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- 2nd order dif. equations of motion from Newton’s law
(configuration space) can be solved by transforming
them to pairs of 1%t order ones (in phase space)

@

B Natural appearance of invariant of motion

(“energy”)
- B Non-linear oscillators have frequencies which
depend on the invariant (or “amplitude”)

B Connected invariant of motion to system’s
Hamiltonian (derived through Lagrangian)

B Shown that through the Hamiltonian , the equations
of motions can be derived

: W Poisson bracket operators are helpful for discovering
integrals of motion 3
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transformations
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variable (4, P)to (Q,P), so system becomes simpler to study

4 Find a function for transforming the Hamiltonian from

d Transformation should be canonical (or symplectic), so that
Hamiltonian properties (phase-space volume) are preserved

Hamiltonian formalism, CERN Accelerator School, September 2024
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variable (4, p) to (Q,P), so system becomes simpler to study

. °

4 Find a function for transforming the Hamiltonian from

d Transformation should be canonical (or symplectic), so that
Hamiltonian properties (phase-space volume) are preserved

d These “mixed variable” generating functions are derived by

OF OF OF3 OF;
F : i — —, PZ = — F y : 7 = — y P’L _ —
6F2 8F2 8F4 aFél
Fy(q,P):p; = = Fup.P):g = — _
d A general non-autonomous Hamiltonian is transtormed to
OF;

H(Q7P7t) :H<q7p7t)+8—tj7 ]: 1727374
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variable (4, p) to (Q,P), so system becomes simpler to study

‘ °

4 Find a function for transforming the Hamiltonian from

d Transformation should be canonical (or symplectic), so that
Hamiltonian properties (phase-space volume) are preserved

d These “mixed variable” generating functions are derived by

OF} OF} 0F3 OF35
F - Pi — 9 PZ — F: ’ -4y — — ) Pz —
(a4, Q) :p 90, 90, 5(Q,p) : ¢ . 0.
8F2 8F2 8F4 aFél
F P):p, = = F P): g — — _
dA general non-autonomous Hamiltonian is transformed to
H(Q.P.t) = H(qp.1) + _8£j j=1.2.3.4

d One generating function can be constructed by the other
through Legendre transformations, e.g.

FZ(qap) :Fl(an)_Q:Pa F3(Q7p) :Fl(qu)_qp,
with the inner product defined as a-p=>_ ¢p
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J A fundamental property of canonical transformations is the
preservation of phase space volume

[ )
deo @ Preservation of Phase

J This volume preservation in phase space can be represented
in the old and new variables as

Hamiltonian formalism, CERN Accelerator School, September 2024
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Q A fundamental property of canonical transformations is the
preservation of phase space volume

(Q') Preservation of P

 This volume preservation in phase space can be represented
in the old and new variables as

/ﬁdpidqi :/ﬁdpisz‘
i=1 i=1

J The volume eler_nents in old and 1_1ew variables are related
through the ]acobian

Py, ..., Py, Q1. O
Hdpquz— ]_7 Y Q]. Q HdeQ,L
(pla"'apn7Q17°"7qn i—1
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Q A fundamental property of canonical transformations is the
preservation of phase space volume

 This volume preservation in phase space can be represented
in the old and new variables as

/ﬁdpid%; :/ﬁdPiin
i=1 i=1

J The volume eler_nents in old and hew variables are related
through the ]acobian

Py, ..., Py, Q1. O
Hdp,&dq,&— ]_7 Y Q]. Q HdeQZ
(p17°'°7pn7Q17°"7qn i—1

Jd These two relationships imply that the Jacobian of a
canonical transformation should have determinant equal to
1

O(Pi,...,Py,Q1,...,Qn)
a(plv"' 7pn7Q17'°°7qn)

Hamiltonian formalism, CERN Accelerator School, September 2024
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A The transformation ) = —p , = ¢, which interchanges
conjugate variables is area preserving, as the Jacobian is
orP 0Q
oPQ) _|oap op|_ [0 —L)_4
olp.q) — |02 99 1 0
0q 0q

SQ’) Examples of transform
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A The transformation ) = —p , = ¢, which interchanges
conjugate variables is area preserving, as the Jacobian is
or  0Q
oPQ) _|ap op|_ [0 —1)_4
o(p,q) — (8L 9Q 1 0
0q 0q

1 On the other hand, the transformation from Cartesian to
polar coordinates q¢ = Pcos(@), p= Psin( isnot, since

0(q,p) _ |—PsinQ Pcos @

cos () sin () =—r
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O The transformation ) = —p , = ¢, which interchanges
conjugate variables is area preserving, as the Jacobian is
or  0Q
oPQ) _|ap op|_ [0 —1)_4
d(p,q) or  9Q 1 0
0q 0q

S‘,\') Examples of tra

[ On the other hand, the transformation from Cartesian to
polar coordinates ¢ = Pcos(), p = Psin() isnot, since

d(a.p) _ —Psin() Pcos(
0(Q,P) cos () sin ()

 There are actually “polar” coordinates that are canonical,
givenby ¢ = —V2PcosQ, p=+V2PsinQ for which

5 V2Psin() 2P cos()
o (q,z;) — cos @ sin ) =1
(@) V2P V2P .

=P

Hamiltonian formalism, CERN Accelerator School, September 2024
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The Relativistic
Hamailtonian for
electromagnetic fields
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JdNeglecting self fields and radiation, motion can be
described by a “single-particle” Hamiltonian

H(x,p,t) = C\/(p — SA(x, t))2 + m?c? 4+ e®(x,t)
[ (z,y, 2) Cartesian positions
J p= (pa;’ Dy pz) conjugate momenta
Q A= (A,,A,,A,) magnetic vector potential

| (I) electric scalar potential

Hamiltonian formalism, CERN Accelerator School, September 2024
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JdNeglecting self fields and radiation, motion can be
described by a “single-particle” Hamiltonian

o
d e @ Single-particle relativis

The CERN A

H(x,p,t) = C\/(p — SA(x, t))2 + m?c? 4+ e®(x,t)
[ (z,y, 2) Cartesian positions
J p= (px’ Dy pz) conjugate momenta
Q A= (A,,A,,A,) magnetic vector potential

| (I) electric scalar potential

dThe ordinary kinetic momentum vector is written
e
P=ymv=p—=A
C

with V the velocity vector and 7 = (1 — v?/c?) 712 the
relativistic factor

Hamiltonian formalism, CERN Accelerator School, September 2024
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H(x,p,t) = C\/(p — SA(x, t))2 + m?c? 4+ e®P(x,t)

®
d e @ Single-particle relativistic He

eeeeeeeeeeeeeeeeeeeeeeee

 Itis generally a 3 degrees of freedom one plus time (i.e., 4
degrees of freedom)

d The Hamiltonian represents the total energy

H=F =~vmc*+ed

Hamiltonian formalism, CERN Accelerator School, September 2024
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Cm Single-particle relativist

2
H(x,p,t) = \/(p — SA(x, t)) + m?c? 4+ e®P(x,t)

 Itis generally a 3 degrees of freedom one plus time (i.e., 4
degrees of freedom)

d The Hamiltonian represents the total energy
H=F =~vmc*+ed
d The total kinetic momentum is
H2 1/2
P = ( > m202>
C
d Using Hamilton's equations

(x,p) = [(x,p), H]

it can be shown that motion is governed by Lorentz equations

Hamiltonian formalism, CERN Accelerator School, September 2024
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The Accelerator ring
Hamiltonian
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m Canonical transformations and

Summary of canonical transformations and
approximations for simplifying Hamiltonian
- From Cartesian to Frenet-Serret (rotating)

coordinate system (bending in the horizontal plane),
useful for rings

b 4 Particle trajectory

(Q,P)
(X,Y,S,Px,Py,PS) 20

(a,p)
(2, Y, 2, Pas Dy P2)

Hamiltonian formalism, CERN Accelerator School, September 2024
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CQ Canonical transformations ar

The CERN Accelerator School

d Summary of canonical transformations and
approximations for simplifying Hamiltonian

- From Cartesian to Frenet-Serret (rotating)
coordinate system (bending in the horizontal plane),
useful for rings

1 Changing the independent variable from time {
to the path length s

- The Hamiltonian can be considered as havin,g 4
degrees of freedom, where the 4th “position” is time
with conjugate momentum P, = —H or Py = —H

2

—

__ Coordinate
tranformations

—

Hamiltonian formalism, CERN Accelerator School, September 2024
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d Summary of canonical transformations and
approximations for simplifying Hamiltonian

- From Cartesian to Frenet-Serret (rotating)

coordinate system (bending in the horizontal plane),

useful for rings

1 Changing the independent variable from time {
to the path length s

_1 Electric field set to zero, as longitudinal
(synchrotron) motion is much slower than
transverse (betatron) one

- Consider static and transverse magnetic fields

Hamiltonian formalism, CERN Accelerator School, September 2024

—

)

2

__ Coordinate
tranformations

__ Field
approximations
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cm Canonical transformatlo

Summary of canonical transformatlons and
approximations for simplifying Hamiltonian

From Cartesian to Frenet-Serret (rotating)

—

coordinate system (bending in the horizontal plane), tr;lofzrriiggfns
useful for rings

Changing the independent variable from time {

to the path length s _

Electric field set to zero, as longitudinal

(synchrotron) motion is much slower than Field

S—

Consider static and transverse magnetic fields
Rescale the momentum with the reference one and

move the origin to the periodic orbit 1
For the ultra-relativistic limit o =1, —5— —0
the Hamiltonian becomes 07
H(2,y,1,pe Py 6) = (1+6) — eA, - (1 + ﬁ) (1482 = p2 —p2
with = —ct+>—"2and B=F0 _;

Hamiltonian formalism, CERN Accelerator School, September 2024
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@
deo @ High-energy, large ring

4 It is usetul for study purposes (especially for
finding an “integrable” version of the Hamiltonian)
to make an extra approximation

U For this, transverse momenta (rescaled to the
reference momentum) are considered to be much
smaller than 1, i.e. the square root can be expanded.

Hamiltonian formalism, CERN Accelerator School, September 2024
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@
(Q’) High-energy, larg

4 It is usetul for study purposes (especially for
finding an “integrable” version of the Hamiltonian)
to make an extra approximation

U For this, transverse momenta (rescaled to the
reference momentum) are considered to be much
smaller than 1, i.e. the square root can be expanded.

d Considering also the large machine approximation
r << p , (dropping cubic terms), the Hamiltonian
is simplified to
v T 1+0 A
H = P tpy  x(1+9) eAs
2(14+0)  p(s)

JThis expansion may not be a good idea, especially
for low energy, small size rings s

Hamiltonian formalism, CERN Accelerator School, September 2024
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B Considering the general expression of the the longitudinal
component of the vector potential is (see appendix)

2 In curvilinear coordinates (curved elements)

O

As = (1+ L)Bome Z b + ity (z + iy)"

p(s) = n+l N

b, + 1a
0 In Cartesian coordinates As = BofRe Z - -

n—+1
with the multipole coefficients being written as
_ 1 "B, and , _ - "By

Bon! 0x™ lz=y=0 Bon! oz™

n+1

(x 4+ iy)

Qp

z=y=0

B The general non-linear Hamiltonian can be written as

H(2, Y, Pas Py, 8) = Hol(, Y, Do Dys 8) + Y hey i, (8)2 =y
k. ky

with the periodic functions ", x,(s) = hi, .k, (s + C)

Hamiltonian formalism, CERN Accelerator School, September 2024
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| QZ‘Q | px—l_py
2(1 + 0)

B Quadrupole:

1
H = §k1($2 —y2) |

vy + p;

2(1 + 0)

vy +p;
2(1+0)

vy +p;

B Sextupole: |
H = §k2(az3 — 3xy?) -

B Octupole:

1
H = —Fk 4_622 4 |
(Pl = O o

27
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Linear magnetic fields
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fields, By = bi(s)y
B, =—0bo(s) +bi1(s)x
- main bending field —Bg =by(s) = ;;%g)

2 normalized

quadrupole gradient

K(s) = bi(s)cp; =
P()C

2

B Assume a simple case of linear transverse magnetic

1]

= 55t [1/m”

J magnetic rigidity Lp = T - m]

€
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W Assume a simple case of linear transverse magnetic

fields, B, = bi(s)y
By = —bo(s) + bi(s)z
main bending field —By = bo(s) = elpj%g) 1
normalized B by ( S)
quadrupole gradient K(s) Pbl( s)ery cPo [1/m*
OC
magnetic rigidity Bp = - 'T - m]

B The vector potential has only a longitudinal
component which in curvilinear coordinates is

_ 1 0A; _ 1  0A,
ST TG oy 0 DT T o

B The previous expressions can be integrated to give
_ Py | =z (_1 a” v — A
Ag(z,y,8) = =2 [ e (p(8)2 + K(s)) 5+ K(s)% | = Poc As(x,y, 83)0

Hamiltonian formalism, CERN Accelerator School, September 2024
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B The Hamiltonian for linear fields can be finally written as
PatPy s 2 | K(s)(,2 2
H = 35 | - = (@ =)

. ) )
Jdeo'o The integrable Hamilt

2(1+0)  p(s) = 2p(s)2 * 2
dr  pg dpx_c?_(l
ds 1+d6° ds  p(s) p2(s)
dy _ py  dpy
ds 1+6° ds

FEG) )2

B Hamilton’s equation are

= K(s)y

Hamiltonian formalism, CERN Accelerator School, September 2024
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B The Hamiltonian for linear fields can be finally written as
PatPy s 2 | K(s)(,2 2
H = 555 | | (7 —y~)

. °
de'e. The integrable H:

2(1+0)  p(s) = 2p(s)2 * 2
o dp; 0 B 1
ds 1+d6° ds  p(s) (p2(8>

dy _ py dp
. ds 1—|3—/5 ’ dsy = K(s)y
and they can be written as two second order uncoupled

differential equations, i.e. Hill’s equations (see Transverse
Dynamics lecture)

FEG) )2

B Hamilton’s equation are

X

A

[
1

x// _|_ 1 (
1+4d \ p(s)
1

0
5 + K (s)> r = —— with the usual solution for
p(s)
0=0and u=uwx,y
=0 u(s) = v/ €ufu(s) cos (Vu(s) + Yuo)

K, == Buzs) (sin (¢ (8) + Yuo) + o cos (Py,(s) + ¢u03)2)

y//

Hamiltonian formalism, CERN Accelerator School, September 2024
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Action-Angle Variables
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‘B There is a canonical transformation to some optimal set of
variables which can simplity the phase-space motion

(Q’) Action-angle variab

B This set of variables are the action-angle variables

B The action vector is defined as the integral J = ]{ pdq
over closed paths in phase space.

Hamiltonian formalism, CERN Accelerator School, September 2024
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B There is a canonical transformation to some optimal set of
variables which can simplify the phase-space motion

B This set of variables are the action-angle variables

B The action vector is defined as the integral J = 7{ pdq
over closed paths in phase space.

B An integrable Hamiltonian is written as a function of only
the actions, i.e. Hy = Hy(J). Hamilton’s equations give

- OHy(J
# = 8({)](- | = wi(J) = ¢ = wi(J)t + dio

i.e. the actions are integrals of motion and the angles are
evolving linearly with time, with constant frequencies
which depend on the actions

B The actions define the surface of an invariant torus,
topologically equivalent to the product of 1 circles %

Hamiltonian formalism, CERN Accelerator School, September 2024
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B The Hamiltonian for the harmonic oscillator can be written as

[ ) . .
de @ Harmonic oscillator re

1
H(u;pu) — 2 (Pu ‘|‘f-b’2 2)

with the canonical position and momentum (U, Pu)
B From definition of the action

1 ]. 1 Uext H
Ju:—%Puduz—%\/2ﬂ—w§u2du=—[ \/QH—wgu%u:—
2T 2T m wo

V2H

Wo

With Uext = the position extrema, obtained for P,, = 0.

Hamiltonian formalism, CERN Accelerator School, September 2024
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2

B The Hamiltonian for the harmonic oscillator can be written as

1
H(“’;pu) — 2 (PH-I-MQ 2)

with the canonical position and momentum (u, p, )
B From definition of the action

Uext H
= —%pudu = —%\/2157 wiuldu = / \/2H—wgu2du =
wo

Uext

with Uext = w—the position extrema, obtained for p,, = 0.
0
B The Hamiltonian in these new variables H (¢, Ju) = woJy

B The phase is found by Hamilton’s equations as

' aH U i’ —_
Oy, = (Gu, Ju) =wo andhence Pu = Wol + Pu0

0Jy
B The action is J, = —aHgb;; Ju) =

an integral of motion. 37

0, ie. J, = const.

Hamiltonian formalism, CERN Accelerator School, September 2024
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[ ) . .
‘de @ Harmonic oscillator re

B Another way to calculate the action is through canonical
transformation using a generating function

B First, observe from solution of harmonic oscillator that
Py = —woutan (wot + ¢y,0) = —wou tan (¢y,)
relationship already connecting phase with old variables

Hamiltonian formalism, CERN Accelerator School, September 2024
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Jsle, Harmonic oscilla

B Another way to calculate the action is through canonical
transformation using a generating function

2

B First, observe from solution of harmonic oscillator that
Py = —wou tan (wot + ¢u,0) = —woutan (¢,)
relationship already connecting phase with old variables

B Using first generating function F (u, ¢,,)

OF
Dy = 8—1;,1 = —wou tan (¢,,)

2
B By integrating, we obtain Fi = / Pudu = —w(;u tan(¢u.)

B New momentum conjugate to the phase is given by

w—_———— = ]_ t u = —-— = -—
Ju= =gt = Com (L tan®(9u)) = 5 (wfu’ +9%) =
i.e. exactly the same relationship as with the previous

method.

Hamiltonian formalism, CERN Accelerator School, September 2024
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Accelerator Hamiltonian in

2

B Considering on-momentum motion, the Hamiltonian can be
written as

e
m variables

The CERN Accelerator School

2 — Patp. | K.(s)z?—K,(s)y>
o 2 ! 2

B As for harmonic oscillator, use Courant-Snyder solutions to

build generating function from original to action-angles

5132 y2
2B, O T T g

Fi(x,y, ¢z, Dy; ) = — tan ¢y(3) + ay(s)]

Hamiltonian formalism, CERN Accelerator School, September 2024
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cm variables

2

O Con51der1ng on-momentum motion, the Hamiltonian can be
written as

2, 2
Y — PrtDPy | I(m(tfs):r:Q—I(y(s)y2

2 | 2

B As for harmonic oscillator, use Courant-Snyder solutions to

build generating function from original to action-angles

[tan ¢y (5) + ag(s)] — —2

Fi(x,y, ¢z, Dy; ) = — tan ¢y(5) + ay(s)]

26 (s) 26y (s)
B The old variables with respect to actions and angles are
u(s) = 1/2Bu(8)Ju cos gy (s) , pul(s) = — Bi‘](‘;) (Sin ¢y (8) + au(8) cos Py (s))

and the Hamiltonian takes the form

J, J
Ho(Jz, Jy, s) = B (8) Byéjs) i

Hamiltonian formalism, CERN Accelerator School, September 2024
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o
m Normalised coordinates

B The transformation to normalized coordinates

()= (5 ) () o ()= ()

transforms motion to simple rotations.

Hamiltonian formalism, CERN Accelerator School, September 2024
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o
cm Normalised coordinates

B The transformation to normalized coordinates

()= (5 ) () o ()= ()

transforms motion to simple rotations.

B In the present coordinates, the phase is not a linear function

B A further transformation will be needed to eliminate the
“time” dependence, by “averaging” (integrating) the
previous Hamiltonian over one turn (Floquet
transformation)

Hamiltonian formalism, CERN Accelerator School, September 2024
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m Normalised coordm
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B The transformation to normalized coordinates

()= (5 ) () o ()= ()

transforms motion to simple rotations.

2

B In the present coordinates, the phase is not a linear function

B A further transformation will be needed to eliminate the
“time” dependence, by “averaging” (integrating) the
previous Hamiltonian over one turn (Floquet

transformation)

B The 1—turn Hamiltonian 1S

B The motion is the one of two lmearly independent harmonic

Hamiltonian formalism, CERN Accelerator School, September 2024

oscillators with frequencies the tunes =
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B Make a coordinate transformation so that we get a simpler
form of the matrix, i.e. ellipses are transformed to circles
(simple rotation)

[ coso sing
\H O R_<—singb Cosqb>

om Linear normal forms

Hamiltonian formalism, CERN Accelerator School, September 2024
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B Make a coordinate transformation so that we get a simpler
form of the matrix, i.e. ellipses are transformed to circles
(simple rotation)

[ coso sing
\H Q R_<—singb Cosqb>

B Consider the general betatron matrix

( \/ B 5( ) (cos ¢ + g sin @) B(s)Bo sin ¢ )
M, =

(L,\') [Linear normal form

(co— oz(s))cosqb (1+aoa(s)) sin ¢ Bo (COSQb

\/B(s)Bo B(s)

— p sin @)

Hamiltonian formalism, CERN Accelerator School, September 2024
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B Make a coordinate transformation so that we get a simpler
form of the matrix, i.e. ellipses are transformed to circles
(simple rotation)

[ coso sing
\H Q R_<—singb cosqb)

B Consider the general betatron matrix

( D (o5 + apsing) B()Basing )
M =

Je'e Linear normal fo

(ao—a(s)) cos p—(14+apa(s)) sin ¢ Bo (COSQb

NGO B(s)
B Using M(s) = T(s) LoRoT(0) &R ="T(s)oMgzoT(0)1

1
the transformation is S
T(s) = V/ B(s)

a(s)
m V 6(8)

B This transformation can be extended to a non-linear system
(see Advanced course) o

— p sin @)

Hamiltonian formalism, CERN Accelerator School, September 2024
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Jele Maps NN

B A generalization of the matrix (which can only describe linear
systems), is a map, which transforms a system from some
initial to some final coordinates

NI

Z

B Analyzing the map, will give useful information about the
behavior of the system

Hamiltonian formalism, CERN Accelerator School, September 2024
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H A generahzatlon of the matrix (which can only describe linear
systems), is a map, which transforms a system from some
initial to some final coordinates

Jo’e) Maps N

NI

Z

B Analyzing the map, will give useful information about the
behavior of the system

m There are different ways to build the map:
2 Taylor (Power) maps
2 Lie transformations

2 Truncated Power Series Algebra (IPSA), can generate
maps from straight-forward tracking

Hamiltonian formalism, CERN Accelerator School, September 2024
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B Consider two sets of canonical variables Z , Z which
may be even considered as the evolution of the system
between two points in phase space

dee, Symplectic maps

B A transformation from the one to the other set can be
constructed throughamap Af . 7z 3 7Z

Hamiltonian formalism, CERN Accelerator School, September 2024
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dee Symplectic map:

2

B Consider two sets of canonical variables Z , Z which
may be even considered as the evolution of the system
between two points in phase space

B A transformation from the one to the other set can be
constructed throughamap Af . 7z 3 7Z

B The Jacobian matrix of the map M=M (Z, t) is
0%
=5,
B The map is symplecticif M1 JM = J where J = (_O I>
B It can be shown that det(M) =1

composed by the elements M/

Hamiltonian formalism, CERN Accelerator School, September 2024
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'Jeo'e, Oymplectic

2

B Consider two sets of canonical variables Z , Z which
may be even considered as the evolution of the system
between two points in phase space

B A transformation from the one to the other set can be
constructed throughamap Af . 7z 3 7Z

B The Jacobian matrix of the map M=M (Z, t) is
0%
= 5,
B The map is symplecticif M1 JM = J where J = (_g (I)>
B It can be shown that det(M) =1

B [t can be shown that the variables defined through a
symplectic map [Zi, Z;| = [z, 2j] = Z;; which is a known
relation satistied by canonical variables

composed by the elements M/

B |n other words, symplectic maps preserve Poisson brackets
53
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B Symplecticity guarantees that the transformations in phase
space are area preserving

(A’) Why symplecticity is i1

eeeeeeeeeeeeeeeeeeeeeeee

B To understand what deviation from symplecticity produces
consider the simple case of the quadrupole with the general
matrix written as

Mo — cos(vVkL) ﬁ sin(vkL)
- —VEksin(vVEkL)  cos(VkL)

Hamiltonian formalism, CERN Accelerator School, September 2024
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c‘x) Why symplecticit

Hamiltonian formalism, CERN Accelerator School, September 2024

2

[} Symplect1c1ty guarantees that the transformations in phase
space are area preserving

To understand what deviation from symplecticity produces
consider the simple case of the quadrupole with the general

matrix written as

Mo — cos(VkL) ﬁ sin(vkL)
@ —VEksin(vVEkL)  cos(VkL)

Take the Taylor expansion for small lengths, up to first

order 1 T, ,
MQ = (—kL 1> -|—O(L )

This is indeed not symplectic as the determinant of the
matrix is equal to 1 + kL?,i.e. there is a deviation from
symplecticity at 274 order in the quadrupole length
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@ Phase portrait for non—sympl

The CERN Accelerator School

B The iterated non-symplectic matrix does not
provide the well-know elliptic trajectory in phase
space

2

B Although the trajectory is very close to the original

<H

e\ ° [ ) [ ] [ [

5 one, it spirals outwards towards infinity

£

%“ 0 exact quadru pole m

% mwmplemlc Dﬁp

) 0.0003 L _
o
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n
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%:; 0.0001 -
<

: = of _
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=

g -0.0002 i
8
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5
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A x

56



=

B Canonical (or symplectic) transformations are necessary for
preserving the phase space-volume

| 4

B Starting point relativistic Hamiltonian of particles in E/M
fields, and a series of canonical transformations and
approximations, the accelerator ring Hamiltonian can be
derived

B Imposing linear magnetic fields in the accelerator
Hamiltonian, Hamilton’s equations provide the usual
Hill’s equation

B The linear (uncoupled) magnetic field Hamiltonian can

be simplified through transformation in action-angle
variables (only function of the actions)

B Symplectic maps are essential for preserving the correct
physical time evolution of linear or non-linear systems

Hamiltonian formalism, CERN Accelerator School, September 2024
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2

Jele, Preservation of B

Q A fundamental property of Hamiltonian systems is the
preservation of phase space volume as they evolve

d Let’s have a system evolving from (pz qz) (p,/L q{ ) after
time O%. By Taylor-expanding and using Hamilton’s
equations we have:

dq;
/. — i p— i t ! 5t2 — i 5t 5t2
q; = q;(t + ot) q()—l—dt5t—|—0( ) 5’pz + O(0t?)
/ dp’L 2 2
p; = pi(t+t) = pi(t) + o ot + O(0t°) = p; + 90 5t+ O(6t*)
d Differentiating, we have
dq; = dq; — 9 (94 dq; 5t + O(6t?)
R dq; \ Op; &

o (0H
' = dp, dp; ot ot
dp; = dp; + o (8%) pidt + O(dt7)

d Multiplying the two equations

0 ([ OH 0 [(O0H
/ A . . _ PR - 2 ~ . .
dq;dp; = dq;dp; [1 aq{’( 8p7;> + 3}??((‘9(]7;)] ot + O(6t*) ~ dq;dp; -~
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Jele Magnetic multi

W From Gauss law of magnetostatics, a vector potential exist

V:-B=0 — JdJA: B=VXxXA
B Assuming transverse 2D field, vector potential has only one
component A.. The Ampere’ s law in vacuum (inside the
beampipe) V x B=0 — 3IV: B=-VV
B Using the previous equations, the relations between field
components and potentials are

B

3 3 oV 0A; 3 oV 0A

% = T = = —— = —

3 Ox oy ' Y Oy oz |,

£ i.e. Riemann conditions of an analytic function [ \iron
1 B

g

[aa

= Exists complex potential of z = x + iy  with re

£ power series expansion convergent in a circle X
¢ with radius |z| = r. (distance from iron yoke)

=

%

ac

Az + iy) = As(z,y) + iV (z,y) = Zﬁsn —Z n + ipin) (T + iy)"

n=1
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. °
OO Multipole expans

B From the complex potential we can derive the fields

. (9 - \n—1
B, +iB; = — O:U(A (x,y) +1V(z,y)) Zn n+ ipn)(x + iy)
B Setting b, = —n\,, a,=nu,
O
: : : 1
B, +iB, = E (bp, — tan)(x +1y)"
n=1
B Define normalized coefficients
b a
b/ n n 1 / — n n—1
n = 10-4B, 0  “n T 10-4B, ©

on a reference radius r,, 10 of the main field to get

| B . + 1y
B, +iB. —10~B b —ial )(E n
= 0 D0~ i) ()

B Note: n’ = n — 1 is the US convention 61
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de @, From Cartesian to “curv

It is useful (especially for rings) pp o
to transform the Cartesian - -
coordinate system to the AN
Frenet-Serret system moving
to a closed curve, with path length 3

dThe position coordinates in the two systems are
connected by r =ro(s) + Xn(s) + Yb(s) = zux + yuy + 2u,

Hamiltonian formalism, CERN Accelerator School, September 2024
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[ 4
Jele) From Cartesian to

It is useful (especially for rings) pp o
to transform the Cartesian - -
coordinate system to the AN
Frenet-Serret system moving
to a closed curve, with path length 3

dThe position coordinates in the two systems are
connected by r =ro(s) + Xn(s) + Yb(s) = zux + yuy + 2u,

JThe Frenet-Serret unit Vegtors and thezlr derivatives
are defined as (t,n,b) = (—ro(s), —p(s )—ro( ),t x n)

ds ds?
g [t 0~ 0\ [t
—|n| =" 0 —7(5s) n
ds p(s)
b 0 0 7(s) \b
with p(s) the radius of curvature and 7(s) the torsion

Hamiltonian formalism, CERN Accelerator School, September 2024

63

which vanishes in case of planar motion



2

JdWe are seeking a canonical transformation between

(a,p) — (Q,P) or
(:E,y,Z,pm,py,pz) — (X,Y,S,Px,Py,PS)

®
deo @ From Cartesian to “cu

JThe generating function is

0Fs(p, 0Fs3(p,
(q,P) = —( nggQ)v 36(5Q))

By using the relationship for the positions,

r =ro(s)+ Xn(s)+ Yb(s) = zux + yuy + zu,
the generating function is

FS(paQ):_p'r

Hamiltonian formalism, CERN Accelerator School, September 2024
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OFs O0F5 OFj X

®
deo @ From Cartesian to “cu

JFor planar motion, the momenta are

P:(PX7PY7PS)ZP°(

— p- 1+ =

dTaking into account that the vector potential is also

transtformed in the same way

X
(Ax, Ay,AS) = A-(Il,b, (1 -+ ;)t)

the new Hamiltonian is given by

H(Q,P.t) = c\/(PX — SAX)2 + (Py — SAY)Q 4

Hamiltonian formalism, CERN Accelerator School, September 2024
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®
deo @ Changing of the indepe !

It is more convenient to use the path lengths,
instead of the time as independent variable

d The Hamiltonian can be considered as having 4
degrees of freedom, where the 4th “position” is
time and its conjugate momentum is 3 = —H

Hamiltonian formalism, CERN Accelerator School, September 2024

66



2

®
(Q’) Changing of the

4 It is more convenient to use the path lengths,
instead of the time as independent variable

d The Hamiltonian can be considered as having 4
degrees of freedom, where the 4th “position” is
time and its conjugate momentum is £ = —H

dIn the same way, the new Hamiltonian with the
path length as the independent variable is just
Ps — _H(X7Y7t7PX7PY7Pt7S) with

7 — _EAS—(1 1 L) \/(Pt +€q’)2 —m2c® — (Py — SAx)? — (Py — S Ay)?

c p(s) c c ) c

It can be proved that this is indeed a canonical
transformation

d Note the existence of the reference orbit for zero

vector potential, for which (X,Y, Px, Py, P;) = (0,0,0,0, Fy)_

Hamiltonian formalism, CERN Accelerator School, September 2024
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d Due to the fact that longitudinal (synchrotron)
motion is much slower than the transverse
(betatron) one, the electric field can be set to zero
and the Hamiltonian is written as

~ e X H 5 5 o e 5 e
H CAS (1—|— ,0(8)) \/‘( C) m C, (P CAX) ( 0% . Y)

2

Hamiltonian formalism, CERN Accelerator School, September 2024
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g(x) Neglecting el

d Due to the fact that longitudinal (synchrotron)
motion is much slower than the transverse
(betatron) one, the electric field can be set to zero
and the Hamiltonian is written as

VL i ﬂ2_ 2.2 _ _ ¢ 2 _ _ ¢ 2
H— CAS <1+,0(S)> \/‘(C) m C, (Px CAX) (Py CAY)

P2
d The Hamiltonian is then written as
~ e X e e
— _ _ _ _ 2 _ _ _ 2 _ _ _ 2
e a1 ) e e A
 If static magnetic fields are considered, the time

dependence is also dropped, and the system is
having 2 degrees of freedom + “time” (path length)

Hamiltonian formalism, CERN Accelerator School, September 2024
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d Due to the fact that total momentum is much larger
than the transverse ones, another transformation
may be considered, where the transverse momenta
are rescaled

(Q,P) — (a,p) or
(X,Y,t,PX,Py,Pt) = (jagat_aﬁxapyﬁpt):(X’Y?_c ta

@
deoo, Momentum resc:

Px Py Pt)
PO ’ PO ’ P()C

Hamiltonian formalism, CERN Accelerator School, September 2024
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d Due to the fact that total momentum is much larger
than the transverse ones, another transformation
may be considered, where the transverse momenta
are rescaled

(Q,P) — (a,p) or
(X7Y7t7PX7PY7Pt) = (jagﬂ?aﬁ:mﬁy?ﬁt):(X7Y7_Ct7

®
deoo, Momentum r

Px Py P

P’ P ch)

JThe new variables are indeed canonical if the
Hamiltonian is also rescaled and written as

— H _ T L, m2c? ~ - ~ -
H(x7y7t7paf:7py7pt) — — _eAs_ (1 + —> \/p% - _ (pa: — eAg;)Q — (py — GAy)2

Hamiltonian formalism, CERN Accelerator School, September 2024
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. °
de'e, Moving the refere

d Along the reference trajectory p; = 1 and
dt‘ aH‘ 1 Bo
P=F;, — 9p, P=P, Pto 3,

4 It is thus useful to move the reference frame to the
reference trajectory for which another canonical
transformation is performed

(@p) — (@p) or

o A r A a AN - S— SO _ 1
(xayvtap:mpy)pt) = ('ray7t7p$7py7pt) - (:Cayat + — 50 7p:c7py7pt 60)

Hamiltonian formalism, CERN Accelerator School, September 2024
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de'e, Moving the refe

d Along the reference trajectory p,, = — and

dt _oH 1 Bo

H It is thus useful to move the reference frame to the

reference trajectory for which another canonical

transtormation is performed
(@p) — (qp) or

2

S o S—Sg _ 1
(x7y7t7pxapy7pt) = (x7y7t7pa:7py7pt> (ZC y7t+ BO 7px7py7pt 60)

JThe mixed variable generating function is

A\ OF»(@.p) OF:(ap)
(4, ) = ( agp | 8;110 ) pliovgdirg%

F>(Q, D) = 2Py + ypy + (L + 5
dThe Hamlltoman is then

EH(@,9,1,Pus Dy, Br) = Go (50 +pr)—eAs— (1 + m) \/(ﬁt + %)2 - L2 — (Pr — €As)? — (py — €A,)?

) (Pt

Hamiltonian formalism, CERN Accelerator School, September 2024



(Q Relativistic and transverse field a

eeeeeeeeeeeeeeeeeeeeeeee

=

. . B 1 ~ - P, — P,
J First note that pt:pt—ﬁ—:pt—pw: tP 0 =
and | =1t 0 |
dIn the ultra-relativistic limit gy -1, —— —0
and the Hamiltonian is written as 07
MLy 8) = (140) = (1425 ) S0 = (pa = )2 = (5, — e

where the “hats” are dropped for simplicity

Hamiltonian formalism, CERN Accelerator School, September 2024
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cm Relativistic and transve I
)

P, — P,
Q First note that p; = p; — — = Py — Prop = ——— 2 =
50 Fo
and | =t ,
dIn the ultra-relativistic limit gy -1, —— —0
and the Hamiltonian is written as 0
,H(.@ yalap:vapy75> — (1—|‘5)—€A3— (1 -+ %) \/(1 + 5)2 — (pw — 61213:)2 — (py _ 6Ay)2

where the “hats” are dropped for simplicity

JIf we consider only transverse field components,
the vector potential has only a longitudinal
component and the Hamiltonian is written as

A T
= (1 —eA, — [ 14+ —— 1+ 6)2 — p2 — p2
= H(2,y,1,p2,1y,0) = (14+0) — eA, ( +p(s)>\/( +0)? —pz — p;

dNote that the Hamiltonian is non-linear even in the
absence of any field component (i.e. for a drift)! s

Hamiltonian formalism, CERN Accelerator School, September 2024
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e . .
'deole, Lie formalism

B The Poisson bracket properties satisfy what is
mathematically called a Lie algebra

B They can be represented by (Lie) operators of the form

fig=1[f.g] and: f:°g=1f[f g] et

Hamiltonian formalism, CERN Accelerator School, September 2024
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e . .
'deole, Lie formalism

B The Poisson bracket properties satisfy what is
mathematically called a Lie algebra

B They can be represented by (Lie) operators of the form

frg=1[fg] and: f:?g=[f[f g]] et

B For a Hamiltonian system H(z,t) there is a formal

solution of the equatlons of motion 92 — H,z| = H :z

dt
written as z(t) = Z tk “z0 = et fizg with a symplectic

map M = ¢ "

Hamiltonian formalism, CERN Accelerator School, September 2024
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o . .
de'e, Lie formalism

B The Poisson bracket properties satisfy what is
mathematically called a Lie algebra

2

B They can be represented by (Lie) operators of the form

frg=1[fg] and: f:?g=[f[f g]] et

B For a Hamiltonian system H (z,t) there is a formal

solution of the equatlons of motion 92 — [H 7] =: H : z
k dt . ’ .
written as z(t) = Z tH 0 — etHigy with a symplectic

map M = e+ "

The 1-turn accelerator map can be represented by the
composition of the maps of each element

M = ef2i eifst gifar  where f; (called the
generator) is the Hamiltonian for each element, a
polynomial of degree 771 in the variables 21,..., 2y

Hamiltonian formalism, CERN Accelerator School, September 2024

78



2

'dee, Map for quadrupole

B Consider the 1D quadrupole Hamiltonian
1
H =3 (k12* + p?)
B For a quadrupole of length [, the map is written as
e%:(k1:c2—|—p2):

formalism, CERN Accelerator School, September 2024
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'dee, Map for quadrup

B Consider the 1D quadrupole Hamiltonian
1
H =3 (k12* + p?)
B For a quadrupole of length [, the map is written as
e%:(kla}2+p2):

B Jts application to the transverse variables is

> 2\n 2\n
—%:(k1x2—|—p2): _ (_le ) | L(_le )
‘ ! ;( 2n)! T entan?

o 2\n 2\n
_%3(1613324—1?2)2 _ (—k‘lL ) B I (—le )
‘ b n;) ( ) T Vi o
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'dee, Map for quadru

B Consider the 1D quadrupole Hamiltonian
1 2 2
H = 5(kix® + p°)
B For a quadrupole of length [, the map is written as
6%:(kle—l—p2):
B Jts application to the transverse variables is

O 2\n 2\n
—%:(kla}2—|—p2): _ (_le ) | L(_le )
‘ : ;( (Zn)! TR R

—L:(k12®+p?):,, _ - (—l<:1 leQ
=2 (S VR
B This finally provides the usual quadrupole matrix

1
e~ % (Bt +p%) g cos(v/ k1 L)x + NG sin(v/k1L)p
1
e~z e+, = |l sin(v/k1L)x 4 cos(\/ k1 L)p 81
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