Longitudinal Hands-on Calculations Longitudinal Tracking

H. Damerau, L. Intelisano, F. Tecker, M. Zampetakis

CERN

Introduction to Accelerator Physics

1 October 2024

Agenda of the afternoon

Outline

Introduction

• Interaction between beam and RF system

• Longitudinal particle tracking

- Basic tracking equations
- Single and multiple particle tracking

• Summary

Introduction

Study interaction between beam and RF

Complementary approaches for the same problem

(Semi-)Analytical

- Describe particle motion by differential equations
- → Continuous trajectories of particle motion
- → Deduce useful parameters for stable acceleration:
 - \rightarrow RF bucket
 - \rightarrow Synchrotron frequency
 - \rightarrow Stable phase
 - \rightarrow ...

Study interaction between beam and RF

Complementary approaches for the same problem

(Semi-)Analytical	Numerical: tracking
• Describe particle motion by differential equations	• Track particle parameters from turn to turn
 → Continuous trajectories of particle motion → Deduce useful parameters for stable acceleration: → RF bucket → Synchrotron frequency → Stable phase → 	 → Profit from discretization of motion: turn-by-turn, RF station-by-RF station → No notion of RF bucket, synchrotron frequency, stable phase, etc. → Follow ensemble of particles to study evolution of bunch

Study interaction between beam and RF

Complementary approaches for the same problem

(Semi-)Analytical	Numerical: tracking
• Describe particle motion by differential equations	• Track particle parameters from turn to turn
→ Continuous trajectories of particle motion > Deduce useful parameters for	→ Profit from discretization of motion: turn-by-turn, RF station-by-RF station
→ Deduce userur parameters for stable acceleration: → RF bucket → Synchrotron frequency	→ No notion of RF bucket, synchrotron frequency, stable phase, etc.
→ Stable phase →	→ Follow ensemble of particles to study evolution of bunch
→ Classical introduction of longitudinal beam dynamics	→ Flexible Today approach

Objectives of longitudinal hands-on

1. Design RF system (upgrade)

LongitudinalHandsOnRFSystemCalculations_empty.ipynb

- Study boundary constraints
- Derive requirements for RF system
- Choose main components
- Compare with existing facilities

2. Play with longitudinal beam dynamics

LongitudinalHandsOnTracking_empty.ipynb

- Build your own particle tracker
- Understand motion of particles in longitudinal phase space
- Transition from single particle motion to evolution of an entire bunch

Longitudinal tracking

Tracking simulation flow

→ Follow the coordinates of one or more particles determine its behaviour

Circular accelerator without RF system

10

• Particles with higher or lower momentum have a different orbit compared to a reference particle

 $\frac{\Delta f}{f} = -\eta \frac{\Delta p}{p}$, phase slip factor: $\eta = \frac{1}{\gamma_{\rm tr}^2} - \frac{1}{\gamma^2}$

Arrival phase of a particle at next turn

→ Turn-by-turn drift equation

$$\theta_{n+1} = \theta_n + 2\pi \frac{\eta}{\beta^2} \frac{\Delta E}{E} \qquad \qquad \phi_{n+1} = \phi_n + 2\pi h \frac{\eta}{\beta^2} \frac{\Delta E}{E}$$

 \rightarrow Azimuth, θ or phase, ϕ a particles arrives next turn

Circular accelerator with RF station

- Particle energy changes at passage through cavity
- → For sinusoidal RF voltage:

$$\Delta E_{n+1} = \Delta E_n + qV \sin \phi_{n+1}$$

 \rightarrow With acceleration: $\Delta E_{n+1} = \Delta E_n + qV \left[\sin \phi_{n+1} - \sin \phi_{\rm S}\right]$ Reference particle: ϕ

$$\phi = \phi_{\rm S}$$

 \rightarrow General energy change:

 $\Delta E_{n+1} = \Delta E_n + qV \left[g(\phi_{n+1}) - g(\phi_{\rm S}) \right] + \Delta E_{\rm ext} + \Delta E_{\rm self}$

Multiple RF stations

- **RF** systems modelled point-like mostly valid approximation
- → Valid in most cases

Exceptions:

- \rightarrow Large synchrotron tune $f_{\rm S}/f_{\rm rev}$
- \rightarrow Strong intensity effects: interaction within one turn
- → Beam energy changing during turn

Multiple RF stations

 \rightarrow Small $Q_{\rm S} = f_{\rm S}/f_{\rm rev}$: Single kick per turn fully sufficient

Example: Electrons and positrons in LEP

• Beam energy changed in LEP along turn due to strong synchrotron radiation

15

- 4 × 2 RF sections
- → Energy loss in bending magnets
- → Track from RF section to RF section

Combining both tracking equations

 $\Delta \phi = o$

 $\Delta E \neq 0$

- Observe phase and energy error at each turn with respect to reference particle
- Test particles: $\Delta \phi = \phi \phi_{\rm S} = \mathbf{o}$ $\Delta \phi \neq \mathbf{o}$ $\Delta E = \mathbf{o}$

Longitudinal phase space

Works for arbitrary shape of acceleration amplitude $g(\phi)$

Continuous versus discrete

- Analytical solution describes static condition
- No notion of turn-by-turn evolution

 \rightarrow Same result with both approaches for $Q_{\rm S} = f_{\rm S}/f_{\rm rev} << 1$

Example: simple tracking in Python

Follow the trajectory of a single particle

Choice of particle coordinates

- Time or phase? Momentum or energy?
- Absolute or relative coordinates

		Advantages	Disadvantages
t	Ε	Most universalSuitable for any trackingCanonically conjugated	 Numerical precision: large absolute value Relative bunch motion more difficult to follow
Δt	ΔE	 Relevant deviations only Canonically conjugated Most suited for multiple <i>h</i> 	Required synchronous particle as referenceDuration of turn may change
Φ	<i>Ε</i> , ΔΕ	 Turn length always 2π Relevant deviations only 	Requires synchronous particle as referenceNot canonically conjugated
ф	<i>Ε</i> , ΔΕ	 RF bucket length always 2π Relevant deviations only Most suited for single h 	Requires synchronous particle as referenceNot canonically conjugated

Tracking simulation flow

Distributions and projections

From single particle tracking to distribution

- \rightarrow 10¹⁰...10¹² particles per bunch \rightarrow too much computing power
- \rightarrow Macro-particles to reduce \rightarrow up to few 10⁶ per bunch

Projections of distributions

Example: Tracking of a single bunch

- Set-up bunch with parabolic distribution: generate_bunch
- Most simple case: single harmonic RF without acceleration

Example: Tracking of a single bunch

- Set-up bunch with parabolic distribution: generate_bunch
- Most simple case: single harmonic RF without acceleration

→ Dipole oscillations
→ Phase and energy offset for example at injection

Getting closer to reality

→ State-of-the-art tracking may include much more

Longitudinal tracking codes

- Dedicated to longitudinal dynamics: fast and focussed on RF aspects
- Combined transverse and longitudinal tracking

Name	Remarks	
BLonD	 Widely used at CERN Complex RF manipulations and feedbacks Longitudinal intensity effects 	linal, 1D
ESME	 Longitudinal work horse code for many years RF manipulations with multiple RF systems Intensity effects 	Longitud
PyHeadTail	Longitudinal and transverse combined simulation <u>https://twiki.cern.ch/twiki/bin/view/ABPComputing/PyHEADTAIL</u>	3D
PyOrbit	Longitudinal and transverse combined simulation <u>https://twiki.cern.ch/twiki/bin/view/ABPComputing/PyORBIT</u>	ined,
elegant	 Longitudinal and transverse combined simulation Mainly used for electron accelerators <u>https://ops.aps.anl.gov/elegant.html</u> 	Comb
	•••	

Summary

- Longitudinal simulations using particle tracking
 - → Complementary approach to longitudinal beam dynamics
 - → Flexibility to change parameters during tracking
 - → Powerful technique to study
 - Multi-harmonic RF systems
 - Complicated intensity effects
 - Longitudinal dynamics with feedbacks and RF loops

You will build a (small) longitudinal tracking code

A big Thank You

to all colleagues providing support, material and feedback

Simon Albright, Maria-Elena Angoletta, Philippe Baudrenghien, Thomas Bohl, Wolfgang Höfle, Erk Jensen, Alexander Lasheen, Elena Shaposhnikova, Frank Tecker, Daniel Valuch, Manfred Wendt, Jörg Wenninger and many more...

Thank you very much for your attention!

References

- D. Boussard, Design of a Ring RF System, CERN SL/91-2 (RFS, rev.), 1991, http://cds.cern.ch/record/1023436/files/CM-P00065157.pdf
- E. Regenstreif, The CERN Proton Synchrotron, pt. 1, CERN-59-26, https://cds.cern.ch/record/214352/files/CERN-59-29.pdf
- CERN, The 300 GeV Programme, CERN/1050, 1972, https://cds.cern.ch/record/104068/files/CM-P00077738-e.pdf
- G. Arduini, E. Shaposhnikova, J. Wenniger, Acceleration Cycles for the LHC Proton Beams in the SPS, CERN AB-Note-2006-018, 2006, <u>http://cds.cern.ch/record/951985/files/ab-note-2006-018.pdf</u>
- R. W. Assmann, M. Lamont, S. Myers, A Brief History of the LEP Collider, CERN-SL-2002-009-OP, 2002, <u>https://cds.cern.ch/record/549223/files/sl-2002-009.pdf</u>