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Jele, Purpose =

B The objective is finding methods to derive and solve
(integrate) equations of motion, in order to describe
the evolution (dependence with “time”) of a system
(“particle”)

B Introduce formalism of theoretical (classical)
mechanics for analysing motion in general (linear or
non-linear) dynamical systems, including particle
accelerators

B Connect this formalism with concepts already
studied in the introductory CAS (matrices for
transverse motion, synchrotron motion,
invariants,...)

B Prepare the ground for approaches followed for
studying non-linear particle motion in accelerators

(in the advanced CAS) 3
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(l:\’) Principles of ¢

B Some key concepts of classical (analytical)
mechanics reviewed in this lecture, includin

B Integrals of motion
B Integration by quadrature

B Period and Frequency
B Hamilton’s principle
B Lagrangian, Euler-Lagrange equations

B Hamiltonian, Hamilton’s equations
B Canonical variables, Symplecticity
B Poisson brackets

B Canonical transformations
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Equations of motion
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B The motion of a “classical” particle in a force field is
described by Newton’s law:

@
de'e, Reminder: Newt

dPu(t)  dpu(t) B
M T g P =

with U the position

oV (u)
ou

Pu the momentum
F(u) the force
V (u) the corresponding potential

B [t is essential to solve (integrate) the differential
equation for understanding the evolution of the
physical (dynamical) system
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B A linear restoring force (Harmonic oscillator) is described by

d*u(t) 5 k

@
de'e, Reminder: Harmonic o

+wiu(t) =0 with wg =1/ —

dt? m

A A A
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B A linear restoring force (Harmonic oscillator) is described by

d*u(t) 5 k

o
deo @ Reminder: Harmonic oOf

o +wiu(t) =0 with wo = —

B The solution obtained by substitution u(t) = et
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B A linear restoring force (Harmonic oscillator) is described by

d?u(t) 5 k

| 4

Fwiu(t) =0 with wo = —

dt?
B The solution obtained by substitution u(t) = et
through the characteristic polynomial
A%+ w% = 0 = A4 = *wwo, which yields the general solution
u(t) = ce™0t + c*e "0 = (O cos(wot) + Cy sin(wpt) = Asin(wot + @)
with the “velocity”
du(t)
dt

= —Chwg sin(wgt) + Cowg cos(wot) = Awg cos(wot + @)
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B A linear restoring force (Harmonic oscillator) is described by

d?u(t) 5 k

| 4

Fwiu(t) =0 with wo = —
At

dt?
B The solution obtained by substitution u(t) =€
through the characteristic polynomial
A +wi = 0= A+ = tiwy, which yields the general solution
u(t) = ce™0t + c*e "0 = (O cos(wot) + Cy sin(wpt) = Asin(wot + @)
with the ”"velocity”
du(t)
dt

B Note that a negative sign in the differential equation provides
a solution described by hyperbolic sine/cosine functions

= —Chwy sin(wot) + Cowg cos(wot) = Awg cos(wot + @)

= B Note also that for no restoring force wp = 0, the motion is
unbounded
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B The amplitude and phase depend on the initi1a/12 conditions
(" + w3

. °
de e, Matrix solution

du(0) up
o — A p— _ Y
o uy = Cowyp o , tan(¢) ot

’LL(O) — Uy — Cl 5

B The solutions can be r/e-written thus as

u(t) = ug cos(wot) + -0 sin(wot)
Wo
u' (t) = —ugwo sin(wot) + ug cos(wot)

Hamiltonian formalism, CERN Accelerator School, September 2024

11



2

B The amplitude and phase depend on the initial conditions

r2 2,2 12
(uo —|—w0u0>

du(0 /
u(()):uO:Cl 9 /Lél(t) :’LL6:CQCUO , A= o : tan«b):%
B The solutions can be re-written thus as
uy
u(t) = ug cos(wot) + — sin(wot)
wWo . .
u' (t) = —ugwo sin(wot) + ug cos(wot) or in matrix form
1 .
u(t)\ cos(wot) oo sinwot) | (uo

uw'(t))  \ —wosin(wot)  cos(wot) Uy
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B The amplitude and phase depend on the initial conditions

@
de'e, Matrix solution

The CERN A

/2 2 2 1/2
(Uo ‘H‘JoUo)

du(0) Uy
U(O) =ug =C1 d(t — U6 = Cowy , A= w0 3 tan(qb) = K’(L)Lo
B The solutions can be r/e-written thus as
Uy .
u(t) = ug cos(wot) + —2 sin(wot)
wo or in matrix form

u'(t) = —ugwp sin(wot) + ug cos(wot)

u(t)\ cos(wot) (}O sin(wot)\ [ ug
uw'(t))  \ —wosin(wot)  cos(wot) Uy
B By replacing Wwo — \//?0 and T — S, this becomes the

solution of a quadrupole (see Transverse Linear Beam
Dynamics lectures)
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B General transfer matrix from s, to s

uy\ u [ C(s|so) S(s]so) u
(u/>8 — M(S‘SO) (w) N — (C’(S|So) S/(S|SO)) (u/) .
B Note that det(M((s|sg)) = C(s]s0)S’(s]sg) — S(s|so)C’(s]sg) = 1

which is always true for conservative systems (“energy” is constant)

1 0
B Note also that M(s0]50) = (0 1) =7
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@ ] ]
'de@ Matrix formalis

B General transfer matrix from s, to s

AN u - ([ C(slso) S(s|so0) U
(u/>8 — M(S‘SO) (u/> N — (C’(S‘So) S’(S‘So)) (u/) .
B Note that det(M(s|sg)) = C(s|sg)S (s|sg) — S(s]|sg)C'(s]|sg) =1

which is always true for conservative systems (”energy”’ is constant)
y ,

1 0
B Note also that M(50|50) = (O 1) =7

B The general solution can be built by a series of matrix multiplications

M (sn|s0) = M(sn|Sp—1) ... M(s3|s2) - M(s2|s1) - M(s1]s0)

\ 7
Y

2

S, S, Sy eeeS., R o Jrom Spt0'sy
% >n o fromsytos,
—
from s, to s,
N— e

—_——

froms,to s,
(see Transverse Linear Beam Dynamics lectures)
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deoe Integral of motion

B Rewrite the differential equation of the harmonic

2

oscillator as a pair of coupled 1% order equations

dl;it) — pu(t)
Pull) gl

dt
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dele, Integral of moti

B Rewrite the differential equation of the harmonic

Hamiltonian formalism, CERN Accelerator School, September 2024

2

oscillator as a pair of coupled 1% order equations.
du(t)

= = pu() By dividing the two sides of
dp (1) ; the equations, they can be
i - woul®) combined to provide
dpu 2 du 1d 9
gt Pe ey = 5 g Wt en’) =0

or
1

5 (P +wiu?) = I with 11 an integral of motion

identified as the mechanical energy of the system

17



Joe Integral of motior

B The equation 3 (pi +wgu®) = I describes in
general an ellipse in phase space

2

.o See link

-1 -0.5 . 0.5 1

2 M

—_
T

B Solving the previous equation for Pu, the system can
be reduced to a first order equation

du
_ _ 2
g \/211 wou

—_
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B The last equation can be solved as an explicit
integral or “quadrature”

d i . 1
/ dt = / ¢ p yleldmg t 4+ I, = — arcsin
\/ 211 — wiu? Wo

v 214
Wo

or the well-known solution u(t) =

(

uw

V214

2

;)

Sin(wot -+ CU()IQ)

19
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® 5
Jee. Integration by q }

B The last equation can be solved as an explicit
integral or “quadrature”

du . 1 g 1 UWo
dt = / . yielding t+ I, = — arcsin ( )
/ \/211 — wiu? Y 5 ? W V214
V214

or the well-known solution u(t) = - sin(wot + wol2)

B Note: Although the previous route ngy seem
complicated, it becomes more natural when non-
linear terms appear, where an ansatz of the type

u(t) = e™ is not applicable

Hamiltonian formalism, CERN Accelerator School, September 2024
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dele Integration b

B The last equation can be solved as an explicit
integral or “quadrature”

du : : 1 UWo
dt = / , yielding t+ I, = — arcsin ( )
/ \/211 — wiu? Y 5 ? wo V214
V214

or the well-known solution u(t) = - sin(wot + wol2)

B Note: Although the previous route megy seem
complicated, it becomes more natural when non-
linear terms appear, where an ansatz of the type

u(t) = e is not applicable

B The ability to integrate a differential equation is not
just a nice mathematical feature, but deeply
characterizes the dynamical behavior of the system
described by the equation

Hamiltonian formalism, CERN Accelerator School, September 2024
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B The period of the harmonic oscillator is calculated through
the previous integral after integration between two extrema

e .
de'e, Frequency of motion

V214
wo

(when the velocity Cclz_? = /21, — w?u2 vanishes), i.e. ue = =

Noin
T—2/ wol du 27
_V2h \/211—w8u2 wo

“o

Hamiltonian formalism, CERN Accelerator School, September 2024
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B The period of the harmonic oscillator is calculated through
the previous integral after integration between two extrema

e .
deo'e Lrequency of moti

: : . V2I
(when the velocity ‘fl_"‘; = /21, — w?u2 vanishes), i.e. ue = = - L.
0
/214
“0 du 2T

T p— 2 p—
N/ 21 2,2
_—wol \/2_[1 wou wO

B The period (or the frequency) of linear systems is
independent of the integral of motion (energy)

Hamiltonian formalism, CERN Accelerator School, September 2024
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B The period of the harmonic oscillator is calculated through
the previous mtegral after integration between two extrema

®
de'e, requency of

V2T
(when the Ve10C1ty = \/21, - w3u? vanishes), i.e. ueq = +7—
0
/214

T:2/ w0 du _ 2T
_V2h \/211 —w%uQ wo

“o

B The period (or the frequency) of linear systems is
independent of the integral of motion (energy)

B Note that this is not true for non-linear systems, e.g. for an
2

oscillator with a non-linear restoring force % +ku®)®=0

: .. 1 1
B The integral of motionis I, = - pa + i u* and the

(411/I€)1/4 du 1 2(1)( ) 1/4
, . . T 2/ =/ —T2(>) (I, k)~
integration yields it oy \/2 I ko o ‘4

Hamiltonian formalism, CERN Accelerator School, September 2024
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B The period of the harmonic oscillator is calculated through
the previous mtegral after integration between two extrema

o i
Jeoe Lrequency of

V21
(when the Veloc1ty = \/21, - w3u? vanishes), i.e. ueq = +7—
0
/214
©0 du 27

T p— 2 p—
N/ 21 2,2
_—wol \/2_[1 wOu wO

B The period (or the frequency) of linear systems is
independent of the integral of motion (energy)

B Note that this is not true for non-linear systems, e.g. for an
2

oscillator with a non-linear restoring force CCZZTZ +ku®)®=0
1

: C 1
B The integral of motionis I, = - pa + i u* and the

. o - 2/““1/‘“)”4 du /1 F2(1)@)_1/4

integration yields ~ ) s \/2 I — Lk 1 Va2r 4

B This means that the period (frequency) depends on the
integral of motion (energv) i.e. the maximum “amplitude

Hamiltonian formalism, CERN Accelerator School, September 2024

77 25



(Q') The pendulum

B An important non-linear equation
which can be integrated is the one of
the pendulum, for a string of length L
and gravitational constant g

d’0 g .
T Lsmé’—O

B For small displacements it reducestoa ™.

harmonic oscillator with frequency

o — g

0=41/=

L

B By appropriate substitutions, this
becomes the equation of synchrotron
motion (see Longitudinal beam dynamics

lectures) 2
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B The integral of motion (scaled energy) is

1 /dO\° g
— — —_ — :I :E/
2<dt> LCOSH L

db

and the quadrature is written as 1 = \/ 20, + & 9)
1 + < cos
assuming thatfor t =0, 6y =60(0) =0 L



2

de’e, Solution for th

B The integral of motlon (scaled energy) is

dd qg oy
5(@) —ZCOSQ—Il—E
do

and the quadrature is written as
1 \/ 2(I1 + 4 cosb)

assuming that for t =0, 6y = 6(0

B Using the substitutions cos 9 =1 — 2k”sin® ¢ with
L — \/1/2(1 +1,L/g) , theintegral is

L [° df .
t=4]— / and can be solved using
9.Jo \/1—Kk2sin?0
Jacobi elliptic functions: 0(t) = 2arcsin [k sn (tw / %, k)]

with “SI1” representing the Jacobi elliptic sine 2
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e .
de e, Solution for the per

AR AL A
\ [\ [ /_5

_3_0' s
-3

B Minima and maxima of the potential correspond to
stable and unstable fixed points

Hamiltonian formalism, CERN Accelerator School, September 2024
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performed between the two extrema, i.e. §/ =0 and

e .
'de e leriod of the pendulu

B For recovering the period, the integration is

0 = arccos(—I1L/g), corresponding to ¢ = () and
¢ =m/2

Hamiltonian formalism, CERN Accelerator School, September 2024
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performed between the two extrema, i.e. §/ =0 and

de%e Period of the pend

B For recovering the period, the integration is

9 = arccos(—1I1L/g), corresponding to ¢ = 0 and
= 77/2

L
] Th eriodis 7' =4 / — 4, =K (k
=P " \ 9 \/1—k281nq5 \ 9 (k)

i.e. the complete elliptic integral multiplied by four
times the period of the harmonic oscillator

Hamiltonian formalism, CERN Accelerator School, September 2024
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® ; 1
Jee. Period of the pe

B For recovering the period, the integration is

Hamiltonian formalism, CERN Accelerator School, September 2024

2

performed between the two extrema, i.e. § =0 and

0 = arccos(—11L/g), corresponding to ¢ = 0 and

¢ =m/2

L
B The periodis 7 =14 / — 4, =K(k
P \ 9 \/1—k281nq5 \ 9 (k)

i.e. the complete elliptic integral multiplied by four
times the period of the harmonic oscillator

oo

B By expanding ) =23 (22(3(”73!!)2)2 =7 (1 X ikz i )

n=0

with k= /1/2(1+ L L/g) , the “amplitude”

dependence of the frequency becomes apparent



de'e Leriod of the pendu

B The deviation from the linear approximation
becomes important at large amplitudes

2

B The dependence of frequency with amplitude
(spread) is useful for (Landau) damping (”beam ’)
1nstab111t1es © <

1.18 —

1.16 —

1.14 —

1.12 A

11+

1.08 —

T/ T,

1.06 —

1.04 —

1.02
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Langrangian and
Hamiltonian
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(Q') Lagrangian for

d Describe motion of particles in g, coordinates
(n degrees of freedom) from time ¢, to time ¢,

It can be achieved by the Lagrangian function
L(Qla oy {n, q.la ) Qnat) Wlth(Qla R 7Q’n) the
generalized coordinates and (q1, - .-, ¢x) the
generalized velocities

Hamiltonian formalism, CERN Accelerator School, September 2024
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Jole, Lagrangiar

d Describe motion of particles in g, coordinates
(n degrees of freedom) from time ¢, to time ¢,

It can be achieved by the Lagrangian function

L(Qb ooy 4n, q.17 RIS ant) Wlth(Qla R 7Q’n) the
generalized coordinates and (q1, - .-, ¢x) the
generalized velocities

A The Lagrangian is definedas L =T — V , i.e.
difference between kinetic and potential energy

QThe integral s = [ L(gi, d;, t)dt 2
defines the action %
JdHamilton’s principle: system 1

evolves so as the action becomes
extremum (principle of stationary action)

Hamiltonian formalism, CERN Accelerator School, September 2024
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A By using Hamilton’s principle,i.e. 05 =0 ,
over some time interval ¢; and ¢, for two
stationary points dq(t1) = dq(t2) = 0 (see
appendix), the following differential
equations for each degree of freedom are
obtained, the Euler-Lagrange equations

@
'deoe Luler- Lagrang

d 0L 0L

dt 0q 0Oq =Y

formalism, CERN Accelerator School, September 2024

Hamiltonian
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A By using Hamilton’s principle,ie.0S =0,
over some time interval ¢; and ¢, for two
stationary points dq(t1) = dq(t2) = 0 (see
appendix), the following ditferential
equations for each degree of freedom are
obtained, the Euler-Lagrange equations

ux; Euler- Lagre

d OL OL
dt 0q  Oq

d In other words, by knowing the form of the
Lagrangian, the equations of motion can be
derived

= (

formalism, CERN Accelerator School, September 2024
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| 4 .
Jdeo e Lagrangian

JFor a simple force law contained in a potential
function, governing motion among interacting
particles, the (classical) Lagrangian is (or as
Landau-Lifshitz put it “experience has shown

that...”)

n
1
1=
4 For velocity independent potentials, Lagrange
equations become I/

0g;

m;q; =

i.e. Newton’s equations.

Hamiltonian formalism, CERN Accelerator School, September 2024
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0 Some disadvantages of the Lagrang1an formalism:

- No uniqueness: different Lagrangians can lead to same
equations

(m From Lagrangian |

-1 Physical significance not straightforward (even its basic
form given more by “experience” and the fact that it
actually works that way!)

B Note: The (relativistic) Lagrangian is very useful in
particle physics (invariant under Lorentz
transformations)

Hamiltonian formalism, CERN Accelerator School, September 2024
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Je’e) From Lagrang &

J Some disadvantages of the Lagrangian formalism:

No uniqueness: different Lagrangians can lead to same
equations

Physical significance not straightforward (even its basic
form given more by “experience” and the fact that it
actually works that way!)
B Note: The (relativistic) Lagrangian is very useful in
particle physics (invariant under Lorentz
transformations)

4 Lagrangian function provides in general 17 second
order differential equations (coordinate space)

J Already observed advantage to move to system of
21 first order differential equations, which are
more straightforward to solve (phase space) u

Hamiltonian formalism, CERN Accelerator School, September 2024
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2

J The Hamiltonian of the system is defined as the Legendre
transformation of the Lagrangian

i oL
o

where the generalised momenta are P; =



Jele, Hamiltonian for &

J The Hamiltonian of the system is defined as the Legendre
transformation of the Lagrangian

' OL
04
U The generalised velocities can be expressed as a function of

the generalised momenta if the previous equation is
invertible, and thereby define the Hamiltonian of the system

where the generalised momenta are P; =

Hamiltonian formalism, CERN Accelerator School, September 2024
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Jole, Hamiltonian &

J The Hamiltonian of the system is defined as the Legendre
transformation of the Lagrangian

' OL
04
J The generalised velocities can be expressed as a function of

the generalised momenta if the previous equation is
invertible, and thereby define the Hamiltonian of the system

where the generalised momenta are P; =

J Example: consider L(q,q) = % Z mig? —V (g, ..., qn)
OL
dq;
which can be trivially inverted to provide the Hamiltonian

2
Z D;

1

7
d From this, the momentum can be determined as p: = = mg;

Hamiltonian formalism, CERN Accelerator School, September 2024



Jole, Hamilton’s ec

JThe equations of motion can be derived
from the Hamiltonian following the same
variational principle as for the Lagrangian
(“stationary” action) but also by simply
taking the differential of the Hamiltonian
(see appendix)

,._5’H . 0OH 5_L_ OH
qz_@pi’ Pi = dq ot Ot

2

formalism, CERN Accelerator School, September 2024
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Jeole, Hamilton’s

JThe equations of motion can be derived
from the Hamiltonian following the same
variational principle as for the Lagrangian
(“stationary” action) but also by simply
taking the differential of the Hamiltonian

2

(see appendix)
— OH . 0H 0L 0H
qz_@pi’pz_ Og = ot 0Ot

formalism, CERN Accelerator School, September 2024

dThese are indeed 2n + 2 equations describing
the motion in the “extended” phase space

(Q17 e lnyP1y .- 7pn7t7 _H)

Hamiltonian
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(I»\') Properties of Ha

d The variables (¢1,---,n:p1,- -, ¢, —H) are called
canonically conjugate (or canonical) and define the
evolution of the system in phase space

4 These variables have the special property that they
preserve volume in phase space, i.e. satisfy the
well-known Liouville’s theorem

JThe variables used in the Lagrangian do not
necessarily have this property

Hamiltonian formalism, CERN Accelerator School, September 2024
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(‘:\q Properties of

d The variables (g1, .-, ¢n:p1,--.,pn,t, —H) are called
canonically conjugate (or canonical) and define the
evolution of the system in phase space

4 These variables have the special property that they
preserve volume in phase space, i.e. satisfy the
well-known Liouville’s theorem

JThe variables used in the Lagrangian do not
necessarily have this property

JdHamilton’s equations can be written in vector form
Z — J y VH(Z) with Z = (Q17'°°7Qn7p17°'°7pn)
and V = (@QM ceey 6@117 8p17 I 70pn)

QThe 2n X 2n matrix J — ( ‘i ;) is called the

Hamiltonian formalism, CERN Accelerator School, September 2024
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Jele Poisson brack

dCrucial step in study of Hamiltonian systems is
identification of integrals of motion

J Consider a time dependent function of phase
space. Its time evolution is given by

d <~ (dg; Of dp; Of af
g Pt = ; ( dt og;  di 5’p7;> T

—~ (OH 0f OH 9f of af
B Z (029@ dq;  Og 8192-) = A fl+

where |H, f]| is the Poisson bracket of f with [

Hamiltonian formalism, CERN Accelerator School, September 2024
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dele, Poisson br

dCrucial step in study of Hamiltonian systems is
identification of integrals of motion

J Consider a time dependent function of phase
space. Its time evolution is given by
d N~ (d4: 0f  dp; Of\  Of
%f(qu’t) N ; ( dt 8qz- i dt 5’pz> i ot
" (OH O0f OH Of of Of
- Z (fm 0q; O, 8297;) o T

ot

where |H, f| is the Poisson bracket of f with

dIf a quantity is explicitly time-independent and its
Poisson bracket with the Hamiltonian vanishes (i.e.
commutes with H), it is a constant (or integral) of
motion (as an autonomous Hamiltonian itself) 50
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2

Canonical
transformations
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variable (4, P)to (Q,P), so system becomes simpler to study

4 Find a function for transforming the Hamiltonian from

d Transformation should be canonical (or symplectic), so that
Hamiltonian properties (phase-space volume) are preserved

52



2

variable (4, p) to (Q,P), so system becomes simpler to study

. °

4 Find a function for transforming the Hamiltonian from

d Transformation should be canonical (or symplectic), so that
Hamiltonian properties (phase-space volume) are preserved

d These “mixed variable” generating functions are derived by

OF OF OF3 OF;
F : i — —, PZ = — F y : 7 = — y P’L _ —
6F2 8F2 8F4 aFél
Fy(q,P):p; = = Fup.P):g = — _
d A general non-autonomous Hamiltonian is transtormed to
OF;

H(Q7P7t) :H<q7p7t)+8—tj7 ]: 1727374

Hamiltonian formalism, CERN Accelerator School, September 2024
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variable (4, p) to (Q,P), so system becomes simpler to study

‘ °

4 Find a function for transforming the Hamiltonian from

d Transformation should be canonical (or symplectic), so that
Hamiltonian properties (phase-space volume) are preserved

d These “mixed variable” generating functions are derived by

OF} OF} 0F3 OF35
F - Pi — 9 PZ — F: ’ -4y — — ) Pz —
(a4, Q) :p 90, 90, 5(Q,p) : ¢ . 0.
8F2 8F2 8F4 aFél
F P):p, = = F P): g — — _
dA general non-autonomous Hamiltonian is transformed to
H(Q.P.t) = H(qp.1) + _8£j j=1.2.3.4

d One generating function can be constructed by the other
through Legendre transformations, e.g.

FZ(qap) :Fl(an)_Q:Pa F3(Q7p) :Fl(qu)_qp,
with the inner product defined as a-p=>_ ¢p

Hamiltonian formalism, CERN Accelerator School, September 2024
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J A fundamental property of canonical transformations is the
preservation of phase space volume

[ )
deo @ Preservation of Phase

J This volume preservation in phase space can be represented
in the old and new variables as

Hamiltonian formalism, CERN Accelerator School, September 2024
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Q A fundamental property of canonical transformations is the
preservation of phase space volume

(Q') Preservation of P

 This volume preservation in phase space can be represented
in the old and new variables as

/ﬁdpidqi :/ﬁdpisz‘
i=1 i=1

J The volume eler_nents in old and 1_1ew variables are related
through the ]acobian

Py, ..., Py, Q1. O
Hdpquz— ]_7 Y Q]. Q HdeQ,L
(pla"'apn7Q17°"7qn i—1

Hamiltonian formalism, CERN Accelerator School, September 2024
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de’e, Preservation of

2

Q A fundamental property of canonical transformations is the
preservation of phase space volume

 This volume preservation in phase space can be represented
in the old and new variables as

/ﬁdpid%; :/ﬁdPiin
i=1 i=1

J The volume eler_nents in old and hew variables are related
through the ]acobian

Py, ..., Py, Q1. O
Hdp,&dq,&— ]_7 Y Q]. Q HdeQZ
(p17°'°7pn7Q17°"7qn i—1

Jd These two relationships imply that the Jacobian of a
canonical transformation should have determinant equal to
1

O(Pi,...,Py,Q1,...,Qn)
a(plv"' 7pn7Q17'°°7qn)

Hamiltonian formalism, CERN Accelerator School, September 2024
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A The transformation ) = —p , = ¢, which interchanges
conjugate variables is area preserving, as the Jacobian is
orP 0Q
oPQ) _|oap op|_ [0 —L)_4
olp.q) — |02 99 1 0
0q 0q

SQ’) Examples of transform

Hamiltonian formalism, CERN Accelerator School, September 2024
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A The transformation ) = —p , = ¢, which interchanges
conjugate variables is area preserving, as the Jacobian is
or  0Q
oPQ) _|ap op|_ [0 —1)_4
o(p,q) — (8L 9Q 1 0
0q 0q

1 On the other hand, the transformation from Cartesian to
polar coordinates q¢ = Pcos(@), p= Psin( isnot, since

0(q,p) _ |—PsinQ Pcos @

cos () sin () =—r

Hamiltonian formalism, CERN Accelerator School, September 2024
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O The transformation ) = —p , = ¢, which interchanges
conjugate variables is area preserving, as the Jacobian is
or  0Q
oPQ) _|ap op|_ [0 —1)_4
d(p,q) or  9Q 1 0
0q 0q

S‘,\') Examples of tra

[ On the other hand, the transformation from Cartesian to
polar coordinates ¢ = Pcos(), p = Psin() isnot, since

d(a.p) _ —Psin() Pcos(
0(Q,P) cos () sin ()

 There are actually “polar” coordinates that are canonical,
givenby ¢ = —V2PcosQ, p=+V2PsinQ for which

5 V2Psin() 2P cos()
o (q,z;) — cos @ sin ) =1
(@) V2P V2P )

=P

Hamiltonian formalism, CERN Accelerator School, September 2024
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@
Je'e’ Summary of

B 21d order dif. equations of motion from Newton’s law
(configuration space) can be solved by transforming
them to pairs of 1%t order ones (in phase space)

B Natural appearance of invariant of motion (“energy”)

= B Non-linear oscillators have frequencies which depend
on the invariant (or “amplitude”)

'l Connected invariant of motion to system’s Hamiltonian
(derived through Lagrangian)

B Shown that through the Hamiltonian , the equations of
motions can be derived

B Poisson bracket operators are helpful for discovering
integrals of motion

B Canonical (or symplectic) transformations are necessary
for preserving the phase space-volume

Hamiltonian formalism, CERN Accelerator School, September 20
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(A') Derivation of Lag

JThe variation of the action can be written as

b2 2 (0L oL
oW = L(qg+9q,q+9q,t) — L(q,q,t dt:/ (—5 —|——,5'>dt
tl((q ¢,q+04,t) — L(q,41)) -\ 8g%1t 9%
[ Taking into account that §¢ = djtq, the 2nd part of the

integral can be integrated by parts giving

oL | t2 791, d [OL
— dt =
tl—l_/tl (0q dt<84)>5q ’

9"

The first term is zero because dq(t1) = dq(t2) =0
so the second integrant should also vanish,
providing the following differential equations for

each degree of freedom, the Lagrange equations
d oL 0L 0

dt 8(1@ B 8(__]1 B 63

oW =

Hamiltonian formalism, CERN Accelerator School, September 2024
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d The equations of motion can be derived from the
Hamiltonian following the same variational principle as for
the Lagrangian (“least” action) but also by simply taking the
differential of the Hamiltonian

<’ . aL f, aL 8L
dH = Zl?jd% + gidp; — a—cjft{% — 6’—q-d% — Edt
Gy O,

Di Di



m Derivation of Hami

0 The equations of motion can be derived from the
Hamiltonian following the same variational principle as for
the Lagrangian (“least” action) but also by simply taking the
differential of the Hamiltonian

2

d These are indeed 2n + 2 equations describing the motion in
the “extended” phase space (q;,-- -, @n,D1s--->Pn,t, —H) &

S oL oL
T dH =) pudd; + didpi — a ~ 5y dai =
oOH | oH
;SdH q, p7 Zqupz pquz — —d = Z apz dpz aqz qu -+ a_dt
% Jd By equatmg terms, Hamilton’s equatlons are derived
£ . OH . 0H 0L  0OH
é q; = 8pi , Di — aq , at — 815
é
ac
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(1 The Poisson brackets between two functions of a set
of canonical variables can be defined by the

differential operator

< [0f 8g g Bf
Sy 9] = Z (f)p,& 0q; B op; 6%)

1=1
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Hamiltonian

Jele, Poisson bracl

differential operator
B "/ O0f Og Og Of
91 = ; <5pz‘ dq;  Op; a%)
d From this definition, and for any three given
functions, the following properties can be shown

af +bg.h] = alf, h] + blg,h] ,a,b € R bilinearity

2

(1 The Poisson brackets between two functions of a set
of canonical variables can be defined by the

f, 9] = —lg, f] anticommutativity
/519, bl + lg, [ f1] + [, [f, g]] = O Jacobt’s identity

f,gh] = f,glh+ g|f, h] Leibniz’s rule

JPoisson brackets operation satisfies a Lie algebra
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Jele, Preservation of B

Q A fundamental property of Hamiltonian systems is the
preservation of phase space volume as they evolve

d Let’s have a system evolving from (pz qz) (p,/L q{ ) after
time O%. By Taylor-expanding and using Hamilton’s
equations we have:

dq;
/. — i p— i t ! 5t2 — i 5t 5t2
q; = q;(t + ot) q()—l—dt5t—|—0( ) 5’pz + O(0t?)
/ dp’L 2 2
p; = pi(t+t) = pi(t) + o ot + O(0t°) = p; + 90 5t+ O(6t*)
d Differentiating, we have
dq; = dq; — 9 (94 dq; 5t + O(6t?)
R dq; \ Op; &

o (0H
' = dp, dp; ot ot
dp; = dp; + o (8%) pidt + O(dt7)

d Multiplying the two equations

0 ([ OH 0 [(O0H
/ A . . _ PR - 2 ~ . .
dq;dp; = dq;dp; [1 aq{’( 8p7;> + 3}??((‘9(]7;)] ot + O(6t*) ~ dq;dp; o
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