Lund Jet Plane studies at FCC-ee

L. Panwar, B. Malaescu, L. Poggioli

contact email: <u>lata.panwar@cern.ch</u>

- Analysis: Prospects of QCD studies related to jet formation at FCC-ee using Lund Jet Plane (LJP) representation
 - motivated by the study of the sensitivity to α_s at FCC-ee, probing of α_s for different energies and tests of the renormalization group equation (RGE) in QCD
 - complementary to the 3/2 Jet cross-section ratio study for α_s
 - First study which looks at jet substructure at FCC-ee
- Why at FCC-ee?
 - provides a clean collision environment with high statistics for precise measurements
 - potential impact on detector parameters
- Use Delphes samples from <u>Winter2023</u> campaign simulated for IDEA detector at $\sqrt{s} = 91$ GeV
 - Use light jets from process: $ee \rightarrow Z \rightarrow light jets$ (**p8_ee_Zud_ecm91**)

Advantage of Lund Jet Plane method (LJP):

- QCD jet formation involves perturbative and non-perturbative effects; presence of these effects impact the precision of any measurement based on jets
- LJP works as a handle to separate these effects in a 2D representation using angle (Δ) and transverse momentum (k_t) of emissions within the jets and further opens a possibility to understand QCD behaviour separately for these perturbative and non-perturbative effects

• First let's understand LJP formation with more details

• Lund Jet plane (LJP)

For "a" core and "b" emission branch

$$\Delta R = \Delta R_{ab}$$
, $k_t \equiv p_{tb} \Delta R_{ab}$
 $z \equiv p_{tb}' (p_{ta} + p_{tb})$

- Start with a jet and cluster it again with Cambridge/Aachen (C/A) to have angular order information of emissions
- Decluster them in reverse (start with wide angle emission first)
- Within the iterative declustering, harder branch is always taken as core branch
- fill a triangle plane of two Lund variables from core and emission

 $\Delta R_{ab} = angle of emission b wrt to core a$ $k_{t} = transverse momentum of b wrt a$ (for p_{tb} << p_{ta} and Δ << 1) z = momentum fraction taken by b

• Lund Jet plane (LJP)

- Start with a jet and cluster it again with Cambridge/Aachen (C/A) to have angular order information of emissions
- Decluster them in reverse (start with wide angle emission first)
- Within the iterative declustering, harder branch is always taken as core branch
- fill a triangle plane of two Lund variables from core and emission

PRIMARY LUND PLANE

$$\Delta R = \Delta R_{ab} , \quad k_t \equiv p_{tb} \Delta R_{ab}$$
$$z \equiv p_{tb}' (p_{ta} + p_{tb})$$

 $ln(R/\Delta R)$

Recent Lund Jet Plane based measurements

- LJP studies at LHC \sqrt{s} = 13 TeV, following recent theoretical proposal (<u>JHEP 12 (2018) 064</u>)
- These studies measure the lund plane density for charged particles jets
- We are interested in following the same for FCC-ee environment

Methodology

- 1. Framework: <u>HEP-FCC/FCCAnalyses</u>
- 2. Jet Clustering:
 - a. Input collection ReconstructedParticles (smeared reco particles)
 - b. Definitions:

Valencia jets R = 1.5, beta = 1.0 inclusive clustering

Anti k_{T} jets R = 1.5, inclusive clustering

Valencia jet clustering

$$d_{ij} = \min(E_i^{2\beta}, E_j^{2\beta})(1 - \cos \theta_{ij})/R^2$$
$$d_{iB} = p_T^{2\beta}$$

Anti-k, and C/A jet clustering

$$\begin{split} d_{ij} &= \min(p_{ti}^{2p}, p_{tj}^{2p}) \frac{\Delta R_{ij}^2}{R^2}, \qquad \Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2, \\ d_{iB} &= p_{ti}^{2p}, \quad \text{ for anti-k}_t \text{ p = -1 and C/A p=0} \end{split}$$

Note: cross-checks with different jet algorithms and different clustering configuration is in backup ⁷

Kinematic comparison for QCD jets: Valencia vs anti-k_T

99.1%

Process: ee_Zud_ecm91

Njets >=2

we use anti- \mathbf{k}_{T} algorithm for preliminary studies

Methodology

- 3. Once we have jet clustered, we save corresponding reco particle (smeared particles) constituents using "JetClusteringUtils::get constituents"
- 4. Pick constituents of a jet
 - The clustering information is not saved during jet reconstruction so first we recluster jet again with AK15 algorithm by saving the clustering subjet information using fastjet dedicated functions
 - Afterwards, picking the same subjets, jet is clustered using C/A algorithm to follow angular-ordered clustering
 - Now we go back and do declustering in angular order; start from wide angle first
 - Calculate LJP variables using core and emission subjets iteratively and fill the LJP plane

First look LJP representation (after event selection)

Summary and other possibilities

- First study which looks at jet substructure at FCC-ee
 - Motivated by the study of the sensitivity to α_s and test of RGE at FCC-ee
 - Present preliminary LJP representation for QCD jets (for AK15 inclusive jets) using delphes samples
 - explore sensitivity to detector parameters
- We need fullsim for a given α_s value to study the reconstruction of the LJP for different options of detector technologies.
- An α_s scan will be necessary to study the sensitivity of the reconstructed LJP to α_s
- Other prospects:
 - LJP tool can be used to develop tagging methods, e.g. heavy flavour jet tagging, EM objects tagging etc.

BACKUP

Technical questions

• In order to make progress further, we need recipe to reconstruct truth jets, currently I do not understand how to extract it from current samples

First look LJP representation for QCD light jets (after event selection)

First look of LJP representation of valencia jets (R=0.5) at FCC-ee

 $ln(k_t)$ vs $ln(1/\Delta)$

LJP for charged and neutral jet fraction (after event selection)

 $ln(k_t)$ vs $ln(R/\Delta R)$

- tail distribution mostly contains neutral fraction
- Hard collinear region doesn't have much difference in both representation

Valencia vs anti-kt m_{jj} distribution for R=1.5

 Valencia jets has slight better mass resolution for reconstructed m_z; but mass scale is same

Jet Clustering

Framework: <u>HEP-FCC/FCCAnalyses</u>

Jet Clustering: (according to examples given here)

Input collection ReconstructedParticles

.Define("pseudo_jets", "JetClusteringUtils::set_pseudoJets_xyzm(RP_px, RP_py, RP_pz, RP_m)")

- Definitions: clustering_k, clustering_cambridge, clustering_valencia (with ß=1) (link)
- Configuration settings: (R=0.5)
 - exclusive jet clustering: upto exactly 4 jets

.Define("FCCAnalysesJets_valencia", "JetClustering::clustering_valencia(0.5, **2**, **4**, 0, 10, 1., 1.)(pseudo_jets)") .Define("FCCAnalysesJets_kt", "JetClustering::clustering_kt(0.5, **2**, **4**, 0, 10)(pseudo_jets)") .Define("FCCAnalysesJets_cambridge", "JetClustering::clustering_cambridge(0.5, **2**, **4**, 0, 10)(pseudo_jets)")

Jet Clustering

Framework: <u>HEP-FCC/FCCAnalyses</u>

Jet Clustering: (according to examples given here)

• Input collection ReconstructedParticles

.Define("pseudo_jets", "JetClusteringUtils::set_pseudoJets_xyzm(RP_px, RP_py, RP_pz, RP_m)")

- Definitions: clustering_k, clustering_cambridge, clustering_valencia (with ß=1) (link)
- Configuration settings: (R=0.5)
 - exclusive jet clustering: upto exactly 4 jets

• **inclusive jet clustering**: with 5 GeV pT cut on jets

.Define("FCCAnalysesJets_valencia", "JetClustering::clustering_valencia(0.5, **0**, **5**, 0, 0, 1., 1.)(pseudo_jets)") .Define("FCCAnalysesJets_kt", "JetClustering::clustering_kt(0.5, **0**, **5**, 0, 0)(pseudo_jets)") .Define("FCCAnalysesJets_cambridge", "JetClustering::clustering_cambridge(0.5, **0**, **5**, 0, 0)(pseudo_jets)")

Cambridge Jet Kinematic distributions

Jet E

- With 5 GeV pT cut in inclusive clustering, jet theta distribution give symmetric distribution. But, in exclusive clustering, theta distribution becomes asymmetric \Rightarrow clustering uses $\Delta \theta$ so the difference of p_{τ} cut used in inclusive clustering does not explain this \Rightarrow points to some bug?
 - Inclusive clustering looks more reasonable. Checks with valencia algorithm is on next slide. Ο

Valencia Jet Kinematic distributions

- Exclusive and inclusive clustering completely changes the valencia jet kinematics
 - Jet energy: peaks ~45 GeV for lights jets coming from Z-decay for inclusive; exclusive clustering loses the correlations with hard particles
 - Jet theta: looks more and less similar for inclusive and exclusive clusterings
 - M_{ii}: for inclusive, it peaks close to Z-mass, but, for exclusive this is not a case

k_t-Jet Kinematic distributions

- k_t-clustering also shows same behaviour with inclusive and exclusive clustering
- The kinematics is very similar to valencia jets

Other checks for exclusive clustering

• Tried with one more exclusive configuration for valencia jets where there is selection on dcut (instead of njets)

.Define("FCCAnalysesJets_valencia", "JetClustering::clustering_valencia(0.5, **1**, **6**, 0, 0, 1., 1.)(pseudo_jets)")

k_t vs anti-k_t Jet Kinematic with inclusive clustering

Note: Fastjet doesn't allow anti-kt algorithm with exclusive clustering

Inclusive Valencia Jet Kinematic distributions for different R

Mjj_valencia [GeV]

Inclusive anti- k_{τ} Jet Kinematic distributions for different R

Ideas for next steps:

Binning of LJP variables (k_T , ΔR)

Ideas for next steps:

• Try to create similar unfolding input as we have in ATLAS to run unfolding in one go, but.....

KEY: TH1D	h1_incl_unfolding_tjet_kt_DeltaR_pt_nominal;1
KEY: TH2F	h2_incl_unfolding_resp_kt_DeltaR_pt_nominal;1
KEY: TH1F	h1_incl_unfolding_rjet_kt_DeltaR_pt_nominal;1

- I do not see any recipe for truth jets from Delphes, it is not available in delphes samples also
- I only have mapping between truth and reco level particles
 - Make 2D LJP distributions for reco in every pT bin
 - Map truth particle with reco particle and fill truth level 2D map in reco pT bin