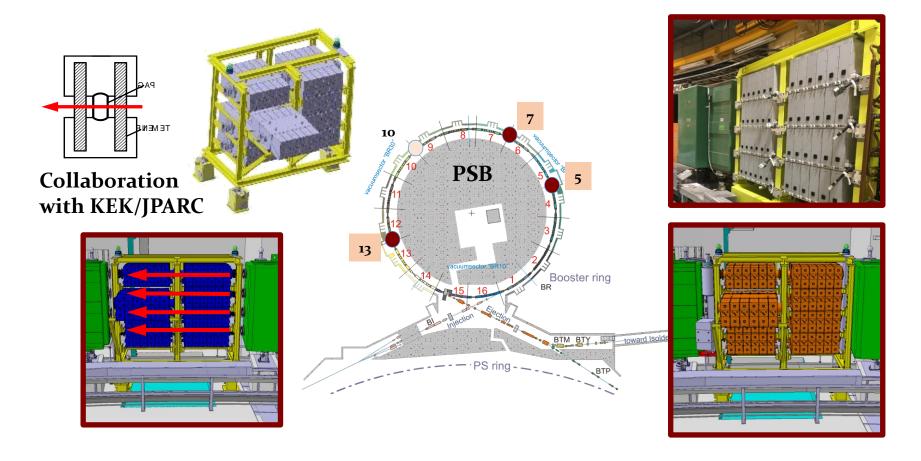

Example: CERN PSB (single harmonic, h = 1)


Bucket area:

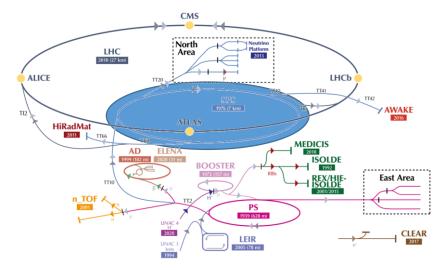
$$A_{\text{bucket}} = \frac{8\sqrt{2}}{h\omega_0} \sqrt{\frac{E\beta^2 qV}{\pi h|\eta|}} \cdot \alpha(\phi_S)$$


Depends on:

- Bending field, B and ramp rate dB/dt
- RF voltage, V



RF systems in the PS Booster


- \rightarrow 4 rings with 3 cavities
- → PS Booster RF systems based on tuned ferrite cavities

RF systems in the PS Booster after upgrade

- \rightarrow New wide-band cavities covering h = 1, 2, and higher
- → Based on innovative Finemet material
- → Much increased flexibility

Super Proton Synchrotron

Example: RF System for CERN SPS

$$\Delta E_{\rm turn} = 2\pi q \rho R \dot{B}$$

→ Needs significantly more RF voltage: several MV

Parameter	Value
Circumference, $2\pi R$	$2\pi \cdot 1.1 \mathrm{km} = 6.91 \mathrm{km}$
Acceleration time, t_{cycle}	~4 S
Maximum ramp rate, dB/dt	~o.74 T/s
Injection Energy, $E_{\rm tot}$	initially 10 GeV
Flat-top energy, $E_{\rm tot}$	450 GeV

Example: SPS - choice of RF harmonic

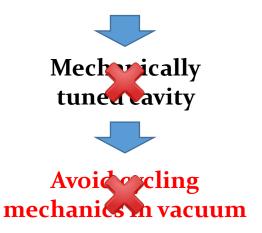
Harmonic number should be multiple of	
Revolution frequency ratio of PS and SPS	11
Acceleration harmonic in the PS	20
Super-periodicity of SPS	6

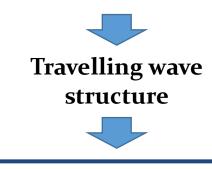
→ Looking for multiples of 660

h	660	1720	1089	2649	3200	3960	4620	5280	59/9
$f_{ m RF}[{ m MHz}]$	29	57	86	115	143	172	200	229	258

Lower RF frequency

Higher RF frequency

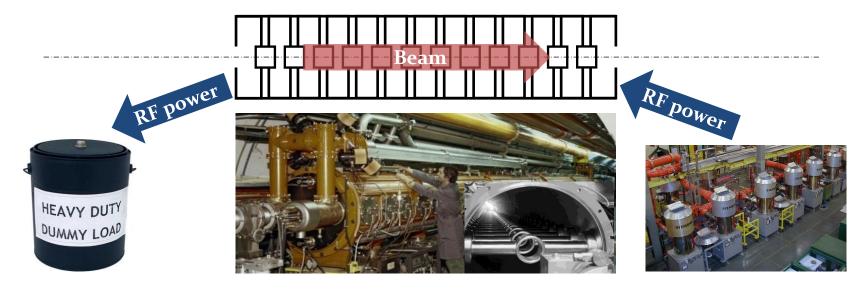

Example: SPS choice of RF cavities


• Requirements:

Parameter	
Harmonic, h	4620
Frequency, f_{RF}	200 MHz
Bandwidth, Δf_{RF}	0.44%
Voltage, $V_{\rm RF}$	Few MV

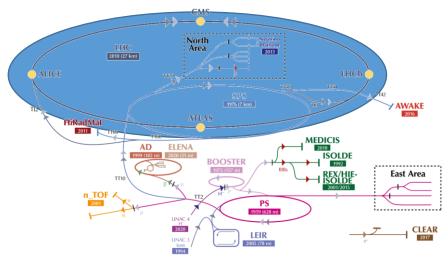
How to build such an RF system?

→ Cavity resonator would need tuning or low $Q < 1/0.44\% \approx 230$



High voltage in moderate bandwidth

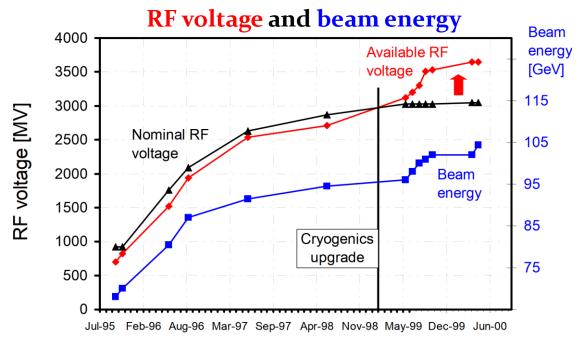
Example: SPS travelling wave cavities

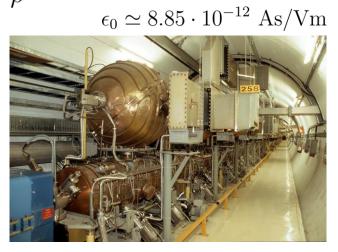

→ Multi-cell structure operated as a waveguide

- → Sufficient bandwidth without mechanically moving parts
- → Travelling wave structure always matched to amplifier
- → Beam takes power it needs from the waveguide

$$P_{\text{load}} = P_{\text{in}} - P_{\text{beam}} - P_{\text{loss}}$$

Large Electron Positron and Hadron Colliders


Ex.: RF against synchrotron radiation in LEP 32


LEP energy was entirely dominated by synchrotron radiation

• At
$$E$$
 = 100 GeV: $\Delta E_{\rm turn} = \frac{e^2}{3\epsilon_0 (m_0 c^2)^4} \frac{E^4}{\rho} \simeq 3 \ {\rm GeV/turn}$

→ About 3 % of beam energy

lost each turn

Example: LHC

- LHC maximum energy and ramp rate limited by superconducting bending magnets: 20 minutes ramp time
- → Average energy gain per turn only $\Delta E_{\text{turn}} \approx 500 \text{ keV/turn}$
- → Revolution frequency stays almost constant
- → RF voltage required to keep bunches short
- → Superconducting cavities chosen 8× per beam to reduce beam induced voltage (small R/Q)

Parameter (per beam)			
Harmonic, h	35640		
Frequency, f_{RF}	400.8 MHz		
Voltage, $V_{\rm RF}$	16 MV		

Summary

- Design of RF system for circular accelerator
 - Start from accelerator parameters
 - 2. Define RF parameters based on beam requirements
 - 3. Chose RF system
 - → Mostly several design options are possible

Helpful hints

 SI units for particle mass (kg), energy (J) and momentum (kg m/s) not very common

→Accelerator physicists love electron volts (eV)

Mass and energy	Momentum
$E = mc^2 = m_0 \gamma c^2$	$p = mv = m\beta\gamma c$
$m [eV] = m [kg] \cdot c^2/e_0$	$p [eV] = p [kg m/s] \cdot c/e_0$

	SI units	Electron volts
Proton rest mass	1.67 · 10⁻²⁻ kg	938 MeV
Electron rest mass	9.11 · 10 ⁻³¹ kg	511 keV
Proton beam momentum at β = 0.5	2.90 · 10 ⁻¹⁹ kg m/s	542 MeV/c

$$\beta = \frac{v}{c} = \sqrt{1 - \frac{1}{\gamma^2}} \qquad \qquad \gamma = \frac{m}{m_0} = \frac{1}{\sqrt{1 - \beta^2}}$$

You will design an RF system (upgrade)

1. Protons accelerator: Upgrade of CERN SPS to 1.3 TeV

2. Electron storage ring: Energy and current upgrade

A big Thank You

to all colleagues providing support, material and feedback

Simon Albright, Maria-Elena Angoletta,
Philippe Baudrenghien, Thomas Bohl, Wolfgang Höfle, Erk
Jensen, Alexander Lasheen, Elena Shaposhnikova,
Frank Tecker, Daniel Valuch, Manfred Wendt, Jörg Wenninger
and many more...

Thank you very much for your attention!

References

- D. Boussard, Design of a Ring RF System, CERN SL/91-2 (RFS, rev.), 1991, http://cds.cern.ch/record/1023436/files/CM-Pooo65157.pdf
- E. Regenstreif, The CERN Proton Synchrotron, pt. 1, CERN-59-26, https://cds.cern.ch/record/214352/files/CERN-59-29.pdf
- CERN, The 300 GeV Programme, CERN/1050, 1972, https://cds.cern.ch/record/104068/files/CM-P00077738-e.pdf
- G. Arduini, E. Shaposhnikova, J. Wenniger, Acceleration Cycles for the LHC Proton Beams in the SPS, CERN AB-Note-2006-018, 2006, http://cds.cern.ch/record/951985/files/ab-note-2006-018.pdf
- R. W. Assmann, M. Lamont, S. Myers, A Brief History of the LEP Collider, CERN-SL-2002-009-OP, 2002, https://cds.cern.ch/record/549223/files/sl-2002-009.pdf