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Copyright statement and speaker’s release for video publishing

◼ The author consents to the photographic, audio and video recording

of this lecture at the CERN Accelerator School. The term “lecture”

includes any material incorporated therein including but not limited to

text, images and references.

◼ The author hereby grants CERN a royalty-free license to use his image

and name as well as the recordings mentioned above, in order to post

them on the CAS website.

◼ The material is used for the sole purpose of illustration for teaching or

scientific research. The author hereby confirms that to his best

knowledge the content of the lecture does not infringe the copyright,

intellectual property or privacy rights of any third party. The author has

cited and credited any third-party contribution in accordance with

applicable professional standards and legislation in matters of attribution.
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Purpose
◼ The objective is finding methods to derive and solve

(integrate) equations of motion, in order to describe 
the evolution (dependence with “time”) of a system
(“particle”) 

◼ Introduce formalism of theoretical (classical) 
mechanics for analysing motion in general (linear or 
non-linear) dynamical systems, including particle 
accelerators

◼ Connect this formalism with concepts already 
studied in the introductory CAS (matrices for 
transverse motion, synchrotron motion, 
invariants,…)

◼ Prepare the ground for approaches followed for 
studying non-linear particle motion in accelerators 
(in the advanced CAS)
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Principles of classical mechanics
◼ Some key concepts of classical (analytical) 

mechanics reviewed in this lecture, including

◼ Integrals of motion

◼ Integration by quadrature

◼ Period and Frequency

◼Hamilton’s principle

◼ Lagrangian, Euler-Lagrange equations

◼Hamiltonian, Hamilton’s equations

◼ Canonical variables, Symplecticity

◼ Poisson brackets

◼ Canonical transformations

Euler

Lagrange

Hamilton
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Equations of motion
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Reminder: Newton’s law 
◼ The motion of a “classical” particle in a force field is 

described by Newton’s law:

with       the position

the momentum 

the force

the corresponding potential

◼ It is essential to solve (integrate) the differential 
equation for understanding the evolution of the 
physical (dynamical) system
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Reminder: Harmonic oscillator

with

u

u

◼ A linear restoring force (Harmonic oscillator) is described by
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Reminder: Harmonic oscillator
◼ A linear restoring force (Harmonic oscillator) is described by

◼ The solution obtained by substitution 

with
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Reminder: Harmonic oscillator
◼ A linear restoring force (Harmonic oscillator) is described by

◼ The solution obtained by substitution 

through the characteristic polynomial 

,  which yields the general solution 

with the ”velocity” 

with
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Reminder: Harmonic oscillator
◼ A linear restoring force (Harmonic oscillator) is described by

◼ The solution obtained by substitution 

through the characteristic polynomial 

,  which yields the general solution 

with the ”velocity” 

◼ Note that a negative sign in the differential equation provides 
a solution described by hyperbolic sine/cosine functions

◼ Note also that for no restoring force , the motion is 
unbounded

with
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Matrix solution
◼ The amplitude and phase depend on the initial conditions

◼ The solutions can be re-written thus as
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Matrix solution
◼ The amplitude and phase depend on the initial conditions

◼ The solutions can be re-written thus as

or in matrix form
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Matrix solution
◼ The amplitude and phase depend on the initial conditions

◼ The solutions can be re-written thus as

or in matrix form

◼ By replacing and , this becomes the 
solution of a quadrupole (see Transverse Linear Beam 
Dynamics lectures) 
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◼ General transfer matrix from s0 to s

◼ Note that 

which is always true for conservative systems (”energy” is constant)

◼ Note also that

Matrix formalism
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◼ General transfer matrix from s0 to s

◼ Note that 

which is always true for conservative systems (”energy” is constant)

◼ Note also that

◼ The general solution can be built by a series of matrix multiplications

from s0 to s1

from s0 to s2

from s0 to s3

from s0 to sn

Matrix formalism

…

S0

S1 S2 S3 Sn-1

Sn

(see Transverse Linear Beam Dynamics lectures) 
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Integral of motion
◼ Rewrite the differential equation of the harmonic 

oscillator as a pair of coupled 1st order equations
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Integral of motion
◼ Rewrite the differential equation of the harmonic 

oscillator as a pair of coupled 1st order equations.

By dividing the two sides of
the equations, they can be 
combined to provide

or 

with      an integral of motion

identified as the mechanical energy of the system
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Integral of motion

◼ The equation describes in 
general an ellipse in phase space

see link

◼ Solving the previous equation for       , the system can 
be reduced to a first order equation

https://www.acs.psu.edu/drussell/Demos/phase-diagram/phase-diagram.html
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Integration by quadrature 
◼ The last equation can be solved as an explicit 

integral or “quadrature”

,  yielding 

or the well-known solution 
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Integration by quadrature 
◼ The last equation can be solved as an explicit 

integral or “quadrature”

,  yielding 

or the well-known solution 

◼Note: Although the previous route may seem 
complicated, it becomes more natural when non-
linear terms appear, where an ansatz of the type 

is not applicable
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Integration by quadrature 
◼ The last equation can be solved as an explicit 

integral or “quadrature”

,  yielding 

or the well-known solution 

◼Note: Although the previous route may seem 
complicated, it becomes more natural when non-
linear terms appear, where an ansatz of the type 

is not applicable

◼ The ability to integrate a differential equation is not 
just a nice mathematical feature, but deeply 
characterizes the dynamical behavior of the system 
described by the equation
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Frequency of motion
◼ The period of the harmonic oscillator is calculated through 

the previous integral after integration between two extrema 
(when the velocity vanishes), i.e.          :
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Frequency of motion
◼ The period of the harmonic oscillator is calculated through 

the previous integral after integration between two extrema 
(when the velocity vanishes), i.e.          :

◼ The period (or the frequency) of linear systems is 
independent of the integral of motion (energy)
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Frequency of motion
◼ The period of the harmonic oscillator is calculated through 

the previous integral after integration between two extrema 
(when the velocity vanishes), i.e.          :

◼ The period (or the frequency) of linear systems is 
independent of the integral of motion (energy)

◼ Note that this is not true for non-linear systems, e.g. for an 

oscillator with a non-linear restoring force

◼ The integral of motion is and the 

integration yields
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Frequency of motion
◼ The period of the harmonic oscillator is calculated through 

the previous integral after integration between two extrema 
(when the velocity vanishes), i.e.          :

◼ The period (or the frequency) of linear systems is 
independent of the integral of motion (energy)

◼ Note that this is not true for non-linear systems, e.g. for an 

oscillator with a non-linear restoring force

◼ The integral of motion is and the 

integration yields

◼ This means that the period (frequency) depends on the 
integral of motion (energy) i.e. the maximum “amplitude”
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The pendulum
◼ An important non-linear equation 

which can be integrated is the one of 
the pendulum, for a string of length L 

and gravitational constant g

◼ For small displacements it reduces to a 

harmonic oscillator with frequency

◼ By appropriate substitutions, this 
becomes the equation of synchrotron 
motion (see Longitudinal beam dynamics 

lectures)
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Solution for the pendulum
◼ The integral of motion (scaled energy) is 

and the quadrature is written as

assuming that for
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Solution for the pendulum
◼ The integral of motion (scaled energy) is 

and the quadrature is written as

assuming that for

◼Using the substitutions with
, the integral is

and can be solved using 

Jacobi elliptic functions:

with “      ” representing the Jacobi elliptic sine
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Solution for the pendulum

◼Minima and maxima of the potential correspond to 
stable and unstable fixed points
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Period of the pendulum  

◼ For recovering the period, the integration is 

performed between the two extrema, i.e.               and 

, corresponding to and          
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Period of the pendulum  

◼ For recovering the period, the integration is 

performed between the two extrema, i.e.               and 

, corresponding to and          

◼ The period is 

i.e. the complete elliptic integral multiplied by four 
times the period of the harmonic oscillator
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Period of the pendulum  

◼ For recovering the period, the integration is 

performed between the two extrema, i.e.               and 

, corresponding to and          

◼ The period is 

i.e. the complete elliptic integral multiplied by four 
times the period of the harmonic oscillator

◼ By expanding 

with , the “amplitude” 

dependence of the frequency becomes apparent
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Period of the pendulum 

◼ The deviation from the linear approximation 
becomes important at large amplitudes 

◼ The dependence of frequency with amplitude 
(spread) is useful for (Landau) damping (“beam”) 
instabilities
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Langrangian and 

Hamiltonian
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Lagrangian formalism
❑ Describe motion of particles in qn coordinates 

(n degrees of freedom) from time t1 to time t2

❑ It can be achieved by the Lagrangian function 
with the 

generalized coordinates and the 
generalized velocities
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Lagrangian formalism
❑ Describe motion of particles in qn coordinates 

(n degrees of freedom) from time t1 to time t2

❑ It can be achieved by the Lagrangian function 
with the 

generalized coordinates and the 
generalized velocities

❑ The Lagrangian is defined as , i.e. 
difference between kinetic and potential energy 

❑The integral 
defines the action

❑Hamilton’s principle: system 
evolves so as the action becomes 
extremum (principle of stationary action)
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Euler- Lagrange equations

❑ By using Hamilton’s principle, i.e. , 
over some time interval t1 and t2 for two 
stationary points (see 
appendix), the following differential 
equations for each degree of freedom are 
obtained, the Euler-Lagrange equations
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Euler- Lagrange equations

❑ By using Hamilton’s principle, i.e. , 
over some time interval t1 and t2 for two 
stationary points (see 
appendix), the following differential 
equations for each degree of freedom are 
obtained, the Euler-Lagrange equations

❑ In other words, by knowing the form of the 
Lagrangian, the equations of motion can be 
derived
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Lagrangian mechanics
❑For a simple force law contained in a potential 

function, governing motion among interacting 
particles, the (classical) Lagrangian is (or as 
Landau-Lifshitz put it “experience has shown 
that…”)

❑ For velocity independent potentials, Lagrange 
equations become

i.e. Newton’s equations.
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From Lagrangian to Hamiltonian
❑ Some disadvantages of the Lagrangian formalism:

❑ No uniqueness: different Lagrangians can lead to same 
equations

❑ Physical significance not straightforward (even its basic 
form given more by “experience” and the fact that it 
actually works that way!)

◼Note: The (relativistic) Lagrangian is very useful in 
particle physics (invariant under Lorentz 
transformations)
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From Lagrangian to Hamiltonian
❑ Some disadvantages of the Lagrangian formalism:

❑ No uniqueness: different Lagrangians can lead to same 
equations

❑ Physical significance not straightforward (even its basic 
form given more by “experience” and the fact that it 
actually works that way!)

◼Note: The (relativistic) Lagrangian is very useful in 
particle physics (invariant under Lorentz 
transformations)

❑ Lagrangian function provides in general      second 
order differential equations (coordinate space)

❑Already observed advantage to move to system of     
first order differential equations, which are 

more straightforward to solve (phase space)

❑Derived by the Hamiltonian of the system
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Hamiltonian formalism
❑ The Hamiltonian of the system is defined as the Legendre

transformation of the Lagrangian

where the generalised momenta are 
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Hamiltonian formalism
❑ The Hamiltonian of the system is defined as the Legendre

transformation of the Lagrangian

where the generalised momenta are 

❑ The generalised velocities can be  expressed as a function of 
the generalised momenta if the previous equation is 
invertible, and thereby define the Hamiltonian of the system
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Hamiltonian formalism
❑ The Hamiltonian of the system is defined as the Legendre

transformation of the Lagrangian

where the generalised momenta are 

❑ The generalised velocities can be  expressed as a function of 
the generalised momenta if the previous equation is 
invertible, and thereby define the Hamiltonian of the system

❑ Example: consider 

❑ From this, the momentum can be determined as 

which can be trivially inverted to provide the Hamiltonian  
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Hamilton’s equations
❑The equations of motion can be derived 

from the Hamiltonian following the same 
variational principle as for the Lagrangian
(“stationary” action) but also by simply 
taking the differential of the Hamiltonian 
(see appendix) 
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Hamilton’s equations
❑The equations of motion can be derived 

from the Hamiltonian following the same 
variational principle as for the Lagrangian
(“stationary” action) but also by simply 
taking the differential of the Hamiltonian 
(see appendix) 

❑These are indeed equations describing 
the motion in the “extended” phase space
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Properties of Hamiltonian flow

❑ The variables are called 
canonically conjugate (or canonical) and define the 
evolution of the system in phase space

❑ These variables have the special property that they 
preserve volume in phase space, i.e. satisfy the 
well-known Liouville’s theorem

❑The variables used in the Lagrangian do not 
necessarily have this property



H
am

il
to

n
ia

n
 f

o
rm

al
is

m
, C

E
R

N
 A

cc
el

er
at

o
r 

S
ch

o
o

l,
 S

ep
te

m
b

er
 2

02
4

48

Properties of Hamiltonian

❑ The variables are called 
canonically conjugate (or canonical) and define the 
evolution of the system in phase space

❑ These variables have the special property that they 
preserve volume in phase space, i.e. satisfy the 
well-known Liouville’s theorem

❑The variables used in the Lagrangian do not 
necessarily have this property

❑Hamilton’s equations can be written in vector form 
with

and 

❑The matrix  is called the 

symplectic matrix
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Poisson brackets
❑Crucial step in study of Hamiltonian systems is 

identification of integrals of motion

❑ Consider  a time dependent function of phase 
space. Its time evolution is given by 

where             is the Poisson bracket of     with 
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Poisson brackets
❑Crucial step in study of Hamiltonian systems is 

identification of integrals of motion

❑ Consider  a time dependent function of phase 
space. Its time evolution is given by 

where             is the Poisson bracket of     with 

❑If a quantity is explicitly time-independent and its 
Poisson bracket with the Hamiltonian vanishes (i.e. 
commutes with     ), it is a constant (or integral) of 
motion (as an autonomous Hamiltonian itself)
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Canonical 

transformations
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Canonical Transformations

❑ Find a function for transforming the Hamiltonian from 
variable           to           ,  so system becomes simpler to study

❑ Transformation should be canonical (or symplectic), so that 
Hamiltonian properties (phase-space volume) are preserved
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Canonical Transformations

❑ Find a function for transforming the Hamiltonian from 
variable           to           ,  so system becomes simpler to study

❑ Transformation should be canonical (or symplectic), so that 
Hamiltonian properties (phase-space volume) are preserved

❑ These “mixed variable” generating functions are derived by

❑ A general non-autonomous Hamiltonian is transformed to
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Canonical Transformations

❑ Find a function for transforming the Hamiltonian from 
variable           to           ,  so system becomes simpler to study

❑ Transformation should be canonical (or symplectic), so that 
Hamiltonian properties (phase-space volume) are preserved

❑ These “mixed variable” generating functions are derived by

❑ A general non-autonomous Hamiltonian is transformed to

❑One generating function can be constructed by the other 
through Legendre transformations, e.g. 

with the inner product defined as              
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Preservation of Phase Volume
❑ A fundamental property of canonical transformations is the 

preservation of phase space volume

❑ This volume preservation in phase space can be represented 
in the old and new variables as
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Preservation of Phase Volume
❑ A fundamental property of canonical transformations is the 

preservation of phase space volume

❑ This volume preservation in phase space can be represented 
in the old and new variables as

❑ The volume elements in old and new variables are related 
through the Jacobian
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Preservation of Phase Volume
❑ A fundamental property of canonical transformations is the 

preservation of phase space volume

❑ This volume preservation in phase space can be represented 
in the old and new variables as

❑ The volume elements in old and new variables are related 
through the Jacobian

❑ These two relationships imply that the Jacobian of a 
canonical transformation should have determinant equal to 
1
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Examples of transformations
❑ The transformation , which interchanges

conjugate variables is area preserving, as the Jacobian is  
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Examples of transformations
❑ The transformation , which interchanges

conjugate variables is area preserving, as the Jacobian is  

❑On the other hand, the transformation from Cartesian to 
polar coordinates is not, since
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Examples of transformations
❑ The transformation , which interchanges

conjugate variables is area preserving, as the Jacobian is  

❑On the other hand, the transformation from Cartesian to 
polar coordinates is not, since

❑ There are actually “polar” coordinates that are canonical, 

given by for which



H
am

il
to

n
ia

n
 f

o
rm

al
is

m
, C

E
R

N
 A

cc
el

er
at

o
r 

S
ch

o
o

l,
 S

ep
te

m
b

er
 2

02
4

61

Summary of Lecture I
◼ 2nd order dif. equations of motion from Newton’s law 

(configuration space) can be solved by transforming
them to pairs of 1st order ones (in phase space)

◼ Natural appearance of invariant of motion  (“energy”)

◼ Non-linear oscillators have frequencies which depend
on the invariant (or “amplitude”)

◼ Connected invariant of motion to system’s Hamiltonian
(derived through Lagrangian)

◼ Shown that through the Hamiltonian , the equations of 
motions can be derived

◼ Poisson bracket operators are helpful for discovering 
integrals of motion

◼ Canonical (or symplectic) transformations are necessary 
for preserving the phase space-volume



H
am

il
to

n
ia

n
 f

o
rm

al
is

m
, C

E
R

N
 A

cc
el

er
at

o
r 

S
ch

o
o

l,
 S

ep
te

m
b

er
 2

02
4

62

Appendix
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Derivation of Lagrange equations

❑The variation of the action can be written as

❑ Taking into account that , the 2nd part of the 

integral can be integrated by parts giving   

❑The first term is zero because
so the second integrant should also vanish,
providing the  following differential equations for 
each degree of freedom, the Lagrange equations
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Derivation of Hamilton’s equations

❑ The equations of motion can be derived from the 
Hamiltonian following the same variational principle as for 
the Lagrangian (“least” action) but also by simply taking the 
differential of the Hamiltonian
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Derivation of Hamilton’s equations

❑ The equations of motion can be derived from the 
Hamiltonian following the same variational principle as for 
the Lagrangian (“least” action) but also by simply taking the 
differential of the Hamiltonian

or

❑ By equating terms, Hamilton’s equations are derived

❑ These are indeed equations describing the motion in 
the “extended” phase space
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Poisson brackets’ properties
❑The Poisson brackets between two functions of a set 

of canonical variables can be defined by the 
differential operator
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Poisson brackets’ properties
❑The Poisson brackets between two functions of a set 

of canonical variables can be defined by the 
differential operator

❑ From this definition, and for any three given 
functions, the following properties can be shown 

bilinearity

anticommutativity

Jacobi’s identity

Leibniz’s rule

❑Poisson brackets operation satisfies a Lie algebra
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Preservation of Phase Volume
❑ A fundamental property of Hamiltonian systems is the 

preservation of phase space volume as they evolve

❑ Let’s have a system evolving from after 
time      . By Taylor-expanding and using Hamilton’s 
equations we have:

❑ Differentiating, we have

❑Multiplying the two equations


