Accelerator Vacuum

Mike Seidel

Paul Scherrer Institute and EPFL, Switzerland CERN Accelerator School – Introductory Course September 28, 2024 Santa Susanna

Why vacuum in accelerators ?

- maximize beam lifetime
- minimize emittance growth (hadrons)
- minimize component activation
- minimize impact on detectors, electronic components

Vacuum - Outline

1. Vacuum Basics

pressure, density, gas equation, pumping speed, flow regimes, conductance, pressure profile calculation

2. Accelerator Vacuum

requirements: bremsstrahlung, elastic scattering, emittance growth beam induced desorption: SR, ions examples of vacuum chambers

3. Components for Vacuum Systems

pumps: turbo, ion sputter, NEG, cryo-pump flange systems

\rightarrow finally vacuum quiz

Pressure

pressure = force / area
1 Pa = 1 N/m² = 0.01mbar
1 atm =
$$10^5$$
 Pa
 \rightarrow weight of 1kg/cm²

cyclotron resonator: continuous tuning required due to air pressure variation

average velocity

number of molecules impinging per time and area

 $\overline{v} = \sqrt{\frac{8k_b}{\pi m_0} T}$ $\frac{dN}{dA \, dt} = \frac{1}{4} n_v \overline{v}$

 n_v volume density of molecules k_b Boltzmann constant, 1.38×10⁻²³ J/K

Vacuum Pressure – Orders of Magnitude

Gas Equation and "amount of gas"

$$PV = Nk_bT = nRT$$

R = 8.314 Nm / mole K k_b = 1.38×10⁻²³ J/K

N = number of molecules n = number of moles thus **PV** [mbar I] is a measure of the amount of gas (for a given temperature) also: molar volume = 22.4 l / mol (1atm = 101325 Pa, 273K)

to specify a leak rate: x [mbar l / s]

example bicycle tire:

P = 2.5bar, V = 1l, leak Q = 2×10^{-4} mbar l / s after 1 Month (2.5 million sec): p = 2.0 bar

accelerator section, no pumping, no outgassing: $P = 10^{-10}$ mbar, V = 1000l, leak Q = 10^{-9} mbar l / s after 1 Month (2.5 million sec): p = 2.5 10^{-6} mbar

Pumping

Flow Regimes

mean free path of gas molecules:

see also Knudsen Number:

$$\lambda = \frac{k_b T}{\sqrt{2}\sigma P}$$
$$Kn = \frac{\lambda}{d}$$

for example: N₂, P = 10^{-6} mbar, $\lambda \approx 60$ m \rightarrow molecular flow

viscous flow: $\lambda \ll d$, Kn $\ll 1$

Conductance

conductance is defined as the ratio of the molecular flux Q to the pressure drop ΔP along a vacuum vessel

- function of the shape (eg. diam.) of the vessel
- the type of the gas
- it's temperature •

tube:

:	$C = \sqrt{\frac{k_b T}{2\pi M}} A ,$	$C_{\rm air} = 11.6 [\rm l/s] \ A[\rm cm^2]$	Μ	= molecular mass
	v - <i>n</i> = <i>n</i>		А	= area
		13 []	Ч	- diamotor

$$C = \sqrt{\frac{2\pi k_b T}{M}} \frac{d^3}{l}, \ C_{air} = 12.1 [l/s] \frac{d^3[cm]}{l[cm]}$$
 d = diameter
I = length

example:	
tube d=8 cm, l=30 cm:	200 l/s
tube d=1 cm, l=30 cm:	0,4 l/s

Conductance - Combining Vessels

$$C_{\text{total}} = C_1 + C_2$$

example:

ion getter pump 400l/s connected by d=8cm, l=30cm tube: S_{eff} = 136 l/s

Sources of gas

main sources of gas in accelerator vacuum:

- thermal desorption
- beam induced desorption (synchrotron radiation, beam impact, electron cloud ...)
 → dynamic pressure, discussed later
- diffusion out of bulk materials
- permeation through materials
- virtual and real leaks

in practice, outgassing of water: q(t) ≈ 3×10⁻⁹ mbar l / s cm² / t [h] baking! exponential dependence on T

bulk diffusion

diffusion coefficient D mainly H₂ relevant

$$q(t) \propto \sqrt{D(T)/t}$$

 $D(T) \propto \exp\left(-\frac{E_{\text{diff}}}{k_b T}\right)$

Ι

Pump Down Processes

log. scale: different effects dominate after varying times

12

Pressure Computation for 1-dimensional Systems

starting from definition of conductance C = Q / Δ P introduce correct sign and specific conductance:

continuity equation, change of flow by pumping and outgassing:

$$Q = -C \Delta s \frac{\Delta P}{\Delta s}$$

$$Q(s) = -\mathcal{C} \cdot \partial P(s) / \partial s$$

$$\partial Q(s)/\partial s = q - \mathcal{S} P(s)$$

 \mathcal{C}

 \mathcal{S}

q

1-dim diffusion equation:

$$\frac{\partial}{\partial s} \ \mathcal{C} \ \frac{\partial}{\partial s} P(s) - \mathcal{S}P(s) + q = 0$$

$$\begin{bmatrix} \frac{l m}{s} \end{bmatrix}$$
 specific conductance
$$\begin{bmatrix} \frac{l}{s m} \end{bmatrix}$$
 specific pumping speed
$$\begin{bmatrix} \frac{mbar l}{s m} \end{bmatrix}$$
 specific outgassing rate

Quadratic Solution for lumped Pumps

$$P(s) = \frac{ql}{S} + \frac{q}{8C} \left(l^2 - 4s^2 \right)$$

the parabolic profile results in following average and maximum pressure:

choose distance and pumping speed to achieve desired pressure and to reasonably balance both terms

example:
7cm tube,
$$q_0 = 5 \times 10^{-12}$$
 mbar l / s cm², S=100l/s
 \rightarrow l=5m, $P_{avg} = 1 \times 10^{-9}$ mbar
 \rightarrow l=3m, $P_{avg} = 5 \times 10^{-10}$ mbar

General Solution by Matrix Transport of Q, P

$$\begin{pmatrix} P(s) \\ Q(s) \end{pmatrix} = \begin{pmatrix} \cosh(\alpha s) & -\frac{1}{c\alpha}\sinh(\alpha s) \\ -\alpha c\sinh(\alpha s) & \cosh(\alpha s) \end{pmatrix} \begin{pmatrix} P(0) \\ Q(0) \end{pmatrix} + \frac{q}{\alpha} \begin{pmatrix} \frac{1}{\alpha c}(1-\cosh(\alpha s)) \\ \sinh(\alpha s) \end{pmatrix} \quad \alpha = \sqrt{\frac{s}{c}}$$

$$\lim_{\alpha \to 0} : \begin{pmatrix} P(s) \\ Q(s) \end{pmatrix} = \begin{pmatrix} 1 & -s/c \\ 0 & 1 \end{pmatrix} \begin{pmatrix} P(0) \\ Q(0) \end{pmatrix} + qs \begin{pmatrix} -\frac{s}{2c} \\ 1 \end{pmatrix} \qquad [V. Ziemann, SLAC/Pub/5962]$$

$$example calculation:$$

$$\lim_{\text{lumped pumps: } S = 100 \text{ l/s}} \operatorname{distrib. pumps: } S = 60 \text{ l/s m} \operatorname{outgassing: } q_0 = 5 \times 10^{-12} \text{ mbar l / s cm}^2$$

$$\lim_{\substack{n \to 0 \\ n \to 0}} \frac{10e-09}{6} \int_{10e+02} \frac{10e-09}{6} \int_$$

Time Dependent Diffusion Equation

$$\mathcal{V}\frac{\partial}{\partial t}P(s,t) = \frac{\partial}{\partial s} \mathcal{C} \frac{\partial}{\partial s}P(s,t) - \mathcal{S}P(s,t) + q$$

specific volume [l/m]

compare classical diffusion eq.:

$$\frac{\partial}{\partial t}f(x,t) = \frac{\partial}{\partial x} \mathcal{D} \ \frac{\partial}{\partial x}f(x,t)$$
$$\rightarrow \mathcal{D} = \frac{\langle \Delta x^2 \rangle}{\langle \Delta t \rangle} = \frac{\mathcal{C}}{\mathcal{V}}$$

example:

tube 7cm, diffusion time over 5m: N₂: 2.3 s; He: 0.9 s tube 2cm, diffusion time over 5m: N₂: 8 s; He: 3 s

Monte Carlo Code Molflow+ (2008)

C++ code, OpenSource since 2018 J-L. Pons (ESRF), M. Ady, R.Kersevan (CERN)

Web site for info and downloads:

Synrad+ for calculation of synchrotron radiation

- Monte Carlo code computes photons generated by the beam and projects them onto the vacuum chamber surface
- in a second step the molecular outgassing is computed
- the result serves as input for Molflow+ to compute the pressure distribution

- SR spectrum + flux
- calculates beam orbit from lattice file (MAD-X)
- dipole approximation only, no undulator interference effects

https://molflow.web.cern.ch/content/synrad-documentation

Next: Accelerator Vacuum

requirements: bremsstrahlung, elastic scattering, emittance growth beam induced desorption: SR, ions

Generic Beam Lifetime due to Beam-Gas Interaction

- <u>bremsstrahlung</u> (electrons)
- <u>elastic scattering</u> (Coulomb, nuclear)
- inelastic scattering (nuclear)
- multiple Coulomb: <u>p-emittance growth</u>

25 25

20

Electrons: Bremsstrahlung Lifetime

Bremsstrahlung

particle loses energy in Coulomb field of gas molecule; is lost if leaving energy acceptance

$$\sigma_{\rm inel} \approx -\frac{4}{3} \frac{V_n}{N_A} \frac{1}{X_0} \ln \delta_E$$

 $V_{\rm n}$ = 22.4l, molar Volume N_{A} Avogadro Number $\delta_{\rm F} = \Delta E/E$, energy acceptance X_0 gas specific radiation length

(normal condition)

$$\tau_{\text{brems}} \left[\mathbf{h} \right] = \frac{-0.695}{\ln(\delta_E)} \left(\sum_{i} \frac{P_i \left[\text{pbar} \right]}{X_{0,i} \left[\mathbf{m} \right]} \right)^{-1}$$

radiation length:
(normal condition)H_2He
$$CH_4$$
 H_2O COArAir X_0 [m]75305670696477321117304

example synchrotron: $\delta_{\rm E}$ = 8×10⁻³; P_{tot} = 10⁻⁸ mbar composition: 75% H₂, 25% CO $\tau_{\rm brems}$ = 16 h

Electrons: Elastic Coulomb Scattering

Rutherford Scatting

diff. cross section for occurrence of scattering angle θ :

$$\frac{d\sigma_i}{d\Omega} = \frac{Z_i^2 r_e^2}{4\gamma^2} \frac{1}{\sin^4(\theta/2)}$$

consider total cross-section for loss of electron, i.e. scattering beyond aperture A_{y} :

$$\sigma_{i,\text{el}} \approx \frac{2\pi Z_i^2 r_e^2}{\gamma^2} \frac{1}{\theta_0^2}, \ \theta_0 = A_y / \overline{\beta_y}$$

resulting lifetime:

Hadron Beam Emittance Growth

multiple elastic scattering in the absence of radiation damping leads to diffusive emittance growth.

definition of emittance growth time:

$$\tau_{\varepsilon} = \left(\frac{1}{\varepsilon_x} \ \frac{d\varepsilon_x}{dt}\right)^{-1}$$

growth rate:

$$\frac{d\varepsilon}{dt} = \overline{\beta_y} \ \frac{d(\theta_0^2)}{dt} = \overline{\beta_y} \ \frac{(13.6)^2}{(cp)^2 \,[\text{MeV}^2]} \ \frac{c}{P_0} \ \sum_i \frac{P_i}{X_{0,i}}$$

example HERA-p ε growth rate: $E_k = 920 \text{ GeV}, \beta_{y,avg} = 50 \text{ m}$ $P_{tot} = 5 \times 10^{-11} \text{ mbar } @ 4.2 \text{ Kelvin, H}_2$ emittance: $\varepsilon_x = 5 \times 10^{-9} \text{ m} \cdot \text{rad}$ $\tau_{\varepsilon} = 2.000 \text{ h}$

protons

electrons

Synchrotron Radiation induced Desorption

dynamic vacuum

- SR photons generate photoelectrons, these desorb gas molecules from the surface
- desorption yield η per photon is reduced with integrated dose (conditioning)

measured desorption yield for different gases [G.Vorlaufer]

 $\begin{array}{ll} \text{SR photons per} \\ \text{length and time:} & \frac{dN_{\gamma}}{dtds} = 1.28 \cdot 10^{17} \frac{I \, [\text{mA}] \, E \, [\text{GeV}]}{\rho \, [\text{m}]} \\ \text{resulting specific} \\ \text{outgassing:} & q = \eta_{\gamma} \, k_b \, T \, \frac{dN_{\gamma}}{dtds} \end{array}$

M.Seidel, Accelerator Vacuum

Reduced desorption by NEG Coating

- → NEG coating reduces SR desorption immediately
- \rightarrow conditioning is slower afterwards
- → however, NEG coated chambers lead to good conditions in practice

25

Heavy Ion induced Gas Desorption

demonstration of transmission breakdown by gas desorption

[measurements & simulations in AGOR cyclotron, KVI-Groningen, S.Brandenburg et al]

- transmission of ⁴⁰Ar⁵⁺ 8 MeV per nucleon
- base vacuum 3 x 10⁻⁷ mbar
- injected intensity up to 6 x 10¹² pps
- Beam-power: \leq 320 W

 \rightarrow release of 10⁵ (!) gas molecules per lost ion is compatible with data

Dynamic effect in LHC: Electron Cloud Effect

- photoelectrons can start avalanche effect resulting in intense electron clouds
- crucial: secondary electron yield (SEY), i.e. how many e⁻ released per incoming e⁻
- results in pressure bump, heat load in cold systems (problem at LHC)
- may affect beam stability
- depends on bunch spacing and beam intensity

mitigations:

- wall coating, e.g. graphite, TiN (low SEY)
- weak magnetic solenoid field

Specialized Chambers: LHC & FCC with Beam Screens

vacuum effects are mitigated and the pumping speed and cooling capacity have been considerably increased

Vacuum Chambers for Electron Synchrotron

low cost per meter, however: difficult interface to stainless steel flanges

<u>solution</u>: explosion bondings SS/Al with 4cm Al thickness profile extruded aluminum, milled and bent (ρ=196m); NEG strip (St707) for pumping

29

Next: Components for Vacuum Systems

pumps: overview, turbo, ion sputter, NEG, cryo-pump flange systems, collimators, residual gas analysis (RGA)

Overview Pumps and Gauges

Turbo Molecular Pump

- pumps all gases
- blade speed similar molecule speed(!)
- 30.000 ... 60.000 RPM
- works down to 10⁻¹⁰ mbar

molecule	avg speed @ 293K [m/s]	compression ratio
H ₂	1800	10 ³
He	1250	104
СО	470	10 ⁹

32

Sputter Ion Pump

single penning cell electric and magnetic field gas ionization, acceleration

pumping mechanism implantation, chemisorption and burying of gas molecules

33

Ion Sputter Pumps

NEG – Non Evaporable Getter Pumps

- NEG captures gases by chemical reaction, e.g. H₂O, CO, N₂ permanently, H₂ is dissolved in bulk material
- no pumping of noble gases combination with sputter ion pumps required
- NEG must be activated by heating; e.g. St707[™] @180°C..350°C

NEG Pump Designs

M.Seidel, Accelerator Vacuum

Cryo Pump

- high pumping speed for <u>all</u> gases
- cryo-condensation of N₂, O₂ and Ar on cold surface
- cold surface partly covered with charcoal: cryosorption for H₂, He, Ne
- periodic regeneration by warmup

Metal sealed Flange Systems

- low leak rate, UHV compatible
- radiation proof
- safe mounting
- easy leak search

Helicoflex: Technetics Group

Inflatable Seals

- leak rate $\sim 10^{-6}$ mbar l / s
- quick and simple mounting
- at positions with limited access or high activation

evacuated intermittent volume

Collimators

- collimators are parts of the vacuum system with multi-physics aspects
- some materials are not optimal for vacuum, e.g. graphite or graphite with MoGr coating (porosity, outgassing, dust)
- straightness, thermal shock resistance, heat load and heat conductivity, efficient cooling, thermal outgassing, electrical conductivity, mechanical precision and reproducibility, radio-activation and handling

[LHC collimator, S.Radaelli et al]

[PSI-HIPA >100kW avg power, D.Kiselev et al]

40

Residual Gas Analysis (RGA)

- quadrupole mass spectrometers to analyze the composition of residual gases
- allows to assess the cleanliness of components and to diagnose problems

[R.Gaiffi, PSI]

Accelerator Vacuum - Summary

- e: breamsstrahlung
- p: emittance growth

materials & materials preparation, mechanical stability, thermomechanical problems Pumps, Gauges, Flange Systems,

- outgassing, permeation/leaks ٠
- beam induced: SR, ions, e-cloud ٠
- lumped: turbo, ion sputter, cryo
- NEG strips, NEG coating

open "ttpoll.eu", session: "CAS24"

What property is measured in [mbar l / s]: A or B ? Dynamic pressure decays as a function of integrated current in a storage ring in which way: C or D? What is a typical pressure in an electron ring with circulating beam: E or F or G?

- ✓A. leak rate
 - B. pumping speed

- C. exponentially ✓ D. inversely
 - E. 1e-6 mbar
- ✓ F. 1e-8 mbar
 - G. 1e-10 mbar

References

- dedicated CERN accelerator school on vacuum: <u>https://cas.web.cern.ch/schools/glumslov-2017</u>
- The physical basis of ultra-high vacuum, P.A. Redhead, J.P. Hobson, E.V. Kornelsen. AVS.
- Particle Data Group: <u>Atomic and Nuclear Properties of</u> <u>Materials</u> (radiation length X₀, interaction length etc)

