
Tracking summary

This is an output file created in Illustrator CS3

Colour reproduction
The badge version must only be reproduced on a
plain white background using the correct blue:
 Pantone: 286
 CMYK: 100 75 0 0
 RGB: 56 97 170
 Web: #3861AA

Where colour reproduction is not faithful, or the
background is not plain white, the logo should be
reproduced in black or white – whichever provides
the greatest contrast. The outline version of the
logo may be reproduced in another colour in
instances of single-colour print.

Clear space
A clear space must be respected around the logo:
other graphical or text elements must be no closer
than 25% of the logo’s width.

Placement on a document
Use of the logo at top-left or top-centre of a
document is reserved for official use.

Minimum size
Print: 10mm
Web: 60px

CERN Graphic Charter: use of the outline version of the CERN logo

Paul Gessinger

CERN

2024-07-17

What is ACTS?

� Experiment-independent toolkit for track reconstruction

applications

� Modern architecture and code, unit tested, continuous

integration

� Minimal external dependencies, easy to build

� Robust concurrency through thread-safety by design

� Community platform for R&D across various experiment

tsa
Goals

� Provide established algorithms in a modern package
� Provide testbed for R&D activities including new algorithms, machine learning,

heterogeneous computing

Paul Gessinger 2024-07-17 1

My EP R&D involvement

� Joined EP R&D in April 2021 as a Fellow

� Worked 3 years on the ACTS project

� Presentations in this forum:

I 2021-05-26, 2021-12-15, 2022-06-15, 2022-11-09, 2023-03-15, 2023-11-15

� Conference contributions:

I CTD2023 (talk)
I CHEP2023 (talk, paper)
I ACAT2021 (poster)

Paul Gessinger 2024-07-17 2

https://indico.cern.ch/event/1024874/contributions/4302450/attachments/2219521/3819935/ep-rnd-2021-05-26_v2.pdf
https://indico.cern.ch/event/1074981/contributions/4520492/attachments/2364950/4037876/2021-12-15_ep-rnd-acts-2021-12-15_v3.pdf
https://indico.cern.ch/event/1120308/contributions/4703999/attachments/2377822/4222566/2022-06-15_acts-status-update_v3.pdf
https://indico.cern.ch/event/1197895/contributions/5036570/attachments/2503152/4380671/2022-11-09_acts-status-update_v3.pdf
https://indico.cern.ch/event/1253557/contributions/5265882/attachments/2591063/4512501/2023-03-15_acts-update_v2.pdf
https://indico.cern.ch/event/1319004/contributions/5550145/attachments/2702366/4791865/2023-11-15_acts-update_v6.pdf
https://indico.cern.ch/event/1252748/contributions/5521515/
https://indico.jlab.org/event/459/contributions/11443/
https://www.epj-conferences.org/articles/epjconf/abs/2024/05/epjconf_chep2024_03015/epjconf_chep2024_03015.html
https://indico.cern.ch/event/855454/contributions/4596738/

Direct developments
� ACTS paper in 2021

� Python bindings for the Examples

� Reproducibility tests via ROOT hashes

� Build-time memory consumption

monitoring

� New (C)KF extension mechanism

� Type-erased SourceLink
� CI-bridge + GPU CI setup

� Robust physics monitoring

� DD4hep integration rework (dropped

ActsExtension requirement)

� High-level track EDM + backend abstraction

� Major documentation update and push

� PODIO track EDM backend including

dynamic columns

� Floating point exception monitoring

New since November 2023

� Much improved EDM4hep reading
� Major vertexing refactor (build-time memory reduction)
� First public ATLAS+ACTS performance results
� Synthesis of geometry work (ongoing)

Paul Gessinger 2024-07-17 3

https://link.springer.com/article/10.1007/s41781-021-00078-8

Python bindings in the Examples

Python bindings for the examples

ACTS examples

� ACTS ships with a set of examples to show assembly of a track reconstruction

chain
� Ships with a minimal event processing framework: not intended for production

� Previously: large number of executables for different purposes: controllable via

command line arguments

� Drawback: large number of options for everything, expose almost all configuration

via CLI arguments

� Added python bindings to example classes: allows writing simply python scripts to
run example payloads

I Advantage: can follow configuration flow, understand what is actually happening

� Deprecated and finally removed executables in this year!

Paul Gessinger 2024-07-17 4

Python script example

detector, trackingGeometry, decorators = acts.examples.GenericDetector.create()
field = acts.ConstantBField(acts.Vector3(0, 0, 2 * u.T))
rnd = acts.examples.RandomNumbers()

s = acts.examples.Sequencer(
events=100, numThreads=-1, logLevel=acts.logging.INFO

)

s.addReader(someParticleInput) # e.g. particle gun, pythia8 ...

selector = acts.examples.ParticleSelector(level=acts.logging.INFO,
inputParticles=inputParticles, outputParticles="particles_selected")

s.addAlgorithm(selector)

alg = acts.examples.FatrasSimulation(
level=acts.logging.INFO, randomNumbers=rnd, trackingGeometry=trackingGeometry,
magneticField=field, generateHitsOnSensitive=True, # + input/output collections

)
s.addAlgorithm(alg)

s.addWriter(someWriter) # e.g. CSV, ROOT, ...

Paul Gessinger 2024-07-17 5

Continuous integration developments

Reproducibility tests at the python level

� Old C++ example executables were largely untested

� Added tests for many examples implemented in python

� Cover use cases: Magnetic field writing, digitization, HepMC3 recording, FATRAS,

geometry construction, material recording/mapping/ validation, particle gun,

propagation tests, Pythia8 input, seeding, truth tracking, CKF track finding

� Tests run in CI, check multi-threaded execution succeeds, asserts outputs in some

cases

� Added reproducibility tests: ROOT outputs are hashed, current test results are

compared against stored hash

� Hashes are ordering independent. Can test

I Multi-threaded reproducibility
I Functional regressions (same output as before)

Paul Gessinger 2024-07-17 6

Physics performance monitoring

� Has become one of the main ways to

test new developments now!

� Implemented workflows:

I Truth tracking with KF and GSF
I CKF + seeding, truth estimation, truth

smearing + vertexing
I CKF on t t̄ event at pile-up 200
I Fatras and G4 simulation
I Dedicated vertexing workflow
I + more

� Runs histogram comparisons

� Further development planned to make

this more parameterizable

Paul Gessinger 2024-07-17 7

Physics performance monitoring

� Has become one of the main ways to

test new developments now!

� Implemented workflows:

I Truth tracking with KF and GSF
I CKF + seeding, truth estimation, truth

smearing + vertexing
I CKF on t t̄ event at pile-up 200
I Fatras and G4 simulation
I Dedicated vertexing workflow
I + more

� Runs histogram comparisons

� Further development planned to make

this more parameterizable

Paul Gessinger 2024-07-17 7

Physics performance monitoring

� Has become one of the main ways to

test new developments now!

� Implemented workflows:

I Truth tracking with KF and GSF
I CKF + seeding, truth estimation, truth

smearing + vertexing
I CKF on t t̄ event at pile-up 200
I Fatras and G4 simulation
I Dedicated vertexing workflow
I + more

� Runs histogram comparisons

� Further development planned to make

this more parameterizable

📊: Physics performance monitoring for

bede82e

✅ CKF truth_smeared
✅ IVF truth_smeared
✅ AMVF truth_smeared
✅ Track Summary CKF truth_smeared

✅ Seeding truth_estimated

✅ CKF truth_estimated
✅ IVF truth_estimated
✅ AMVF truth_estimated
✅ Track Summary CKF truth_esti-
mated
✅ Seeding seeded

✅ CKF seeded
✅ IVF seeded
✅ AMVF seeded
✅ AMVF (+grid seeder) seeded

✅ Track Summary CKF seeded

✅ Seeding orthogonal

✅ CKF orthogonal

✅ IVF orthogonal

✅ AMVF orthogonal

✅ Track Summary CKF orthogonal

✅ Ambisolver seeded
✅ Ambisolver orthogonal

✅ Seeding ttbar

✅ CKF ttbar
✅ Ambisolver
✅ Track Summary CKF ttbar

✅ AMVF ttbar
✅ AMVF (+grid seeder) ttbar

✅ Particles ttbar
✅ Vertices ttbar
✅ Truth tracking (GSF)

✅ Truth tracking

✅ Truth tracking (GX2F)

✅ Particles fatras
✅ Particles geant4

Paul Gessinger 2024-07-17 7

CI-bridge and GPU CI setup

� Have custom setup to run CI jobs on CERN resources

I Currently O(10) slots running in VMs + 1 physical

machine with a GPU attached

� Runs our FPE monitoring jobs (see next slides)

� Runs LCG-based jobs (more robust CVMFS access)

� VM monitoring using Prometheus + Grafana

Paul Gessinger 2024-07-17 8

FPE monitoring

FPE monitoring

� FPE monitoring introduced as a plugin

� Uses custom infrastructure to enable

FPE trap signal and handle

� Signal handler collects stack trace in
async-safe way and records it

I FPE locations are deduplicated based on

the top-most stack frame source code

location!

volatile float j = 0.0;
volatile float r

= 123 / j; // MARK: fpeMask(FLTDIV, 1, #1234)

// MARK: fpeMaskBegin(FLTINV, 1, #2348)
m_err_eLOC0[ipar].push_back(

std::sqrt(
covariance(

Acts::eBoundTime, Acts::eBoundTime)));
// MARK: fpeMaskEnd(FLTINV)

� Sequencer can be configured to ignore (mask) FPEs

� If configured: Sequencer terminates job when FPE is encountered (and not masked)

� At end of job: FPE are accumulated per algorithm and reported

I Job is still failed if unmasked FPE are encountered

Paul Gessinger 2024-07-17 9

FPE masking
� Mask is a combination of source file

and line range

I Matching is performed from

bottom to top in stack frame: if

any frame matches mask, FPE is

considered masked
I Limit number of FPEs per event

(but keep in mind that FPE state

has to be reset manually)

� Typically want to fix the FPE,

masking does not mask them

outside of Examples

� Statistical process: if you get them

depends on the workflow / inputs

Paul Gessinger 2024-07-17 10

EDM4hep + PODIO integration

Tracks Event Data Model objects

Experiment

measurements
Clusters Space points

Triplet seeds Track candidates Final tracks

Focus of this work:

TrackContainer

Clusterization SP formation

Seeding

Track finding Track fit

Paul Gessinger 2023-05-09 - CHEP 2023 3

� We❤️ Tracks!

� High-level Track EDM added to ACTS

� Developments closely linked to ATLAS effort to build on top of xAOD infrastructure

� But: want EDM to fully generic as a first-class ACTS data type

Paul Gessinger 2024-07-17 11

Acts::TrackContainer

� New client-focused Event Data Model object as primary output of tracking

� Models track properties and gives access to track states for more information

� Fully decoupled interface seen by ACTS and client consumers from the backend
implementation

I Backend can be fully experiment-specific

� Can be augmented with additional columns, both at track and track-state level

� VectorMultiTrajectory + VectorTrackContainer : ACTS default purely

transient1 backends

� Generalized holder type: can optionally own or only reference backends

I Optionally also via smart-pointers like std::shared_ptr

� Mirrors const-ness of backends

1Plan to make it persistable in the future

Paul Gessinger 2024-07-17 12

Acts::TrackContainer interface & access

� The basic unit is the container: tracks and track states are only views into the
container

I Modeled with an associated proxy type holding a pointer + index into the container
I Track has a start index into the track state container (∼ flat linked list of track states)

auto tracks = factory();

auto track = tracks.makeTrack();

track.parameters() = BoundVector::Zeros();
doSomethingWithTheTrack(track);

track.nMeasurements() = 8;
track.template component<unsigned int, "nMeasurements"_hash>(); // equivalent

ProxyAccessor<unsigned int> nMeasurements("nMeasurements"); // use accessor for convenience
assert(nMeasurements(track) == track.nMeasurements());

Paul Gessinger 2024-07-17 13

Dynamic columns

� Fitters have different requirements / information to attach to tracks + track states

� Both container interfaces support dynamic columns

� Vector{TrackContainer,MultiTrajectory} support this through type-erasue by

inheritance

I Backends are free to implement this: ATLAS xAOD backend will use decorations

auto tracks = factory();

tracks.template addColumn<float>("col_a"); // create a new column of type float
assert(tracks.hasColumn("col_a"_hash));

auto track = tracks.getTrack(tracks.addTrack());
track.template component<float>("col_a") = 42.42f;
assert((t.template component<float, "col_a"_hash>() == 42.42f));

ProxyAccessor<float> answer("col_a");
assert(answer(track) == 42.42f);
answer(track) = 99.0f;

Paul Gessinger 2024-07-17 14

Migration to Acts::TrackContainer

� Migrated all Core fitters to operate on Acts::TrackContainer
� Fitter accepts mutable container as input, returns track proxy

� CKF fill track container, returns vector of track proxies
auto fitter = makeFitter(); // KF, GSF, GX2F
auto track = fitter.fit(sourceLinks.begin(), sourceLinks.end(), initialParameters,

options, tracks);
auto finder = makeFinder(); // CKF
auto foundTracks = finder.findTracks(initialParameters, options, tracks);

� Also working to migrate all of our examples code to TrackContainer
for (auto track : tracks) {

for (auto state : track.trackStates()) {
if (not state.typeFlags().test(Acts::TrackStateFlag::MeasurementFlag)) {

continue;
}
// do something with measurement

}
}

Paul Gessinger 2024-07-17 15

EDM4hep conversion

� EDM4hep has edm4hep::Track & edm4hep::TrackState
I Uses the LCIO parametrization d0, z0, φ, tanλ,Ω (ACTS uses l0, l1, φ, θ,q/p, t)
I Track states are described using perigee parameters only (ACTS uses varying local

parametrization + link to geometry object)

Direct & transparent backend in EDM4hep not feasible

� Required contract cannot be fulfilled:

I No stable references to native parametrization
I Loss of on-surface hit position

� Instead: Full (lossy) conversion to and from EDM4hep tracks implemented

(and in turn is backend agnostic)

Paul Gessinger 2024-07-17 16

https://bib-pubdb1.desy.de/record/81214/files/LC-DET-2006-004%5B1%5D.pdf

PODIO backend: ActsPodioEdm

Goal

� Demonstrate ability to integrate with an external IO solution like PODIO
� This is not an alternative to EDM4hep , but help us understand requirements

� Specify ACTS EDM in PODIO -yaml in plugin

� Implemented ActsPodioEdm::Track + ActsPodioEdm::TrackStates
I Use components to produce stable references to fulfill backend contract
I Recent update in PODIO made this less brittle
I Auxiliary data types for dense columns overallocated storage for measurements
I Experiment-aware translation helper for surfaces and uncalibrated measurements

� Full IO roundtrip implemented and tested, Kalman Filter can run on this

without modifications

Paul Gessinger 2024-07-17 17

Experiment interface

� PODIO backend still supposed to be experiment agnostic

� Experiment-knowledge needed to persist otherwise transient information

Surfaces

� Two types: part of detector geometry,

ad-hoc surfaces
� Encode known surfaces as identifiers,

serialize ad-hoc surfaces
� Make no assumptions on

identification model

Measurements

� ACTS uses strong type-erasure for

experiment-specific input

measurements
� Cannot serialize type-erased

measurements automatically

� Factorized to experiment-specific helper class to implement these conversions

Paul Gessinger 2024-07-17 18

Backend overview
Architecture

TrackProxy
TrackContainer

Track finding

Track fitters

TrackState backend

Track backend

std::vector

PODIO

PODIO

ATLAS xAOD

std::vector

PODIO

PODIO

ATLAS xAOD

Performance monitoring

Downstream reconstruction

backend interface / contract

EDM4hep input

EDM4hep output

Experiment agnostic: decouple interface

from storage implementation

Conversion (lossy)

Transparent, direct backend

Paul Gessinger 2023-05-09 - CHEP 2023 11

Paul Gessinger 2024-07-17 19

Improved EDM4hep inputs

� Goal: simulate outside of ACTS (e.g. ddsim), run tracking in ACTS
� Previous status: had disjoint measurement, particle, simhit readers

I Problem: read internally inconsistent info
I ACTS uses flat particle sequence with intricate barcodes
I EDM4hep uses tree structure of particle objects
I Missing connection between particles / hits

feat: Add uber EDM4hep reader (#2939) Merged

� Added single reader from EDM4hep
� Reader correctly assembles ACTS’ flat particle container, vertex + particle ID

from EDM4hep particle tree
� Correctly splits up into generator, initial and final particles
� Associates hits to ACTS surface equivalents from DD4hep
� Critical for truth matching downstream of reconstruction

Paul Gessinger 2024-07-17 20

https://github.com/acts-project/acts/pull/2939

ddsim inputs read into ACTS from ODD

� Positive endcap already missing after ddsim : issue with ODD+ ddsim
� Reading + processing works correctly

Paul Gessinger 2024-07-17 21

Vertexing refactoring

Vertexing refactoring

� Series of PRs to reduce

build-time memory footprint of

vertexing (#2842 Merged)

� Vertexing code was heavily

templated, leading to large

memory consumption

� Refactored large fraction of the

vertexing code to avoid

templates

Paul Gessinger 2024-07-17 22

https://github.com/acts-project/acts/pull/2842

Vertexing refactoring

� Custom concrete type-erased type for input tracks

� Use delegate for parameter extraction (experiment interface)

� Add IVertexFinder interface to allow for different vertex finders (nested for

seeding)

� Use switch dispatch in separate compilation units to hide heavy Kalman math

� Untemplate many classes, split into header and implementation files

Result

Build-time ≈ -40% memory consumption ≈ -20%, runtime performance unaffected

Paul Gessinger 2024-07-17 23

First public ATLAS+ACTS performance
results

ACTS integration into ATLAS software

Raw

measurements
Clusters Space points

Triplet seeds Track candidates Final tracks

Clusterization SP formation

Seeding

Track finding Track fit

Implemented with ACTS!

� Adding implementations using ACTS tools

� Add option allowing running a tracking chain with pieces using ACTS

� At the same time: enable ACTS output Event Data Model (EDM) to use ATLAS IO
infrastructure

I Converters for validation to allow reusing robust tooling in place
I No conversions foreseen for final configuration

� At this time: full tracking chain using ACTS available!

I Post-processing currently using non-ACTS components

Paul Gessinger 2024-07-17 24

ACTS Clusterization

� Reimplementation of
pixel and strip
clustering

I Based on prior ATLAS

implementation, with

some modifications

� Number of clusters and

cluster sizes agree with

current ATLAS SW

� Slightly favorable timing

compared to current

ATLAS SW

Strips

0 0.5 1 1.5 2 2.5
|η Cluster |

0

2

4

6

8

10

310×

 N
um

be
r

of
 S

tr
ip

 C
lu

st
er

s

ACTS in Athena
Current Athena

 Simulation PreliminaryATLAS
 = 14 TeV, HL-LHCs

ITk Layout: 03-00-00
 = 200〉µ〈, tt

ACTS v29.1.0, Athena 24.0.12

Pixel

0 0.5 1 1.5 2 2.5 3 3.5 4
|η Cluster |

0

1

2

3

4

5

6

7

310×

 N
um

be
r

of
 P

ix
el

 C
lu

st
er

s

ACTS in Athena
Current Athena

 Simulation PreliminaryATLAS
 = 14 TeV, HL-LHCs

ITk Layout: 03-00-00
 = 200〉µ〈, tt

ACTS v29.1.0, Athena 24.0.12

0 0.5 1 1.5 2 2.5
|η Cluster |

0

1

2

3

4

5

6

7

8

9

10

 P
ix

el
 C

lu
st

er
 T

ra
ns

ve
rs

e
S

iz
e

ACTS in Athena
Current Athena

 Simulation PreliminaryATLAS
 = 14 TeV, HL-LHCs

ITk Layout: 03-00-00
 = 200〉µ〈, tt

ACTS v29.1.0, Athena 24.0.12
Innermost Barrel Layer

PLOTS-IDTR-2023-04

Paul Gessinger 2024-07-17 25

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2023-04/

ACTS Clusterization timing

150 200 250 300 350 400
310×

Number of Pixel Clusters

1

1.5

2

2.5

3

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

[A
.U

.]

 RMS±Current Athena, Mean
 RMS±ACTS in Athena, Mean

ATLAS Simulation Preliminary
 = 14 TeV, HL-LHC, ITk Layout: 03-00-00s

 = 200〉µ〈, tt
ACTS v29.1.0
Athena 24.0.12

150 200 250 300
310×

Number of Strip Clusters

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

[A
.U

.]

 RMS±Current Athena, Mean
 RMS±ACTS in Athena, Mean

ATLAS Simulation Preliminary
 = 14 TeV, HL-LHC, ITk Layout: 03-00-00s

 = 200〉µ〈, tt
ACTS v29.1.0
Athena 24.0.12

� ACTS Clusterization faster than previous Athena implementation

� Pixel: timing differences constant vs. event complexity

� Strips: ACTS implementation has larger speedup at lower complexity

PLOTS-IDTR-2023-04

Paul Gessinger 2024-07-17 26

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2023-04/

ACTS tracking efficiency

� Simulation of t t̄ events with pileup with

standard Athena workflow

� Configured ACTS tracking chain:

clusterization, space-point formation,

seeding, combinatorial track finding

using Combinatorial Track Finder (CKF)

� CKF is a complete reimplementation!

� Outputs converted to standard ATLAS
tracks

I Ambiguity resolution (without refitting)

using non-ACTS tools
I Standard performance validation toolchain

4− 3− 2− 1− 0 1 2 3 4
ηTruth

0.8

0.9

1

1.1

1.2

E
ffi

ci
en

cy

 = 200〉µ〈, tt

 = 1 GeV
T

, pµSingle

 = 100 GeV
T

, pµSingle

 Simulation PreliminaryATLAS
 = 14 TeV, HL-LHCs

ITk Layout: 03-00-00
 > 1 GeV

T
Truth p
ACTS v29.1.0, Athena 24.0.12

� Single µ efficiencies reasonably high

(note: reconstruction requires

pT > 900 MeV at central η!)

� t t̄ efficiency within striking distance target

performance

All of this is pending thorough optimization & tuning!

PLOTS-IDTR-2023-04

Paul Gessinger 2024-07-17 27

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2023-04/

ACTS resolution

� Transverse impact parameter resolution

directly from the ACTS CKF (no refitting)

� Produces results compatible with the
standalone Kalman Filter

I Caveats: no smoothing, no in-fit

measurement calibration
I KF independently validated against the

ATLAS workhorse: the global χ2 fitter

� Resolution here mainly due to

composition of track population under

study

4− 3− 2− 1− 0 1 2 3 4
ηTruth

0

20

40

60

80

100

120

140

160

180

200

220

m
]

µ
)

[
0

(dσ

 Simulation PreliminaryATLAS
 = 14 TeV, HL-LHCs

ITk Layout: 03-00-00
ACTS v29.1.0, Athena 24.0.12

 > 1 GeV
T

 = 200, Truth p〉µ〈, tt

PLOTS-IDTR-2023-04

Paul Gessinger 2024-07-17 28

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2023-04/

Conclusion

� Three productive years with EP R&D

� Great exchange with other WPs, especially calorimetry on OpenDataDetector!

� ACTS library saw lots of developments during that time!

� Monitoring and testing infrastructure has greatly expanded

I Reproducibility tests for all workflows
I Increased trust in results obtained
I Critical for ATLAS integration

� In parallel: support of developments for GPU tracking

What's next?

� Transitioned to LD Staff with WP2 (ATLAS) in the Next Generation Triggers

project
� Will keep working on ACTS, keep in touch!

Paul Gessinger 2024-07-17 29

	Python bindings in the Examples
	Continuous integration developments
	FPE monitoring
	EDM4hep + PODIO integration
	Vertexing refactoring
	First public ATLAS+ACTS performance results

