Advanced Accelerator Concepts II

Massimo.Ferrario@lnf.infn.it

Introduction to Accelerator Physics

S. Susanna – 2 October 2024

Direct production of e-beam

Electron beam

Diffraction - Self injection - Dephasing – Depletion

Finanziato dall'Unione europea NextGenerationEU

Example: a0 = 5; laser spot-size: 3 microns; laser duration: 12fs; plasma density = $6x10^{19}$.

Finanziato dall'Unione europea NextGenerationEU

Betatron Radiation Source at SPARC_LAB

- Supported by PNRR funding
- Collaboration among INFN, CNR, University of Tor Vergata
- Operational facility at SPAClab by end of 2025
- EuPRAXIA pre-cursor for users

Finanziato dall'Unione europea NextGenerationEU

Figure 3.3: Calculated betatron radiation spectra in a plasma column with density of $7 \times 10^{18} \text{ cm}^{-3}$. The electron energy is 15 MeV, and oscillation amplitudes are (a) 0.1 μ m, (b) 0.5 μ m, and (c) 1.6 μ m. (d) shows the case of a 100 MeV electron with an oscillation amplitude of 1.6 μ m.

1) Ultrafast - laser pulse duration tens of fs useful for time resolved experiments (XFEL tens of fs, synchrotron tens to 100 ps). 2) Broad energy spectrum - important for X-ray spectroscopy. 3) High brightness - small source size and high photon flux for fast processes. 4) Large market - 50 synchrotron light sources worldwide, 6 hard XFEL's and 3 soft-ray ones (many accelerators operational and some under construction).

bone". Nature Scientific Reports 5, 13244 (2015) -1 mm . . ٠ . EuPRAXIA technology µCT Scanner 3D tomography of human bone contrast EuPRAXIA laser advance (industry) Macro-photography **Radioactive source** will push rate from 1/min to 100 Hz.

J.M. Cole et al, "Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human

 Ultra-compact source of hard X rays → exposing from various directions simultaneously is possible in upgrades

Physics & Technology Background:

- Small EuPRAXIA accelerator \rightarrow small emission volume for betatron X rays.
- Quasi-pointlike emission of X rays.
- Sharper image from base optical principle.
- Quality demonstrated and published, but takes a few hours for one image.
- Advancing flux rate with EuPRAXIA laser by factor > 1,000!

Added value

Sharper images with outstanding contrast

Identify smaller features (e.g. early detection of cancer at micron-scale – calcification)

Laser advance in EuPRAXIA → fast imaging (e.g. following moving organs during surgery)

Plasma collider challenges

Principle of plasma acceleration

Beam Driven - Results

Positron acceleration?

Positron Acceleration, FACET

First demonstration of positron acceleration in plasma (FFTB)

B.E. Blue et al., Phys. Rev. Lett. 90, 214801 (**2003**) M. J. Hogan et. al. Phys. Rev. Lett. 90 205002 (2003).

Energy gain of 5 GeV. Energy spread can be as low as 1.8%

High-density, compressed positron beam for non-linear PWFA experiments. Energy transfer from the front to the back part of the bunch.

Two-bunch positron beam: First demonstration of controlled beam in positron-driven wake S. Doche *et al.*, Nat. Sci. Rep. 7, 14180 (2017) Hollow plasma channel: positron propagation, wake excitation, acceleration in 30 cm channel.

Measurement of **transverse wakefields in a hollow plasma** channel due to off-axis drive bunch propagation. *C. A. Lindstrøm et. al. Phys. Rev. Lett.* 120 124802 (**2018**).

 \rightarrow Emittance blow-up is an issue! \rightarrow Use hollow-channel, so no plasma on-axis, no complicated forces from plasma electrons streaming through the plasma \rightarrow but then strong transverse wakefields when beams are misaligned.

HALHF: A Hybrid, Asymmetric, Linear Higgs Factory

The novelty: A multistage plasma-based linac

>Length: 16 PWFA stages (5-m long): ~400 m total length

>Gradient: 6.4 GV/m (in plasma)—1.2 GV/m (average)

- > Efficiency: 38% = 72% depletion, 53% wake extraction
- > No damping ring required due to high-emittance electrons

Number of stages		16
Plasma density	cm^{-3}	1.5×10^{16}
In-plasma acceleration gradient	GV/m	6.4
Average gradient (incl. optics)	GV/m	1.2
Length per stage ^a	m	5
Energy gain per stage ^a	GeV	31.9
Initial injection energy	GeV	5
Driver energy	GeV	31.25
Driver bunch population	10 ¹⁰	2.7
Driver bunch length (rms)	μm	27.6
Driver average beam power	MW	21.4
Driver bunch separation	ns	5
Driver-to-wake efficiency	%	74
Wake-to-beam efficiency	%	53
Driver-to-beam efficiency	%	39
Wall-plug-to-beam efficiency	%	19.5
Cooling req. per stage length	kW/m	100

Simulated with Wake-T

Plasma density: 7 x 10¹⁵ cm⁻³ Driver/witness charge: 4.3/1.6 nC

Page 12

Proton-driven Plasma Wakefield Acceleration Collaboration: Accelerating e⁻ on the wake of a p⁺ bunch

© P. Muggli

Reasons for proton bunch driver

Available proton bunches carry large amounts of energy:

- CERN SPS proton bunch: $3\cdot 10^{11}$ ppb at 400 GeV/c \rightarrow 19.2 kJ
- CERN LHC proton bunch: $1\cdot 10^{11}$ ppb at 7 TeV/c \rightarrow 112 kJ

 p^+

Discharge configuration II

preliminary tests with the AWAKE 3 meter test tube at IC - 2016

very promising results

... reliable, low jitter plasma formation

scalability of electric circuit for plasmas > 10 m seem achievable...

Self-modulation in plasma

CERN SPS Proton bunch

Growth mechanism

$$\sigma_r \approx 200 \ \mu m \ \rightarrow n_{pe} \approx 7 \cdot 10^{14} cm^{-3}$$

 $\sigma_z \approx 7 \ cm \gg \lambda_{pe}$

Initial transverse wakefields max. ~20 MV/m Periodic focusing/defocusing fields

Radial bunch and plasma density modulation

Stronger wakefields

Full modulation

Self-Modulation instability (SMI)

- \rightarrow resonant wakefield excitation
- \rightarrow phase of the micro-bunch train and of the wakefields VARIES from event to event

N. Kumar et al., Phys. Rev. Lett. 104 (25), 255003 (2010) A. Pukhov et al., Phys. Rev. Lett. 107 (14), 145003 (2011)

25

20

15

ε/a.u.

10

5

1.00

0.75

0.50

0.00

-0.25

-0.50

-0.75

-1.00

30

amplitude / a.u. 0.25

L. Verra, for the AWAKE collaboration

AWAKE Run 1 (2016-2018)

AWAKE Coll., Phys. Rev. Lett. 122, 054802 (2019)

time-resolved imaging:

- the proton bunch self-modulates in plasma
- focusing phase → micro-bunches
- frequency of the modulation≈ ω_{pe}

M. Turner et al., Phys. Rev. Lett. 122, 054801 (2019)

time-integrated, transverse imaging:

- defocusing phase → large halo
- wakefields grow along the plasma

AWAKE Coll., Nature 561, 363-367 (2018)

19 MeV electrons can be injected into the wakefields and accelerated to GeV-energies **PROOF OF PRINCIPLE!**

AWAKE Run 2 (2021→) setup & final goal

The near future

EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No. 101079773

A New European High-Tech User Facility

FFATURE EmpRAXIA

Building a facility with very high field plasma accelerators, driven by lasers or beams 1 – 100 GV/m accelerating field

> Shrink down the facility size Improve Sustainability

Producing particles and photons to support several urgent and timely science cases

Drive short wavelength FEL Pave the way for future Linear Colliders

Surf's up Simulation of electron-driven plasma wakefield acceleration, showing the drive electron beam (orange/purple), the plasma electron wake (arev) and wakefield-ionised electrons forming a witness beam (orange).

FUROPE TARGETS USER FACI PLASMA ACCELERAT

Ralph Assmann, Massimo Ferrario and Carsten Welsch describe the status of the ESFRI project EuPRAXIA, which aims to develop the first dedicated research infrastructure based on novel plasma-acceleration concepts.

nergetic beams of particles are used to explore the This scientific success story has been made possible H fundamental forces of nature, produce known and through a continuous cycle of innovation in the physics unknown particles such as the Higgs boson at the and technology of particle accelerators, driven for many LHC, and generate new forms of matter, for example at the decades by exploratory research in nuclear and particle future FAIR facility. Photon science also relies on particle physics. The invention of radio-frequency (RF) technology beams: electron beams that emit pulses of intense syn- in the 1920s opened the path to an energy gain of several chrotron light, including soft and hard X-rays, in either tens of MeV per metre, Very-high-energy accelerators were circular or linear machines. Such light sources enable constructed with RF technology, entering the GeV and time-resolved measurements of biological, chemical and finally the TeV energy scales at the Tevatron and the LHC. physical structures on the molecular down to the atomic New collision schemes were developed, for example the scale, allowing a diverse global community of users to mini "beta squeeze" in the 1970s, advancing luminosity investigate systems ranging from viruses and bacteria and collision rates by orders of magnitudes. The invention to materials science, planetary science, environmental of stochastic cooling at CERN enabled the discovery of science, nanotechnology and archaeology. Last but not the W and Z bosons 40 years ago. least, particle beams for industry and health support many However, intrinsic technological and conceptual limits societal applications ranging from the X-ray inspection mean that the size and cost of RF-based particle accel- INFN, Carsten of cargo containers to food sterilisation, and from chip erators are increasing as researchers seek higher beam Welsch University manufacturing to cancer therapy.

THE AUTHORS Ralph Assmann

DESY and INFN. Massimo Ferrario energies. Colliders for particle physics have reached a of Liverpool/INFN.

CERN COURIER MAY/IUNE 202

https://www.eupraxia-facility.org/

FEL is a well established technology

(But a widespread use of FEL is partially limited by its size and costs)

Linac Coherent Light Source (LCLS) Conceptual Design Report - SLAC-R-593 April 2002 UC-414

A Free Electron Laser is a device that converts a fraction of the electron kinetic energy into coherent radiation via a collective instability in a long undulator

$$\lambda_{rad} \approx \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2} + \gamma^2 \vartheta^2 \right)$$

(Tunability - Harmonics)

It's a CHALLENGE: the FEL is extremely sensitive to the beam quality.

 $\begin{array}{c|c} \mbox{Low (geometric) emittances: } \epsilon_{x,y} < \frac{\lambda_0}{4\pi} & \mbox{Low emittances} \\ \mbox{Low relative energy spread } \sigma_{\gamma}: & \sigma_{\gamma} < \frac{1}{2}\rho_{fel} \\ & \mbox{where} & \rho_{fel} = \frac{1}{4\pi} \left[\frac{2\pi^2}{\gamma^3} \left(\lambda_u K \left[JJ \right] \right)^2 \frac{I_{peak}}{\Sigma_e I_A} \right]^{1/3} \\ \mbox{Exponential growth} & \mbox{gain length} & \mbox{saturation} \\ P(z) = \frac{1}{9}P_0 e^{z/L_g} & \mbox{L}_g = \frac{\lambda_u}{4\pi\sqrt{3}\rho_{fel}} & \mbox{P}_F \sim 1.6 \ \rho_{fel} P_{beam} \end{array}$

=> A poor beam quality causes an increase of L_g and a reduction of P_F

Energy spread compensation with beam loading

Fig. 5: Linear beam loading example: (a) drive bunch density profile (red line) and longitudinal wakefield E_z (green line), (b) same for the witness bunch, (c) same for the drive and witness bunches together. The field of the drive bunch only is shown as the blue line in panel (c). A zoom around the witness bunch is shown in panel (d). The bunches move to the left.

Assisted beam-loading technique

Pre-chirp to compensate wakefield slope

R. Pompili et al., Energy spread minimization in a beam-driven plasma wakefield accelerator, *Nature Physics* volume 17, pages 499–503 (2021)

Basic beam quality achieved in pilot FEL experiments

PWFA beam line at SPARC_LAB

- The EuPRAXIA Consortium today: 54 institutes from 18 countries plus CERN
- Included in the ESFRI Road Map
- Efficient fund raising:
- –Preparatory Phase consortium (funding EU, UK, Switzerland, in-kind)
- –Doctoral Network (funding EU, UK, inkind)
- -EuPRAXIA@SPARC_LAB (Italy, in-kind)
- -EuAPS Project (Next Generation EU)

Distributed Research Infrastructure

A large collection of the best European know-hows in accelerators, lasers an plasma technologies

Network organization - Sites (PWFA/LWFA)

- National nodes
- Technology clusters

4 candidates for LWFA:

- CLPU, Salamanca
- CNR-INO, Pisa
- ELI ERIC, Prague
- EPAC-RAL, UK

EUPRAXIA Headquarter and Site 1: EuPRAXIA@SPARC_LAB

- Frascati's future facility
- > 130 M€ invest funding
- Beam-driven plasma accelerator
- Europe`s most compact and most southern FEL
- The world`s most
 compact RF accelerator
 (X band with CERN)

EuPRAXIA@SPARC_LAB

EuPRAXIA High Brightness Photo-injector with Velocity Bunching

Ferrario, M., et al. "Laser comb with velocity bunching: Preliminary results at SPARC." NIM A 637.1 (2011): S43-S46.

EUPRAXIA

Villa, F., et al. "Laser pulse shaping for multi-bunches photoinjectors." NIM A 740 (2014): 188-192.

Velocity Bunching in Photo-Injectors

L. Serafini and M. Ferrario*

VB exploits the different fields felt by the beam head/tail to make compression

Simple, tunable and compact <u>but</u> can suffer from RF jitters (becoming intra-bunch jitters) Compression is done in S1, where beams are not yet fully relativistic.

Shortest bunch measured @ SPARC was ~20 fs (20 pC). Largest peak current obtained for THz experiments (600 pC, 100 fs rms)

High Quality Electron Beams

Courtesy E. Chiadroni

World's Most Compact RF Linac: X Band

12	20	1 mm ((a))
¹ ¹	10	
E ^{acc} /≺E	30	
ŧ	z [m]	
1.	E.m. design: done	
2.	Thermo-mechanical analysis: done	
3.	Mechanical design: done	Pressure distribution
4.	Vacuum calculations: done	LL47
5.	Dark current simulations: done	1,6-12 0, 15 30 45 60 75 90 Z [cm]
6.	Waveguide distribution simulation with attenuation calculations: <i>done</i>	The second secon

-q=1e-1 -q=1e-12

	Value	
PARAMETER	with linear	w/o
	tapering	tapering
Frequency [GHz]	11.9942	
Average acc. gradient [MV/m]	60	
Structures per module	2	
Iris radius a [mm]	3.85-3.15	3.5
Tapering angle [deg]	0.04	0
Struct. length L _s act. Length (flange-to-flange) [m]	0.94 (1.05)	
No. of cells	112	
Shunt impedance R [MΩ/m]	93-107	100
Effective shunt Imp. R _{sh eff} [MΩ/m]	350	347
Peak input power per structure [MW]	70	
Input power averaged over the pulse [MW]	51	
Average dissipated power [kW]	1	
P _{out} /P _{in} [%]	25	
Filling time [ns]	130	
Peak Modified Poynting Vector [W/µm ²]	3.6	4.3
Peak surface electric field [MV/m]	160	190
Unloaded SLED/BOC Q-factor Q ₀	150000	
External SLED/BOC Q-factor Q _E	21300	20700
Required Kly power per module [MW]	20	
RF pulse [µs]	1.5	;
Rep. Rate [Hz]	100	

Courtesy D. Alesini

Plasma Module

- 40 cm long capillary $\rightarrow 1^{st}$ prototype for the EuPRAXIA facility
 - Made with special junction to allow negligible gas leaks (<10⁻¹⁰ mbar)
- Operating conditions
 - 1 Hz repetition rate (to be increased up to 100 Hz)
 - 10 kV 380 A minimum values for ionization
 - 6 inlets for gas injection. Electro-valve aperture time 8-12 ms

A. Biagioni, V. Lollo

Courtesy A. Biagioni, R. Pompili

Radiation Generation: FEL

Courtesy L. Giannessi

Expected SASE FEL performances

54	Chapt	Chapter 2. Free Electron Laser design principles			
	Units	Full RF case	Plasma case		
Electron Energy	GeV	1	1		
Bunch Charge	pC	200	30		
Peak Current	kA	2	3		
RMS Energy Spread	%	0.1	1		
RMS Bunch Length	fs	40	4		
RMS matched Bunch Spot	μm	34	34		
RMS norm. Emittance	μm	1	1		
Slice length	μm	0.5	0.45		
Slice Energy Spread	%	0.01	0.1		
Slice norm. Emittance	μm	0.5	0.5		
Undulator Period	mm	15	15		
Undulator Strength K		1.03	1.03		
Undulator Length	m	12	14		
Gain Length	m	0.46	0.5		
Pierce Parameterp	x 10 ⁻³	1.5	1.4		
Radiation Wavelength	nm	3	3		
Undulator matching β_u	m	4.5	4.5		
Saturation Active Length	m	10	11		
Saturation Power	GW	4	5.89		
Energy per pulse	μJ	83.8	11.7		
Photons per pulse	x 10 ¹¹	11	1.5		

Table 2.1: Beam parameters for the EuPRAXIA@SPARC_LAB FEL driven by X-band linac or Plasma acceleration

In the Energy region between Oxygen and Carbon K-edge 2.34 nm - 4.4 nm (530 eV -280 eV) water is almost transparent to radiation while nitrogen and carbon are absorbing (and scattering)

Coherent Imaging of biological samples protein clusters, VIRUSES and cells living in their native state Possibility to study dynamics ~10¹¹ photons/pulse needed Courtesy F. Stellato, UniToV

Towards Single Protein Imaging with hard x-rays

Need light !

Static picture of a macromolecule

- Short wavelength (X-ray)
- High energy per pulse

Required properties

- Ultra-short pulse (few femtoseconds)
- Coherence

Single Protein Imaging

http://lcls.slac.stanford.edu/AnimationViewLCLS.asp

Coulomb Explosion of Lysozyme (50 fs) Single Molecule Imaging with Intense X-rays

Atomic and molecular dynamics occur at the *fsec*-scale

J. Hajdu, Uppsala U.

Conclusions

- Accelerator-based High Energy Physics will at some point become practically limited by the size and cost of the proposed e⁺e⁻ colliders for the energy frontier.
- Novel Acceleration Techniques and Plasma-based, high gradient accelerators open the realistic vision of very compact accelerators for scientific, commercial and medical applications.
- The R&D now concentrates on beam quality, stability, staging and continuous operation. These are necessary steps towards various technological applications.
- The progress in advanced accelerators benefits from strong synergy with general advances in technology, for example in the laser and/or high gradient RF structures industry.
- A major milestone is an operational, 1 GeV compact accelerator. Challenges in repetition rate and stability must be addressed. This unit could become a stage in a high-energy accelerator..
- PILOT USER FACILITIES Under Constraction (EuPRAXIA)

n. 20 POST-DOCTORAL SENIOR LEVEL 3 RESEARCH GRANT IN EXPERIMENTAL PHYSICS at INFN

https://jobs.dsi.infn.it/dettagli_job.php?id=4180

DETTAGLIO DEL BANDO			
Numero :	27077		
Anno :	2024		
Titolo:	n. 20 POST-DOCTORAL SENIOR LEVEL 3 RESEARCH GRANT IN EXPERIMENTAL PHYSICS		
Numero Posti:	20		
Tipo:	Assegno di ricerca		
Data bando:	12-09-2024		
Data scadenza:	15-11-2024Dead line: November 15		
Bando:	27077.pdf		

LPAW 2025 – Ischia Island

LPAW 2025 Laser and Plasma Accelerators Workshop 2025 14-18 April 2025, Ischia Island, Italy

https://agenda.infn.it/event/42311/

The Laser and Plasma Accelerators Workshop 2025 (LPAW 2025) will be held at Hotel Continental Ischia, in the Ischia Island (Campania, Italy), from Monday 14 to Friday 18 April 2025.

The Laser and Plasma Accelerators Workshop (LPAW) series is one of the leading workshops in the field of plasma-based acceleration and radiation generation.

The following scientific topics will be the main focus of the conference:

•Plasma-based lepton acceleration (experiments, simulations, theory, diagnostics...).

•Plasma-based ion acceleration (experiments, simulations, theory, diagnostics...).

•Secondary radiation generation and applications (experiments, simulations, theory, diagnostics...).

John Dawson Thesis Prize

"John Dawson Thesis Prize" is awarded on a biannual basis to the best PhD thesis in the area of plasma accelerators driven by laser or particle beams. The prize will be awarded for fundamental (theoretical or experimental) or applied aspects. Each prize winner will receive a certificate of merit, up to 500 Euros, and financial support to attend the "Laser and Plasma Accelerators Workshop," where the prize will be awarded.

Thank for your attention

Protons and ions are too slow to catch the wave - only indirect acceleration via electrons

Laser Driven Acceleration of Protons

- Direct acceleration in laser field > 10²⁵ W/cm² far beyond current lasers
- Plasma wakefield phase velocity too fast for protons & ions
- → only indirect ways

Target Normal Sheath Acceleration "best understood" candidate:

- Jaser creates blow-off plasma or
- laser creates blow-off plasma on front surface
- backside expansion accelerated electrons ionize hydrogen
- hot electrons create electric field (by space charge)
- causes acceleration of protons (electrons slowing down – end of acceleration)
- neutralized bunch of comoving p and e generated

