Introduction to Non-linear Longitudinal Beam Dynamics

H. Damerau **CERN**

Introduction to Accelerator Physics

1 October 2024

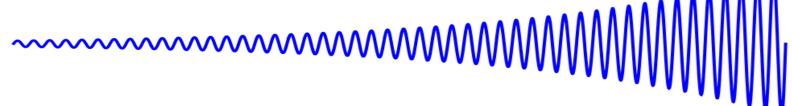
Outline

- Introduction
- Linear and non-linear longitudinal dynamics
 - Equations of motion, Hamiltonian, RF potential
- Longitudinal manipulations
 - Bunch length and distance control by multiple RF systems
 - Bunch rotation
- Synchrotron frequency distribution
 - Effect on longitudinal beam stability
- Summary

Introduction

Introduction

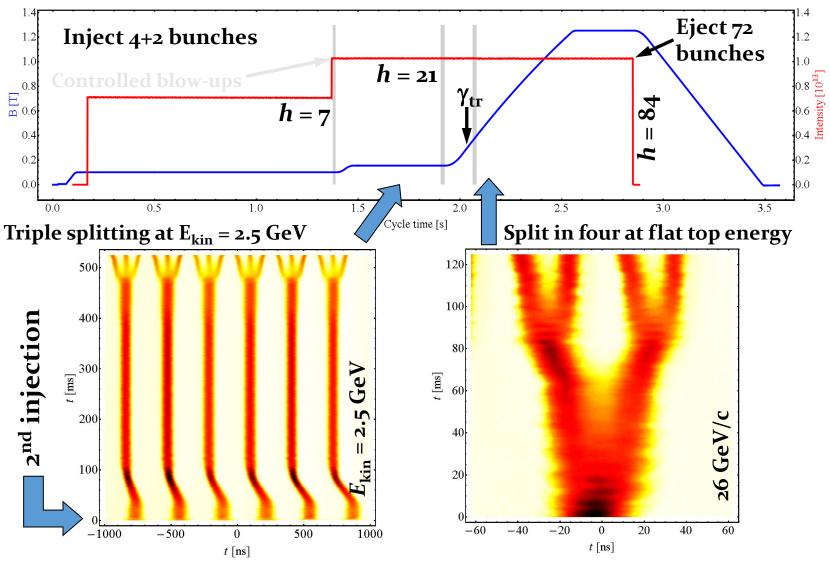
- Signals generated by radio-frequency systems in particle accelerators are of the form $V \sin(h\omega_{\rm rev}t)$
 - → Resonance effect: large voltage with little effort



- → Inherently non-linear
- → Linear longitudinal beam dynamics only an approximation
- → Effect of non-linearity on beam?
- → Tools to describe and analyse non-linearity
- → Use non-linearity to improve beam conditions

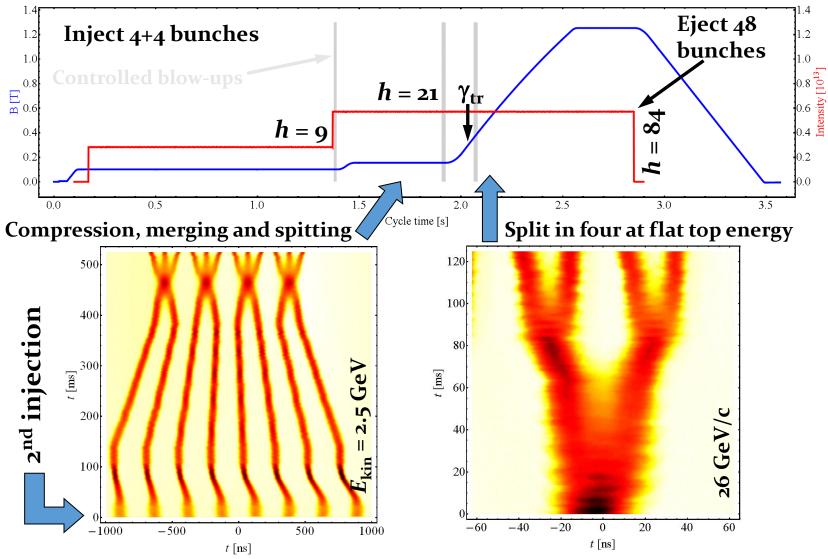
Non-linear longitudinal dynamics

Example: LHC-type beam in the CERN PS



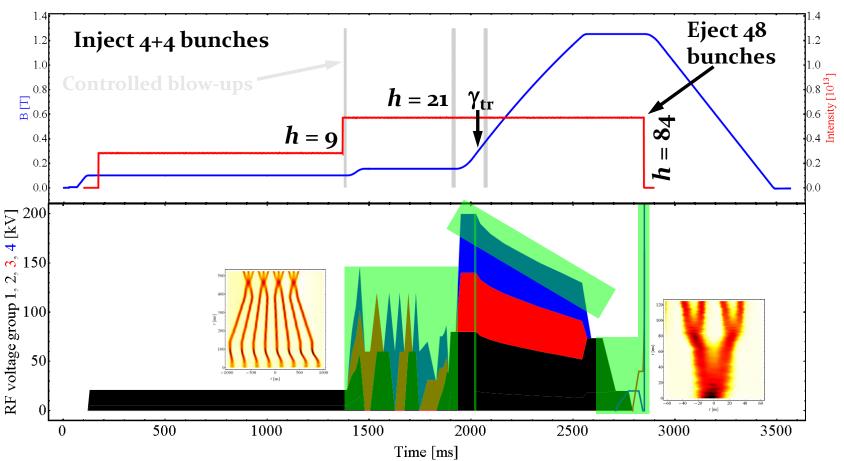
- Non-linear RF allows to control all longitudinal parameters
- → Number of bunches, bunch length and emittance, longitudinal stability

Example: LHC-type beam in the CERN PS



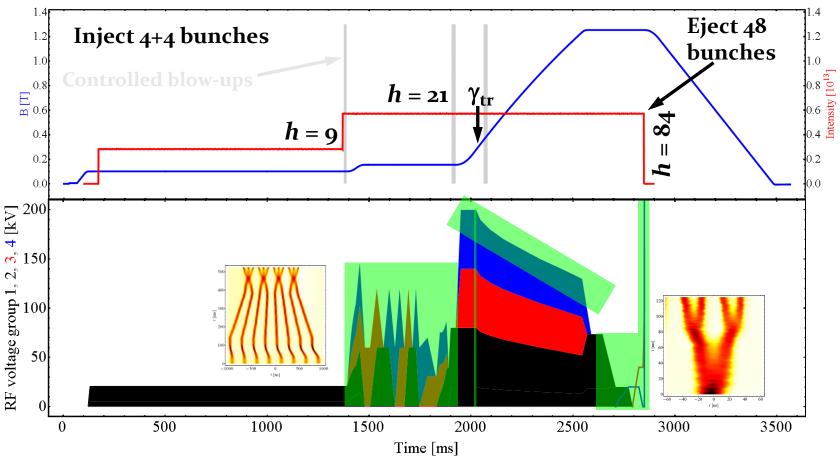
- Non-linear RF allows to control all longitudinal parameters
- → Number of bunches, bunch length and emittance, longitudinal stability

Where profit from non-linear RF?



- \rightarrow RF manipulation from 8 bunches in h = 9 to 12 in h = 21
- → Transition crossing
- → RF voltage reduction during acceleration
- → Splitting at the flat-top
- → Bunch shortening (rotation) before extraction

Where profit from non-linear RF?



- \rightarrow RF manipulation from 8 bunches in h = 9 to 12 in h = 21
- → Transition crossing
- → RF voltage reduction during acceleration
- → Splitting at the flat-top
- → Bunch shortening (rotation) before extraction

Applications

- Introduce extra non-linearity
 - Bunch lengthening in double-harmonic RF system to reduce peak current (space charge)

$$V_1 \sin(h_1 \omega_{\text{rev}} t + \phi_1) + V_2 \sin(h_2 \omega_{\text{rev}} t + \phi_2)$$

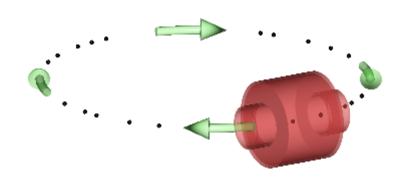
Short and long bunches with multi-harmonic RF systems

$$\sum_{n} V_n \sin(h_n \omega_{\text{rev}} t + \phi_n)$$

- Adapt bunch-to-bunch distance
- Profit from non-linearity for beam stabilization
 - Stabilize beam using higher-harmonic RF
 - Controlled longitudinal emittance blow-up

Interaction between particles and RF

Simple accelerator model:

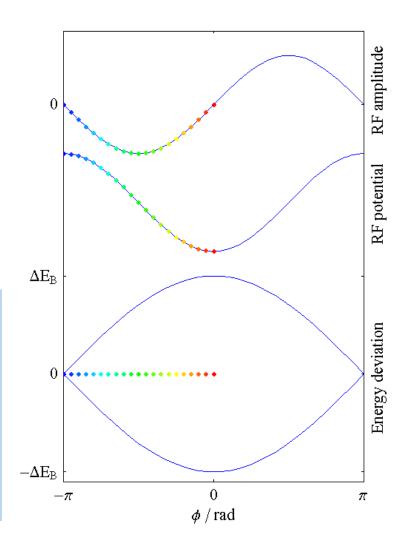


Energy dependent phase advance, ϕ :

$$\phi_{n+1} = \phi_n + 2\pi h \eta \frac{\Delta E_n}{\beta^2 E}, \ \eta = \frac{1}{\gamma_{\rm tr}^2} - \frac{1}{\gamma^2}$$

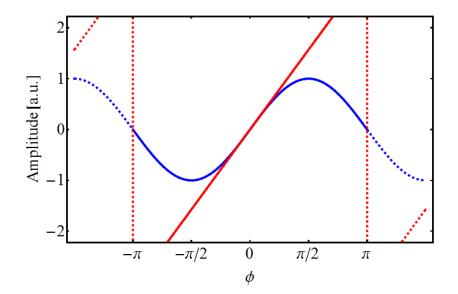
Phase dependent energy gain, ΔE :

$$\Delta E_{n+1} = \Delta E_n + qVg(\phi_{n+1})$$



Works for arbitrary shape of acceleration amplitude $g(\phi)$

- Usual longitudinal beam dynamics already non-linear, since RF system usually provides sinusoidal amplitude
- Linear longitudinal beam dynamics?



$$\frac{d}{dt}\phi = \frac{h\eta\omega_{\text{rev}}}{pR} \left(\frac{\Delta E}{\omega_{\text{rev}}}\right)$$

$$\frac{d}{dt} \left(\frac{\Delta E}{\omega_{\text{rev}}}\right) = \frac{qV}{2\pi}\phi$$
same structure
$$\frac{dp}{dt} = -\frac{\partial H}{\partial p}$$

$$\frac{dp}{dt} = -\frac{\partial H}{\partial q}$$

Construct Hamiltonian from equations of motion

$$\frac{d}{dt}\phi = \frac{h\eta\omega_{\text{rev}}}{pR} \left(\frac{\Delta E}{\omega_{\text{rev}}}\right)$$

$$\frac{d}{dt} \left(\frac{\Delta E}{\omega_{\text{rev}}}\right) = \frac{qV}{2\pi}\phi$$
same structure
$$\frac{dp}{dt} = \frac{\partial H}{\partial p}$$

$$\frac{dp}{dt} = -\frac{\partial H}{\partial q}$$

$$q = \phi \qquad p = \frac{\Delta E}{\omega_{\text{rev}}}$$

$$H(p,q) = T(p) + W(q)$$

- Hamiltonian constant on trajectory $H(p,q) = H_{\text{trajectory}}$
- → 'Energy conservation'

$$H(p,q) = H_{\text{trajectory}}$$

$$\frac{d}{dt}\phi = \frac{h\eta\omega_{\text{rev}}}{pR} \left(\frac{\Delta E}{\omega_{\text{rev}}}\right)$$

$$\frac{d}{dt} \left(\frac{\Delta E}{\omega_{\text{rev}}}\right) = \frac{qV}{2\pi}\phi$$

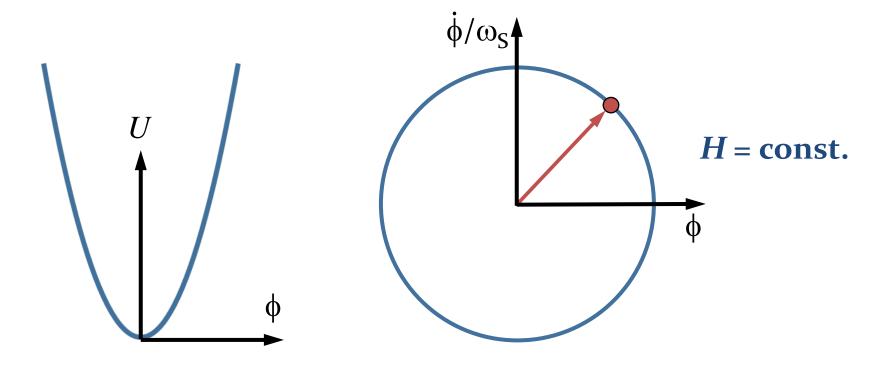
The Hamiltonian from the equations can be written as

$$H\left(\phi, \frac{\Delta E}{\omega_{\text{rev}}}\right) = \frac{1}{2} \frac{h\eta \omega_{\text{rev}}}{pR} \left(\frac{\Delta E}{\omega_{\text{rev}}}\right)^{2} - \frac{1}{2} \frac{qV}{2\pi} \phi^{2}$$
$$= \frac{1}{2} \frac{pR}{h\eta \omega_{\text{rev}}} \dot{\phi}^{2} - \frac{1}{2} \frac{qV}{2\pi} \phi^{2}$$

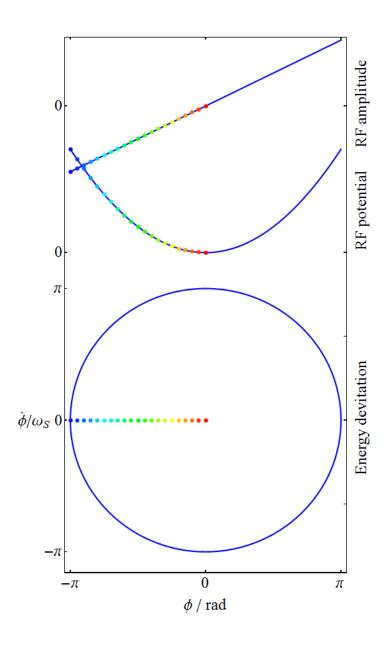
$$\eta = \frac{1}{\gamma_{\rm tr}^2} - \frac{1}{\gamma^2}$$

$$H\left(\phi, \frac{\dot{\phi}}{\omega_{\rm S}}\right) = \frac{1}{2} \left(\frac{\dot{\phi}}{\omega_{\rm S}}\right)^2 + \frac{1}{2}\phi^2 = T + W$$

- \rightarrow Particles move on circular trajectories in ϕ - $\dot{\phi}/\omega_S$ phase space
- \rightarrow RF potential is parabolic, $W(\phi) \sim \phi$
- → Hamiltonian is constant on these trajectories



Linear longitudinal phase space



- Simple model
- Circular trajectories
- All particles have same synchrotron frequency
- Normalized bucket area: $A_b = \pi r^2 = \pi^3$

→ Harmonic oscillator

Introduce most simple non-linearity

RF amplitude function $V\phi \rightarrow V\sin\phi$

$$V\phi \to V\sin\phi$$

$$\frac{d}{dt}\phi = \frac{h\eta\omega_{\text{rev}}}{pR} \left(\frac{\Delta E}{\omega_{\text{rev}}}\right)$$

$$\frac{d}{dt} \left(\frac{\Delta E}{\omega_{\text{rev}}}\right) = \frac{qV}{2\pi} \left(\sin\phi - \sin\phi_{\text{S}}\right)$$

$$H\left(\phi, \frac{\Delta E}{\omega_{\text{rev}}}\right) = \frac{1}{2} \frac{h\eta \omega_{\text{rev}}}{pR} \left(\frac{\Delta E}{\omega_{\text{rev}}}\right)^2 + \frac{qV}{2\pi} \left[\cos \phi - \cos \phi_{\text{S}} + (\phi - \phi_{\text{S}}) \sin \phi_{\text{S}}\right]$$

with $\phi = \phi_S + \Delta \phi$ this becomes

$$H\left(\Delta\phi, \frac{\Delta E}{\omega_{\rm rev}}\right) = \frac{1}{2} \frac{h\eta\omega_{\rm rev}}{pR} \left(\frac{\Delta E}{\omega_{\rm rev}}\right)^2 + \frac{qV}{2\pi} \left[\cos(\phi_{\rm S} + \Delta\phi) - \cos\phi_{\rm S} + \Delta\phi\sin\phi_{\rm S}\right]$$

 \rightarrow Standard longitudinal beam dynamics \rightarrow Lectures F. Tecker

Introduce most simple non-linearity

$$H\left(\Delta\phi, \frac{\Delta E}{\omega_{\rm rev}}\right) = \frac{1}{2} \frac{h\eta\omega_{\rm rev}}{pR} \left(\frac{\Delta E}{\omega_{\rm rev}}\right)^2 + \frac{qV}{2\pi} \left[\cos(\phi_{\rm S} + \Delta\phi) - \cos\phi_{\rm S} + \Delta\phi\sin\phi_{\rm S}\right]$$

using
$$\cos(\phi_{\rm S} + \Delta\phi) = \cos\phi_{\rm S}\cos\Delta\phi - \sin\phi_{\rm S}\sin\Delta\phi$$

 $\simeq \cos\phi_{\rm S}\left(1 - \frac{1}{2}\Delta\phi^2\right) - \sin\phi_{\rm S}\Delta\phi$

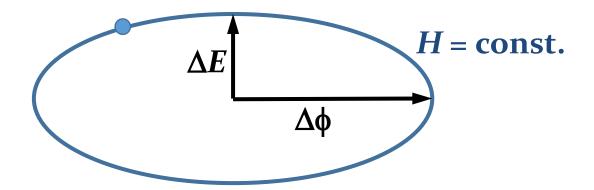
this Hamiltonian simplifies to

$$H\left(\Delta\phi, \frac{\Delta E}{\omega_{\rm rev}}\right) \simeq \frac{1}{2} \frac{h\eta\omega_{\rm rev}}{pR} \left(\frac{\Delta E}{\omega_{\rm rev}}\right)^2 - \frac{1}{2} \frac{qV}{2\pi} \cos\phi_{\rm S} \Delta\phi^2$$

Linear part of non-linear bucket

$$H\left(\Delta\phi, \frac{\Delta E}{\omega_{\rm rev}}\right) \simeq \frac{1}{2} \frac{h\eta\omega_{\rm rev}}{pR} \left(\frac{\Delta E}{\omega_{\rm rev}}\right)^2 - \frac{1}{2} \frac{qV}{2\pi} \cos\phi_{\rm S} \Delta\phi^2$$

- In the centre of the bucket, particles move on elliptical trajectories in $\Delta \phi$ - ΔE phase space
- Hamiltonian is constant on these trajectories



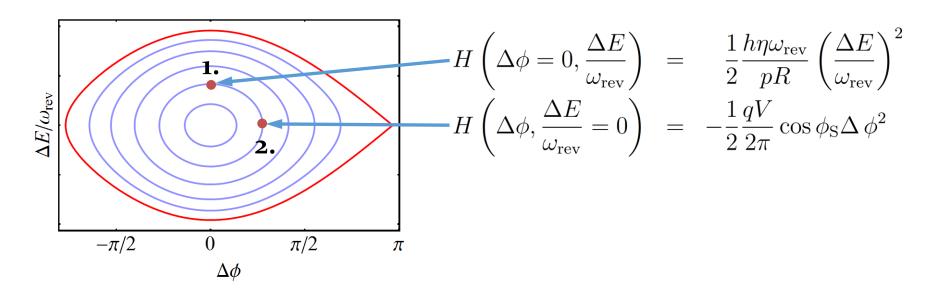
• In the bucket centre, particles oscillate with the synchrotron frequency, $\omega_S = 2\pi f_S$

$$\omega_{\rm S}^2 = -\frac{h\eta\omega_{\rm rev}qV\cos\phi_{\rm S}}{2\pi pR} \qquad \qquad \eta = \frac{1}{\gamma_{\rm tr}^2} - \frac{1}{\gamma^2}$$

Longitudinal emittance

- Compare two particles on the same trajectory

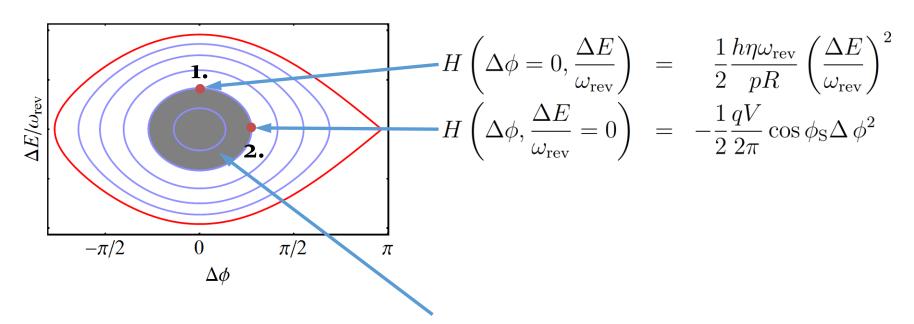
 - 1. No phase deviation 2. No energy deviation



Longitudinal emittance

- Compare two particles on the same trajectory

 - 1. No phase deviation 2. No energy deviation



$$\varepsilon_{l} = \frac{2}{h\omega_{\text{rev}}} \int_{\Delta\phi_{i}}^{\Delta\phi_{f}} \Delta E(\Delta\phi) \, d(\Delta\phi) \sim \begin{array}{l} \text{Surface occupied by particles in longitudinal phase space} \\ \text{Preserved in physical } [\sigma \Delta \sigma \Delta E] = 0 \end{array}$$

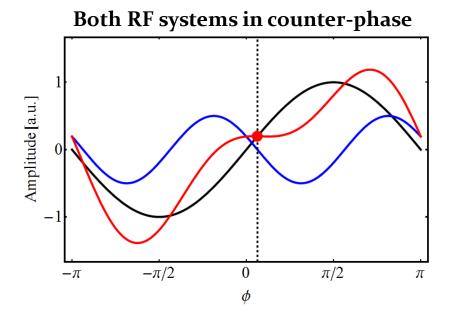
Longitudinal emittance, ε_1

- \rightarrow Preserved in physical $[\pi \Delta \tau \Delta E] = \text{eVs}$

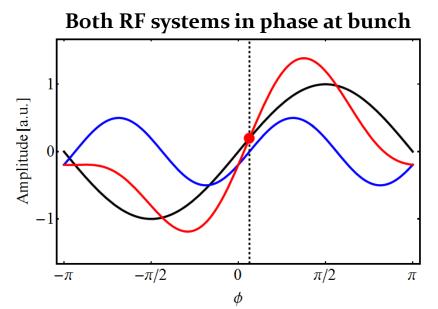
More non-linearity: multi-harmonic RF

RF amplitude $V \sin \phi \rightarrow V [\sin \phi + r \sin(n\phi + \phi_1)]$

• Example case n = 2 and r = 0.5



- → Local voltage gradient decreased
- \rightarrow Bunch is stretched
- → Lower peak current

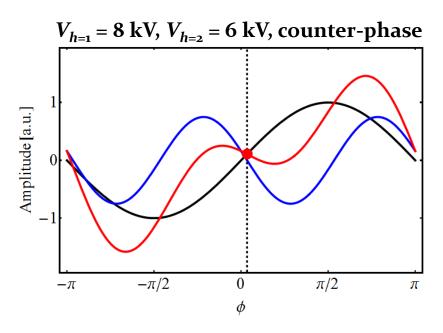


- → Local voltage gradient increased
- \rightarrow Bunch is compressed
- → **Higher** peak current

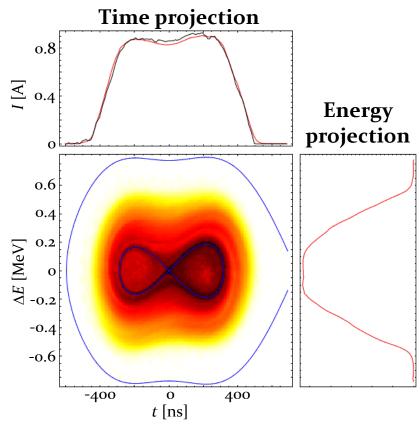
Example application: space charge in PSB

RF amplitude
$$V \sin \phi \rightarrow V [\sin \phi + r \sin(n\phi + \phi_1)]$$

 \rightarrow Space charge \propto instantaneous current



- **Inverted gradient at bucket** centre
- Flattened bunch with reduced peak current \rightarrow Space charge reduction at low energy

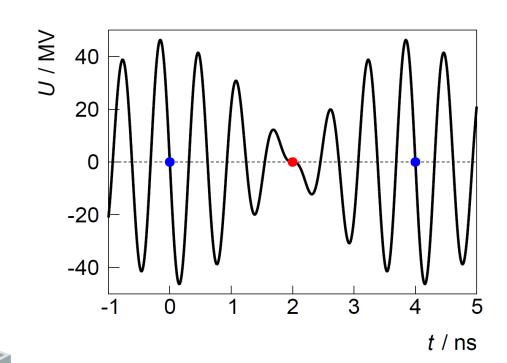


Long and short bunches simultaneously

Markus Ries et al.

- Example BESSY VSR
- → Depending on user of synchrotron radiation: need long or short bunches

Do long and short bunches simultaneously!

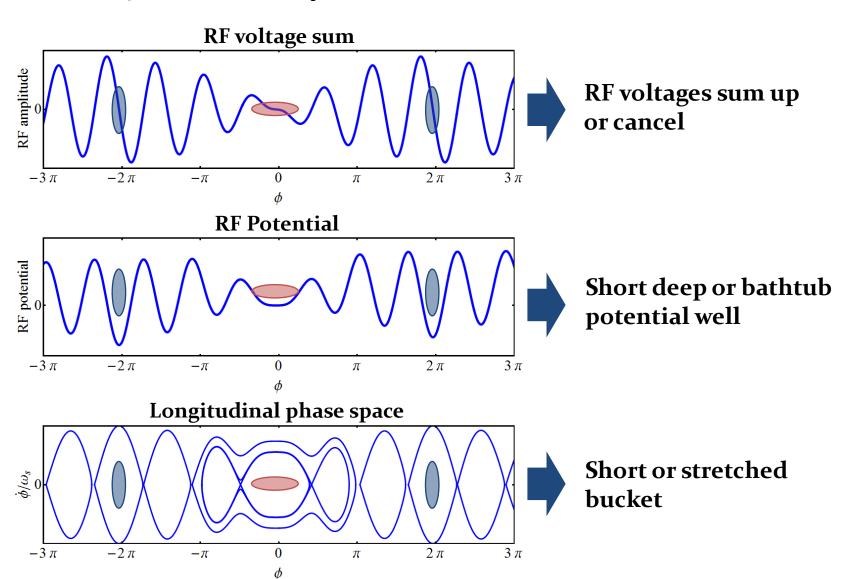


- 4×1.5 GHz supercond.
- 4 × 1.75 GHz supercond.

Bunch length modulation

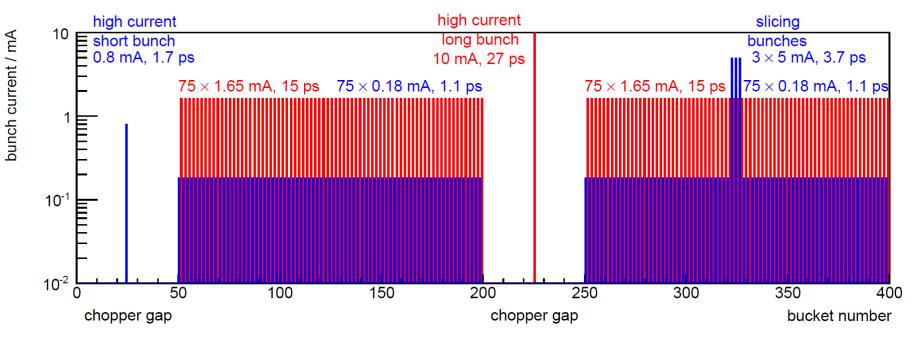
• Future 3-harmonic RF system for BESSY VSR

Markus Ries et al.



Filling pattern

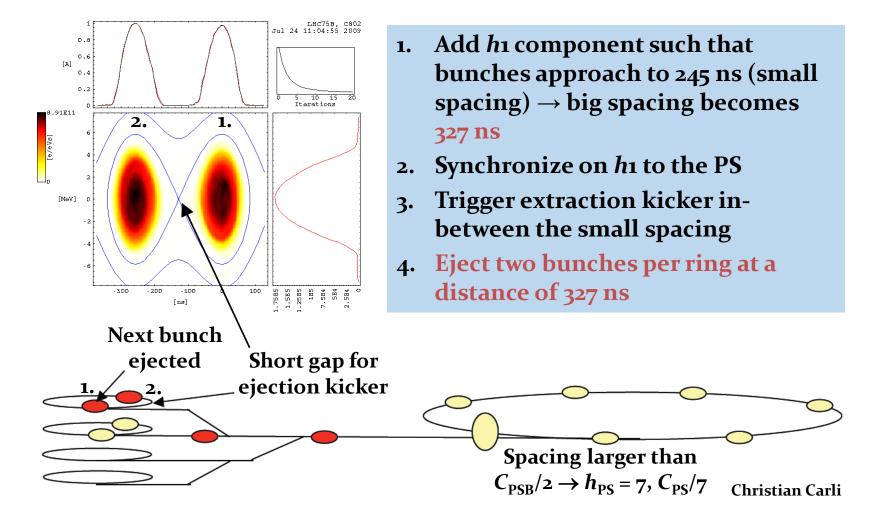
Markus Ries et al.



- 300 mA average current
- → High-current single bunches
 - \rightarrow short (o.8 mA) & long (10 mA)
- → Special high-current density bunches
- Two electron storage ring in one
 - **Thanks to longitudinal beam dynamics trick**

Example: adjust bunch spacing

- Was used at CERN PSB-to-PS to transfer 2 bunches at once
- Circumference ratio $C_{PS}/C_{PSB} = 4$
- → Ratio virtually moved to 2/7: use $h_{RF} = 2 + 1$



Introduce general non-linearity

Replace
$$V \sin \phi \rightarrow V g(\phi) \rightarrow \text{arbitrary amplitude}$$

Equations of motion

$$\frac{d}{dt}\phi = \frac{h\eta\omega_{\rm rev}}{pR} \left(\frac{\Delta E}{\omega_{\rm rev}}\right)$$
 same structure
$$\frac{d}{dt} \left(\frac{\Delta E}{\omega_{\rm rev}}\right) = \frac{qV}{2\pi} \left[g(\phi) - g(\phi_{\rm S})\right]$$

$$\frac{d}{dt} \left(\frac{\Delta E}{\omega_{\rm rev}}\right) = \frac{dQ}{dt} \left[g(\phi) - g(\phi_{\rm S})\right]$$

The Hamiltonian describing the system becomes

$$H\left(\phi, \frac{\Delta E}{\omega_{\text{rev}}}\right) = \frac{1}{2} \frac{h \eta \omega_{\text{rev}}}{p R} \left(\frac{\Delta E}{\omega_{\text{rev}}}\right)^2 - \frac{q V}{2 \pi} \left[\int g(\phi) d\phi - g(\phi_{\text{S}}) \phi\right]$$

$$\eta = \frac{1}{\gamma_{\rm tr}^2} - \frac{1}{\gamma^2}$$

Arbitrary RF waveform

$$H\left(\phi, \frac{\Delta E}{\omega_{\rm rev}}\right) = \frac{1}{2} \frac{h \eta \omega_{\rm rev}}{p R} \left(\frac{\Delta E}{\omega_{\rm rev}}\right)^2 - \frac{q V}{2 \pi} \left[\int g(\phi) d\phi - g(\phi_{\rm S}) \phi\right]$$

Using
$$\dot{\phi} = \frac{h\eta\omega_{\mathrm{rev}}}{pR} \left(\frac{\Delta E}{\omega_{\mathrm{rev}}}\right)$$

The Hamiltonian can be rewritten, with RF potential $W(\phi)$

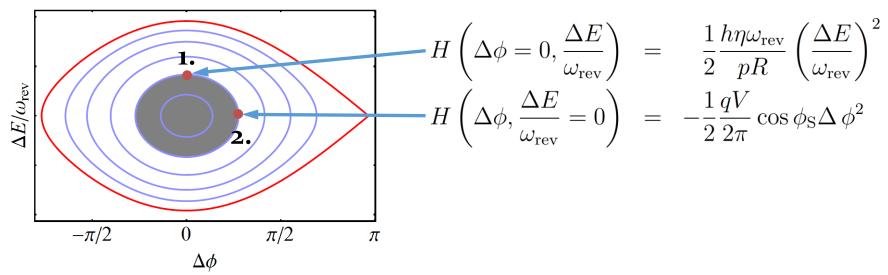
$$H(\phi, \dot{\phi}) = \frac{1}{2} \left(\frac{\dot{\phi}}{\omega_{S}} \right)^{2} + W(\phi)$$

$$W(\phi) = \frac{1}{\cos \phi_{S}} \left[\int g(\phi) d\phi - g(\phi_{S}) \phi \right]$$

Longitudinal beam manipulations using non-linearity

Change RF voltage to change bunch length?

→ Calculate aspect ratio of bucket trajectories



Equating both sides gives

$$\left(\frac{\Delta E}{\Delta \tau}\right)^2 = -\frac{qV}{2\pi} E \beta^2 h \omega_{\text{rev}}^2 \frac{\cos \phi_{\text{S}}}{\eta}$$

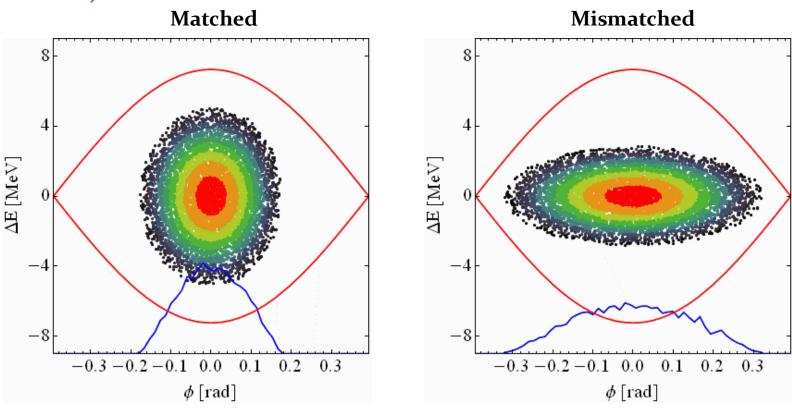
with emittance as $\varepsilon_l = \pi \Delta \tau \Delta E = \text{const.}$

$$\Delta au \propto \frac{1}{\sqrt[4]{V}}$$

- → Not efficient at all
- \rightarrow 16 times more RF voltage needed to cut bunch length in half

Abrupt change of RF voltage

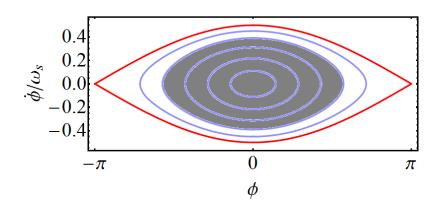
- → Individual particles in matched bunch oscillate but no macroscopic motion
- → Abruptly changing the RF voltage flips particles to new trajectories



- → The bunch distribution seems to rotate
- → Exchange of bunch length and momentum spread

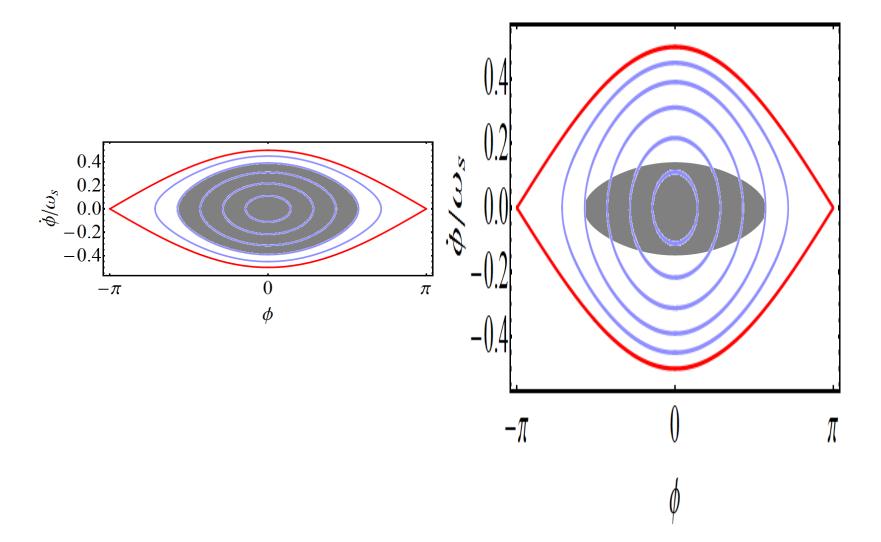
Introduce sudden change: bunch rotation

- → Quickly exchange longitudinal phase space behind bunch
- ightarrow Increase RF voltage much faster than period of $f_{
 m S}$



Introduce sudden change: bunch rotation

- → Quickly exchange longitudinal phase space behind bunch
- \rightarrow Increase RF voltage much faster than period of $f_{\rm S}$



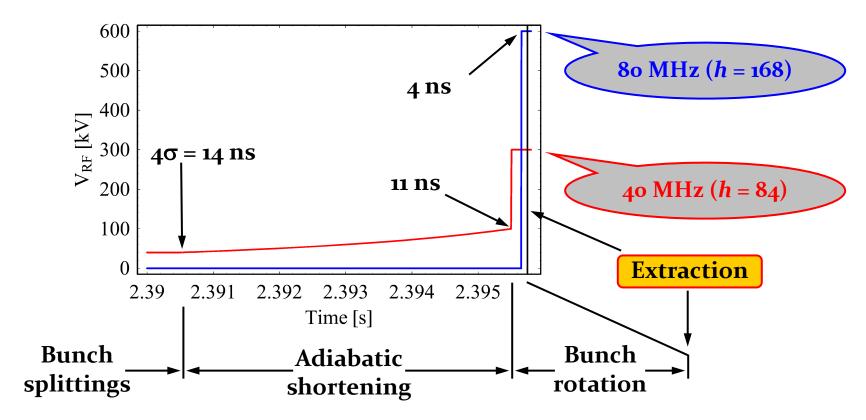
Introduce sudden change: bunch rotation

ightarrow Switch RF voltage much faster than period of $f_{ m S}$



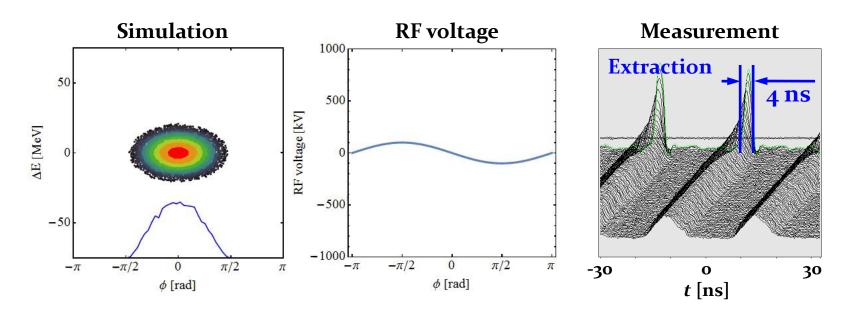
Example: PS to SPS transfer at CERN

- Fit 14 ns long bunches into 5 ns long buckets in the SPS
- → Double-step bunch rotation



Example: rotation at PS-SPS transfer

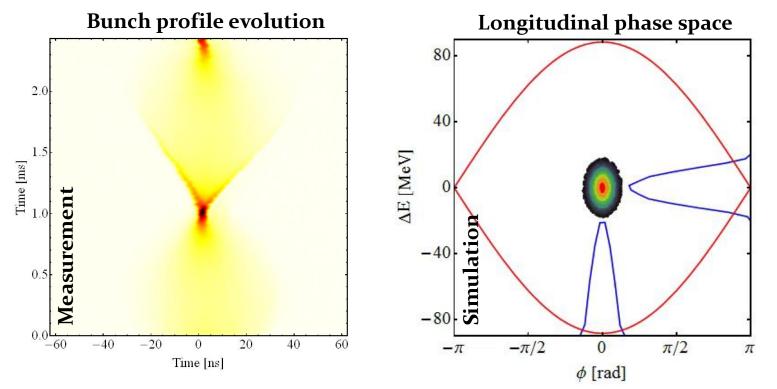
- \rightarrow Bunch length now proportional to $1/\sqrt{V}$ and not $1/\sqrt[4]{V}$
- \rightarrow Can save enormous RF voltage
- → Bunch shortening from 14 ns to 4 ns (ratio ~3.5)
- → Starting from 100 kV at 40 MHz
- → Slow shortening would require 100 kV · 3. $5^4 \sim 15$ MV
- → Installed RF voltage is only about 1.2 MV



Profiting from the non-linear rotation

Need large momentum spread for slow extraction

- 1. Jump RF phase such that bunch at unstable fixed point
- 2. Jump back
- 3. Let bunch rotate, switch RF off at large momentum spread

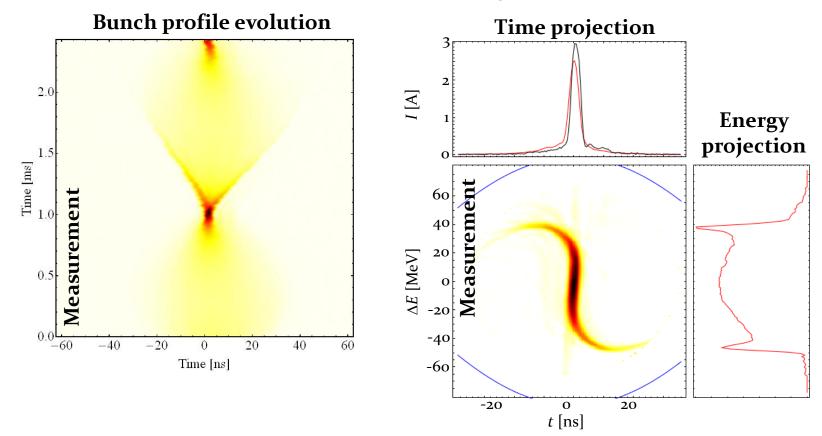


→ Non-linearly of bunch rotation helps

Example: using the non-linearity

Need large momentum spread for slow extraction

- 1. Jump RF phase such that bunch at unstable fixed point
- 2. Jump back
- 3. Let bunch rotate, switch RF off at large momentum spread



→ Almost constant momentum distribution after rotation

Synchrotron frequency distribution

General synchrotron frequency

- Synchrotron frequency depends on trajectory
- → Calculate average velocity for given trajectories in longitudinal phase space → Action angle, J

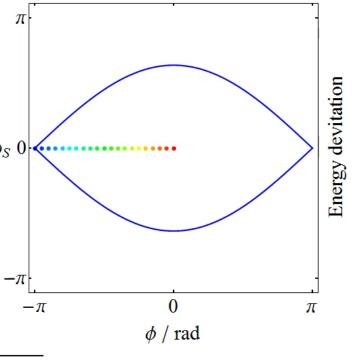
$$J(H) = \frac{1}{2\pi\omega_S} \oint \dot{\phi}(\phi) \, d\phi$$

The angular frequency becomes $\dot{\phi}/\omega_S |_0$

$$\omega(H) = \frac{d}{dJ}H$$

General expression for ω_S

$$\frac{\omega(H)}{\omega_S} = \frac{\sqrt{2}\pi}{\int_{\phi_l}^{\phi_u} \frac{1}{\sqrt{H/\omega_S^2 - W(\phi)}} d\phi}$$



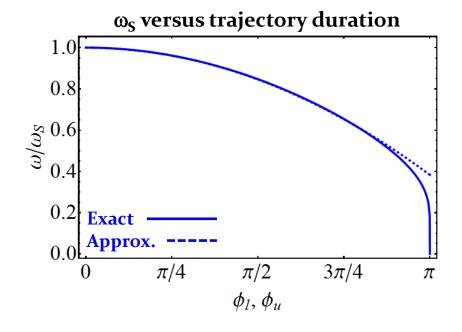
(for bucket

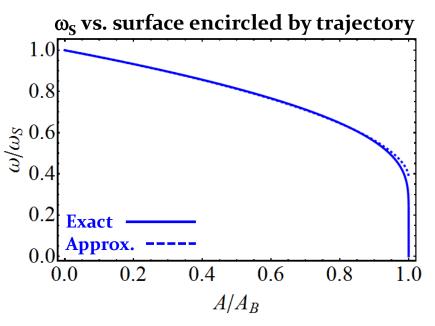
boundaries $\phi_1 \rightarrow \phi_{11}$)

Distribution for stationary bucket

Single-harmonic RF in stationary bucket

$$\frac{\omega(\Delta\phi_u)}{\omega_S} = \frac{\pi}{2K[\sin(\phi_u/2)]} \simeq 1 - \frac{\phi_u^2}{16}$$
 K(x): 1st kind elliptical integral function

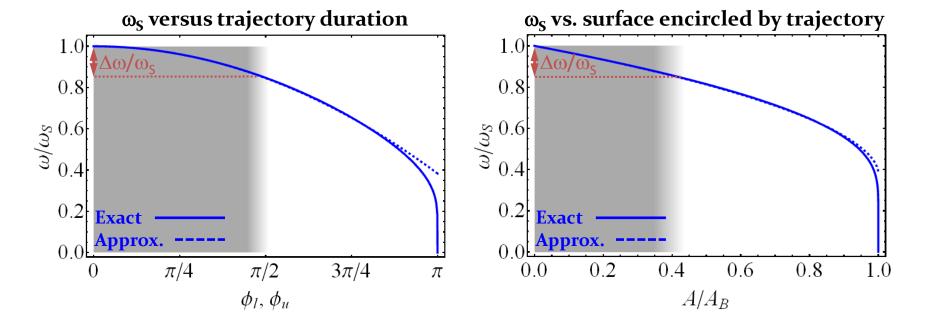




Distribution for stationary bucket

Single-harmonic RF in stationary bucket

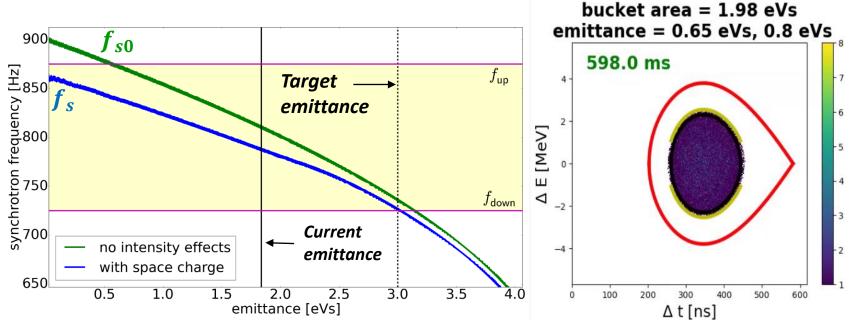
$$\frac{\omega(\Delta\phi_u)}{\omega_S} = \frac{\pi}{2K[\sin(\phi_u/2)]} \simeq 1 - \frac{\phi_u^2}{16} \qquad \qquad \textit{K(x): 1st kind elliptical integral function}$$



- → Different synchrotron frequencies of particles in bunch
- \rightarrow Total spread $\Delta\omega/\omega_s$ depends on filling factor of bucket

Example: Emittance control with noise

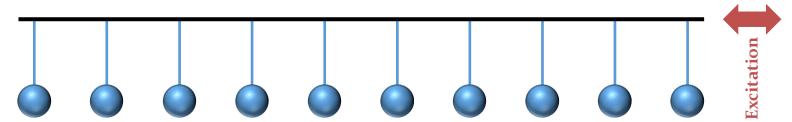
- Noise excitation of bunch by band-width limited noise
- → Controlled longitudinal blow-up in the PSB



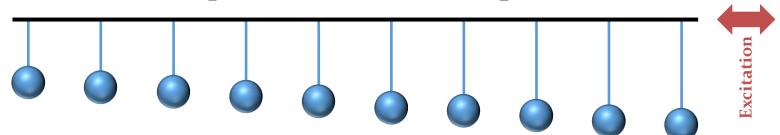
- 1. Choose upper frequency to cover synchrotron frequency at bunch centre
- 2. Choose lower frequency to match target emittance
- 3. Excite

Analogy: pendulums mounted on a bar

All particles have the same resonance frequency



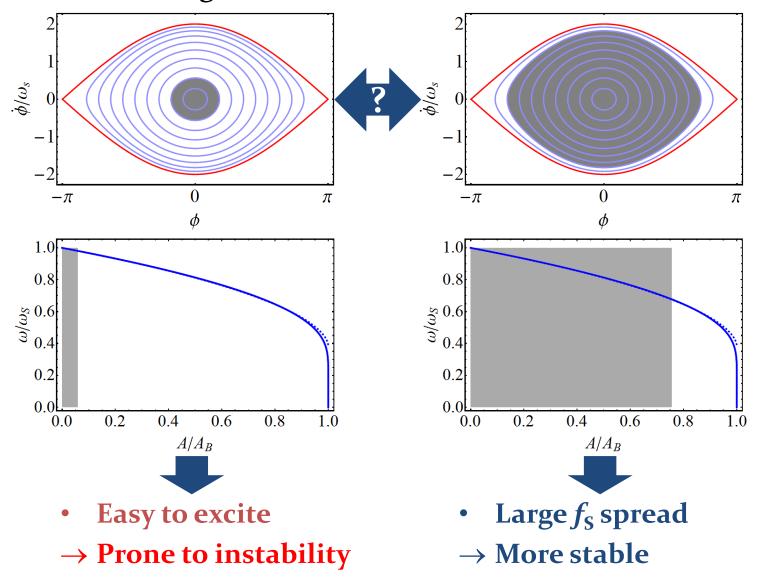
- → Easy to excite macroscopic oscillation
- Resonance frequencies of individual particles varies



- → Difficult to excite macroscopic oscillation
- → Large synchrotron frequency spread increases stability

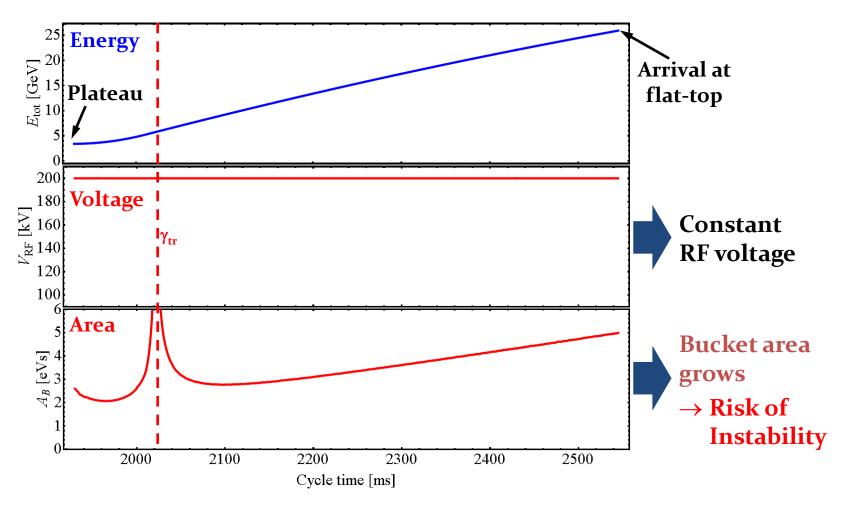
Bucket filling ratio

Smaller or larger bunch or bucket? What is more stable?



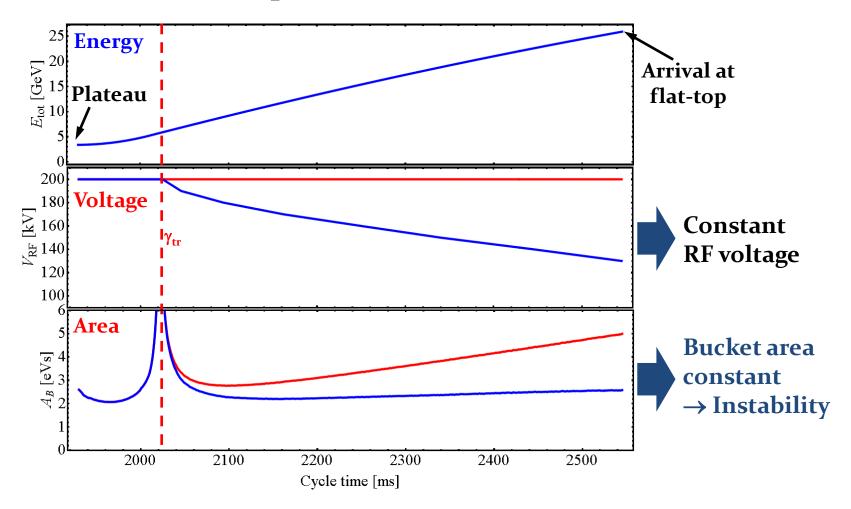
Example: stabilization with lower voltage

 \rightarrow Acceleration of protons in the CERN PS ($E_{\rm total} = 3.4 \rightarrow 26 \text{ GeV}$)



Example: stabilization with lower voltage

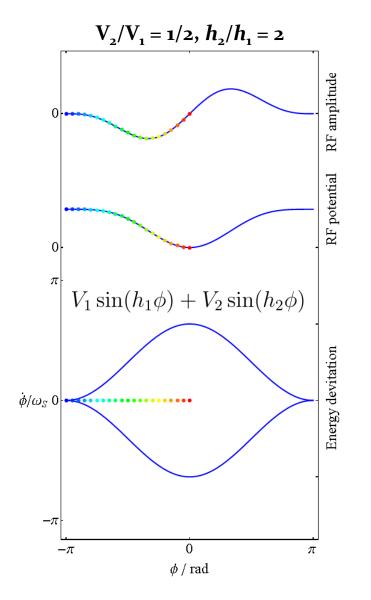
 \rightarrow Acceleration of protons in the CERN PS (3.4 \rightarrow 26 GeV total)

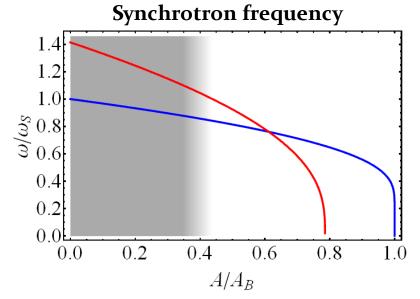


- Same principle also applied in SPS and LHC
- → Prevent bucket filling to decrease

Additional non-linearity by double RF

→ RF system at twice the main frequency and at half amplitude

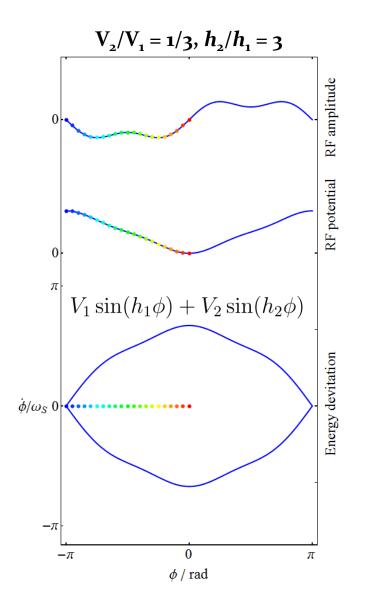


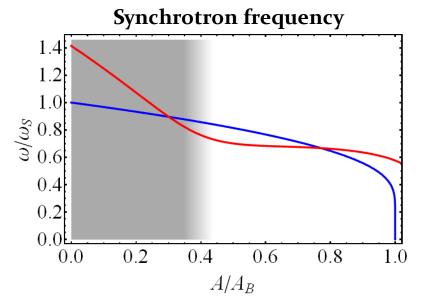


- Both RF systems in phase
- → Important increase in synchrotron frequency spread
- \rightarrow Improves stability

Additional non-linearity by double RF

→ RF system at twice the main frequency and at half amplitude

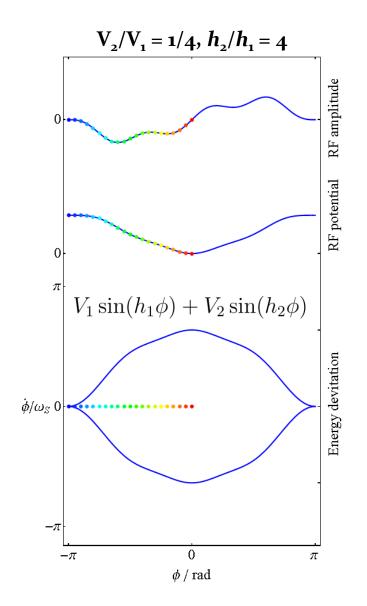


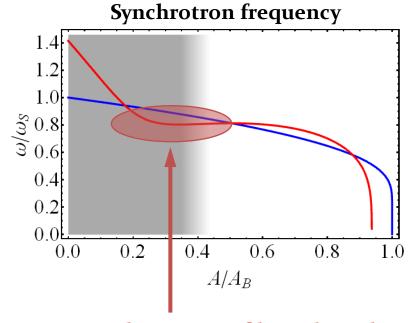


- Both RF systems in phase
- → Important increase in synchrotron frequency spread
- → Improves stability

Additional non-linearity by double RF

→ RF system at twice the main frequency and at half amplitude

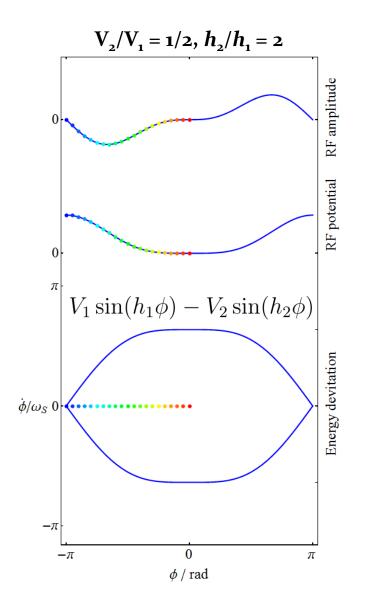


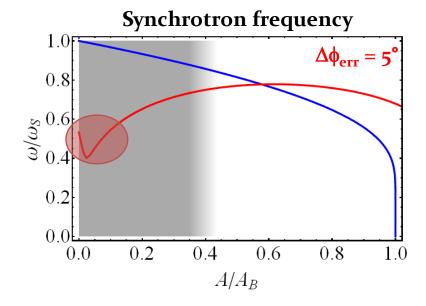


- Local regions of bunch with no f_S gradient
- → Again prone to instability
- → Reduce voltage of 2nd harmonic RF system
- → Improving stability depends on appropriate voltage ratio

Two RF systems in counter-phase?

 \rightarrow 2nd RF twice frequency, half amplitude in counter-phase

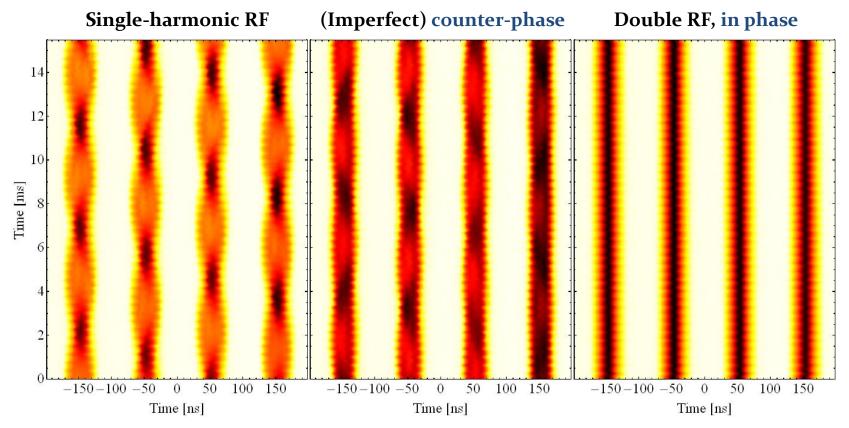




- Large frequency spread at bunch centre with perfectly adjusted phases
- → Minor phase offset causes locally unstable regions
- → Works only for very short bunches
- → Electron accelerators

Example: damping observations in the PS

- Quadrupolar coupled-bunch oscillations at flat-top
- Main RF system: $h_1 = 21$, 10 MHz, 4 out of 18 bunches
- Higher-harmonic RF system: $h_2 = 84$, 40 MHz



Both RF systems in phase:

→ Highest peak current, but most stable

Summary

- Longitudinal beam dynamics
 - → Everything non-linear
- Longitudinal manipulations
 - → Tricks to adjust length and distance of bunches
 - \rightarrow Do more with less RF
- Synchrotron frequency spread
 - → More RF voltage may result in less stability
 - → Higher peak density may be more stable
 - → Improve stability and control emittance

A big Thank You

to all colleagues providing support, material and feedback

Wolfgang Höfle, Andreas Jankowiak, Erk Jensen, Danilo Quartullo, Markus Ries, Elena Shaposhnikova, Frank Tecker

Thank you very much for your attention!

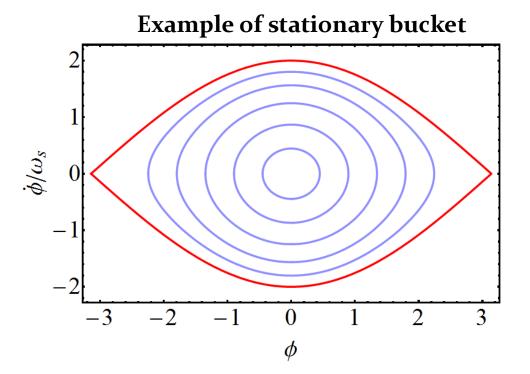
References

- A. Hofmann, Landau damping, CERN-2006-002, 2006, pp. 271-304, http://cds.cern.ch/record/941315/files/p271.pdf
- C. Bovet et al., A selection of formulae and data useful for the design of A.G. synchrontrons, CERN-MPS-SI-INT-DL-70-4, 1970, http://cds.cern.ch/record/104153/files/cm-p00047617.pdf
- G. Dome, Theory of RF Acceleration and RF noise, CERN-1984-015, 1984, pp. 215-253, http://cds.cern.ch/record/863008/files/p215.pdf
- D. Quartullo, E. Shaposhnikova, H. Timko, Controlled longitudinal emittance blow-up using band-limited phase noise in CERN PSB, J. Phys.: Conf. Ser. 874 012066, http://iopscience.iop.org/article/10.1088/1742-6596/874/1/012066
- F. Tecker, Longitudinal beam dynamics, CERN-2014-009, 2006, pp. 1-21, http://cds.cern.ch/record/1982417/files/1-21%20Tecker.pdf

Spare slides

Stationary bucket in normalized coordinates'

- \rightarrow RF bucket properties become independent from accelerator parameters
- → Significant simplification of equations, easy to use



→ Bucket height

$$\frac{\dot{\phi}_B}{\omega_S} = 2 \operatorname{rad}$$

→ Bucket area

$$\frac{A_B}{\omega_S} = 16 \, \text{rad}^2$$

→ Exception: conservation of longitudinal phase space