Tracking summary

Paul Gessinger
CERN
2024-07-17

CE/RW
\

N/,

What is ACTS?

B Experiment-independent toolkit for track reconstruction b
applications /
B Modern architecture and code, unit tested, continuous ®
integration ‘
B Minimal external dependencies, easy to build a ° S/
B Robust concurrency through thread-safety by design \o./'

B Community platform for R&D across various experiment

B Provide established algorithms in a modern package
B Provide testbed for R&D activities including new algorithms, machine learning,
heterogeneous computing

Paul Gessinger 2024-07-17

My EP R&D involvement

® Joined EP R&D in April 2021 as a Fellow

® Worked 3 years on the ACTS project
B Presentations in this forum:

» 2021-05-26, 2021-12-15, 2022-06-15, 2022-11-09, 2023-03-15, 2023-11-15
m Conference contributions:

» CTD2023 (talk)
» CHEP2023 (talk, paper)
» ACAT2021 (poster)

Paul Gessinger 2024-07-17

https://indico.cern.ch/event/1024874/contributions/4302450/attachments/2219521/3819935/ep-rnd-2021-05-26_v2.pdf
https://indico.cern.ch/event/1074981/contributions/4520492/attachments/2364950/4037876/2021-12-15_ep-rnd-acts-2021-12-15_v3.pdf
https://indico.cern.ch/event/1120308/contributions/4703999/attachments/2377822/4222566/2022-06-15_acts-status-update_v3.pdf
https://indico.cern.ch/event/1197895/contributions/5036570/attachments/2503152/4380671/2022-11-09_acts-status-update_v3.pdf
https://indico.cern.ch/event/1253557/contributions/5265882/attachments/2591063/4512501/2023-03-15_acts-update_v2.pdf
https://indico.cern.ch/event/1319004/contributions/5550145/attachments/2702366/4791865/2023-11-15_acts-update_v6.pdf
https://indico.cern.ch/event/1252748/contributions/5521515/
https://indico.jlab.org/event/459/contributions/11443/
https://www.epj-conferences.org/articles/epjconf/abs/2024/05/epjconf_chep2024_03015/epjconf_chep2024_03015.html
https://indico.cern.ch/event/855454/contributions/4596738/

Direct developments
m ACTS paper in 2021 Robust physics monitoring
B Python bindings for the Examples DD4hep integration rework (dropped

® Reproducibility tests via ROOT hashes ActsExtension requirement)
High-level track EDM + backend abstraction

Major documentation update and push
New (C)KF extension mechanism PODIO track EDM backend including
Type-erased SourceLink dynamic columns

Cl-bridge + GPU ClI setup Floating point exception monitoring

® Build-time memory consumption
monitoring

Much improved EDM4hep reading

Major vertexing refactor (build-time memory reduction)
First public ATLAS+ACTS performance results
Synthesis of geometry work (ongoing)

Paul Gessinger 2024-07-17

https://link.springer.com/article/10.1007/s41781-021-00078-8

Python bindings in the Examples

Python bindings for the examples

ACTS examples

B ACTS ships with a set of examples to show assembly of a track reconstruction
chain

® Ships with a minimal event processing framework: not intended for production

® Previously: large number of executables for different purposes: controllable via
command line arguments

® Drawback: large number of options for everything, expose almost all configuration
via CLI arguments

B Added python bindings to example classes: allows writing simply python scripts to
run example payloads

» Advantage: can follow configuration flow, understand what is actually happening
B Deprecated and finally removed executables in this year!

Paul Gessinger 2024-07-17

Python script example

detector, trackingGeometry, decorators = acts.examples.GenericDetector.create()
field = acts.ConstantBField(acts.Vector3(0, 0, 2 * u.T))
rnd = acts.examples.RandomNumbers ()

s = acts.examples.Sequencer(
events=100, numThreads=-1, logLevel=acts.logging.INFO
s.addReader (someParticleInput) # e.g. particle gun, pythia8 ...
selector = acts.examples.ParticleSelector(level=acts.logging.INFO,
inputParticles=inputParticles, outputParticles="particles_selected")
s.addAlgorithm(selector)
alg = acts.examples.FatrasSimulation(
level=acts.logging.INFO, randomNumbers=rnd, trackingGeometry=trackingGeometry,
magneticField=field, generateHitsOnSensitive=True, # + input/output collections

s.addAlgorithm(alg)

s.addWriter (someWriter) # e.g. CSV, ROOT,

Paul Gessinger

Continuous integration developments

Reproducibility tests at the python level

® Old C++ example executables were largely untested

B Added tests for many examples implemented in python

m Cover use cases: Magnetic field writing, digitization, HepMC3 recording, FATRAS,
geometry construction, material recording/mapping/ validation, particle gun,
propagation tests, Pythia8 input, seeding, truth tracking, CKF track finding

B Tests run in Cl, check multi-threaded execution succeeds, asserts outputs in some
cases

® Added reproducibility tests: ROOT outputs are hashed, current test results are
compared against stored hash

B Hashes are ordering independent. Can test

» Multi-threaded reproducibility
» Functional regressions (same output as before)

Paul Gessinger 2024-07-17

. ° ° (CKF seeded h
Phys I cs pe rfo rm a n ce m o n Ito rl n g physmon/performance_ckf_seeded.root [monitored] vs. Cljphysmonjreference/performance_ckf_seeded.root [reference]
B Has become one of the main ways to duplicationRte_vs_ota oatonftate_vs_pT
test new developments now! TR p 1=
® Implemented workflows: 1y I W
» Truth tracking with KF and GSF i ey e e e
» CKF + seeding, truth estimation, truth e e [
smearing + vertexing e B
» CKF on tt event at pile-up 200 fakerate_vs_sta fakerate_v_pT fakerate_vs._phi
» Fatras and G4 simulation R e N N
» Dedicated vertexing workflow q =
> + more i [i
® Runs histogram comparisons - ' ‘
® Further development planned to make
thiS more parameterizable nDulecatedjvs_eje: nDuplicated_vs_pT nDuplicated_vs_phi
-) b

Paul Gessinger 2024-07-17

Physics performance monitoring

B Has become one of the main ways to
test new developments now!

® |mplemented workflows:

» Truth tracking with KF and GSF

CKF + seeding, truth estimation, truth
smearing + vertexing

CKF on tt event at pile-up 200

Fatras and G4 simulation

Dedicated vertexing workflow

+ more

v

vyvyyvyy

® Runs histogram comparisons

® Further development planned to make
this more parameterizable

Paul Gessinger 2024-07-17

200
175

g 150

T 125

g

5 100

g
2 75

wall time [s]

— lterative

50 75 100 125 150 175 200
"

Physics performance monitoring ul: Physics performance monitoring for

bede82e
B Has become one of the main ways to
|
test new developments now! , CKF wth smeared)
a IVF truth_smeared AMVE orth |
" Implemented workflows: AMVF truth_smeared Track So:mlr)l?;r;aCKF orthogonal
R A Track Summary CKF truth_smeared .
> Truth tracking with KF and GSF & oo sanogonal
» CKF + seeding, truth estimation, truth CKF truth_estimated @ Seeing tibar
smearing + vertexing AV e e oK
- . : moisolver
» CKF on tt event at pile-up 200 ateT;aC“ Summary CKF truth_esti- & Track Summary CKF tibar
» Fatras and G4 simulation € Seeding seeded AMVF ttbar
> D d d) kﬂ CKF seeded AMYF (+grid seeder) ttbar
edicated vertexing workflow IVF seeded Partlcles ttbar
 AMVF seeded Vertices ttbar
- = it AMVF (Sj-e:;ric(ia seeder) seeded T"Uth tracking (GSF)
F i Track Summary CKF seeded Truth tracking
B Runs histogram comparisons Sooing orhegonal Truth tracking (GX2F)
Particles fatras
® Further development planned to make ﬁlfo‘;’:;‘;gf;‘;" Particles geant4
this more parameterizable L)

Paul Gessinger

Cl-bridge and GPU ClI setup

Busy
Busy
Busy
Busy
Busy
Busy
Busy
Busy
Busy

2 Busy
Busy

2 Busy

2

B Have custom setup to run Cl jobs on CERN resources

» Currently O(10) slots running in VMs + 1 physical
machine with a GPU attached

B Runs our FPE monitoring jobs (see next slides)
B Runs LCG-based jobs (more robust CVMFS access)
® VM monitoring using Prometheus + Grafana

Paul Gessinger 2024-07-17

FPE monitoring

FPE monitoring

® FPE monitoring introduced as a plugin

B Uses custom infrastructure to enable
FPE trap signal and handle

B Signal handler collects stack trace in
async-safe way and records it

» FPE locations are deduplicated based on
the top-most stack frame source code
location!

volatile float j = 0.0;
volatile float r
=123 / j; // MARK: fpeMask(FLTDIV, 1, #1234)

// MARK: fpeMaskBegin(FLTINV, 1, #2348)
m_err_eLOCO [ipar] .push_back(
std: :sqrt(
covariance (
Acts::eBoundTime, Acts::eBoundTime)));
// MARK: fpeMaskEnd(FLTINV)

B Sequencer can be configured to ignore (mask) FPEs
m |f configured: Sequencer terminates job when FPE is encountered (and not masked)

B At end of job: FPE are accumulated per algorithm and reported
» Job is still failed if unmasked FPE are encountered

Paul Gessinger

FPE masking

B Mask is a combination of source file
and line range

» Matching is performed from
bottom to top in stack frame: if
any frame matches mask, FPE is
considered masked

» Limit number of FPEs per event

(but keep in mind that FPE state
has to be reset manually)

B Typically want to fix the FPE,
masking does not mask them
outside of Examples

B Statistical process: if you get them
depends on the workflow / inputs

Paul Gessinger

FPE masks

FpeMask(Core/ ititi ion.hpp:88, FLTUND < 1)

const auto &[weight_l, pars_l, cov_l] - projector(cmp);
cov = weight L « cov_1;

ActsVector<D- diff = pars_l - mean;

[users)| in/dev/acts/Core/include/Acts/Utilities/ ianMi ion. hy

FpeMask(Core/include/Acts/Utilities/GaussianMixtureReduction.hpp: (198, 202], FLTUND < 1)
std::apply([&](avto... dsc) { (wrap(dsc), ...); }, angleDesc);

const auto cov
ianMi projector,

return RetType{mean, cov};

ion.hpp

Jusers/, in/dev/acts/Core/incly

FpeMask(Core/include/Acts/Vertexing/AdaptiveHuLtiVertexFinder. ipp: (119, 123], FLTUND < 1)
}

T
1/ MARK: fpeMaskBegin(FLTUND, 1, #2596)
bool keepVertex = isGoodVertex &&

p au
// MARK: fpeMaskEnd(FLTUND)
ACTS_DEBUG("New vertex will be saved: " << keepVertex);

/] Delete vertex from slVerkices List again if it's not kept

/acts/Core/incly i i inder. ipp

FpeNask(Examples/Io/Root/src/RootTrackStateshiriter.cpp: (519, 5331, FLTINV s 1)

m_err_eL0CO[ipar]. push_back(

std - sqrt(covariance(Acts - eBoundLoc8, Acts:: eBoundLoce)));
n_err_eL0G1[4par]. push_back(

std:: sqrt(covariance(Acts:: eBoundLocl, Acts::eBoundlocl)));
m_err_ePHI[ipar] .push_back

std - sqrt(covariance(Acts - eBoundPhi, Acts::eBoundPhi)));
m_err_eTHETALipar] . push_back(

std - sqrt(covariance(Acts - eBoundTheta, Acts:: eBoundTheta)));
n_err_eQoPLipar] push_back(

std:: sqrt(i A '+ Acts N
m_err_eT[ipar] . push_back(

std - sqrt(covariance(Acts - eBoundTime, Acts:: eBoundTime))):

m_pull_eLocO[ipar] .push_back(

2024-07-17

10

EDM4hep + PODIO integration

Tracks

i Clusterization SP formation ;
Experiment Clusters Space points
measurements

Seeding

- Track finding Track fit
Triplet seeds Track candidates ! Final tracks

Focus of this work:
TrackContainer

m We ¥ Tracks!

® High-level Track EDM added to ACTS

B Developments closely linked to ATLAS effort to build on top of xA0D infrastructure
® But: want EDM to fully generic as a first-class ACTS data type

Paul Gessinger

Acts: :TrackContainer

® New client-focused Event Data Model object as primary output of tracking

B Models track properties and gives access to track states for more information

® Fully decoupled interface seen by ACTS and client consumers from the backend
implementation

» Backend can be fully experiment-specific
® Can be augmented with additional columns, both at track and track-state level
B VectorMultiTrajectory + VectorTrackContainer : ACTS default purely
transient! backends

® Generalized holder type: can optionally own or only reference backends
» Optionally also via smart-pointers like std::shared_ptr

® Mirrors const-ness of backends

"Plan to make it persistable in the future
Paul Gessinger 2024-07-17

Acts: :TrackContainer interface & access

B The basic unit is the container: tracks and track states are only views into the
container
» Modeled with an associated proxy type holding a pointer + index into the container
» Track has a start index into the track state container (~ flat linked list of track states)

auto tracks = factory();
auto track = tracks.makeTrack();

track.parameters() = BoundVector::Zeros();
doSomethingWithTheTrack(track) ;

track.nMeasurements() = 8;
track.template component<unsigned int, "nMeasurements"_hash>(); // equivalent

ProxyAccessor<unsigned int> nMeasurements("nMeasurements"); // use accessor for convenience
assert (nMeasurements(track) == track.nMeasurements());

Paul Gessinger

Dynamic columns

B Fitters have different requirements / information to attach to tracks + track states
B Both container interfaces support dynamic columns

B Vector{TrackContainer,MultiTrajectory} support this through type-erasue by

inheritance
» Backends are free to implement this: ATLAS xA0OD backend will use decorations

auto tracks = factory();

tracks.template addColumn<float>("col_a"); // create a new column of type float
assert(tracks.hasColumn("col_a"_hash));

auto track = tracks.getTrack(tracks.addTrack());
track.template component<float>("col_a") = 42.42f;
assert((t.template component<float, "col_a"_hash>() == 42.42f));

ProxyAccessor<float> answer("col_a");
assert (answer (track) == 42.42f);
answer (track) = 99.0f;

Paul Gessinger

Migration to Acts::TrackContainer

® Migrated all Core fitters to operate on Acts::TrackContainer
B Fitter accepts mutable container as input, returns track proxy

m CKEF fill track container, returns vector of track proxies
auto fitter = makeFitter(); // KF, GSF, GX2F
auto track = fitter.fit(sourceLinks.begin(), sourcelLinks.end(), initialParameters,
options, tracks);
auto finder = makeFinder(); // CKF
auto foundTracks = finder.findTracks(initialParameters, options, tracks);

® Also working to migrate all of our examples code to TrackContainer

for (auto track : tracks) {
for (auto state : track.trackStates()) {
if (not state.typeFlags().test(Acts::TrackStateFlag: :MeasurementFlag)) {
continue;
}
// do something with measurement
}
}

Paul Gessinger

EDM4hep conversion

B EDM4hep has edmdhep::Track & edmédhep::TrackState

» Uses the LCIO parametrization dy, zy, ¢, tan A, Q (ACTS uses Iy, i, $,0,q/p, t)
» Track states are described using perigee parameters only (ACTS uses varying local
parametrization + link to geometry object)

Direct & transparent backend in EDM4hep not feasible

u Required contract cannot be fulfilled:
» No stable references to native parametrization
» Loss of on-surface hit position

® |nstead: Full (lossy) conversion to and from EDM4hep tracks implemented
(and in turn is backend agnostic)

Paul Gessinger 2024-07-17

https://bib-pubdb1.desy.de/record/81214/files/LC-DET-2006-004%5B1%5D.pdf

PODIO backend: ActsPodioEdm

= Demonstrate ability to integrate with an external 10 solution like PODIO
= This is not an alternative to EDM4hep , but help us understand requirements

m Specify ACTS EDM in PODIO -yaml in plugin

B Implemented ActsPodioEdm::Track + ActsPodioEdm::TrackStates
» Use components to produce stable references to fulfill backend contract
» Recent update in PODIO made this less brittle
» Auxiliary data types for dense columns overallocated storage for measurements
» Experiment-aware translation helper for surfaces and uncalibrated measurements

® Full 10 roundtrip implemented and tested, Kalman Filter can run on this
without modifications

Paul Gessinger 2024-07-17

Experiment interface

B PODIO backend still supposed to be experiment agnostic
B Experiment-knowledge needed to persist otherwise transient information

® Two types: part of detector geometry, m ACTS uses strong type-erasure for
ad-hoc surfaces experiment-specific input

B Encode known surfaces as identifiers, measurements
serialize ad-hoc surfaces ® Cannot serialize type-erased

B Make no assumptions on measurements automatically

identification model

B Factorized to experiment-specific helper class to implement these conversions

Paul Gessinger 2024-07-17

Backend overview

—'—»[TrackState backend

TrackProxy
TrackContainer

ATLAS xAOD

Track backend
ATLAS xAOD

Track finding

backend interface / contract

[Performance monitoring}

[Downstream reconstruction] P o oo —

-
- (Conversion (lossy))
(Transparent, direct backend)

- e e e e = — =

Paul Gessinger

Improved EDM4hep inputs

B Goal: simulate outside of ACTS (e.g. ddsim), run tracking in ACTS
B Previous status: had disjoint measurement, particle, simhit readers
» Problem: read internally inconsistent info
» ACTS uses flat particle sequence with intricate barcodes
» EDM4hep uses tree structure of particle objects
» Missing connection between particles / hits

feat: Add uber EDM4hep reader (#2939) ¥oMerged

® Added single reader from EDM4hep

® Reader correctly assembles ACTS'’ flat particle container, vertex + particle ID
from EDM4hep particle tree

® Correctly splits up into generator, initial and final particles

® Associates hits to ACTS surface equivalents from DD4hep

® Critical for truth matching downstream of reconstruction

Paul Gessinger 2024-07-17

https://github.com/acts-project/acts/pull/2939

ddsim inputs read into ACTS from ODD

n=-150 n=-1.00 n=-05% n=o0 n=0.50 n=1.00 n=1.50
< ¥ T T 7 7
\ ! : / /
1000 *./
\ ! ! ! /
\ \ | ! ;!
=00 e n=p.00
800 W~ \ \] '
\ \ / /
\ \ / /
z 600
E
~ n={ds0 n=1.50
400
= foo n=ho00
200
® Pi ® ShortStrip Endcap
® Pixel Endcap ® Longstrip Barrel
o ShortstripBarrel ® Longstrip Endcap
3000 2600 1600 3 1000 2600 3000

B Positive endcap already missing after ddsim : issue with ODD+ ddsim
B Reading + processing works correctly

Paul Gessinger

Vertexing refactoring

Vertexing refactoring

®m Series of PRs to reduce

build-time memory footprint of
vertexing (#2842)
® Vertexing code was heavily

templated, leading to large
memory consumption

® Refactored large fraction of the
vertexing code to avoid
templates

Paul Gessinger

o }- feat: Propagator optionally inherits from BasePropagator #2874

o }o refactor!: Vertex InputTrack becomes concrete type #2876
o }o refactor!: Untemplate Vertex #2877

o }o refactor!: Untemplate VertexInfo and VertexingOptions #2878

o % refactor!: Remove input_track_t template parameters #2880

o }o refactor!: Use Delegate for parameter extraction #2881

« }o refactor!: Use BasePropagator interface in vertexing #2886

o }o refactor!: Use Delegate for track linearizers #2946

o }o feat!: Add IVertexFinder interface, use in vertexing #2948

o 11 refactor: Remove VertexFitterConcept #2951

o }o refactor: KalmanVertex(Track)Updater interface change #2955

o }o refactor!: Hard-code vertex fitter, finder + density combinations #2952

o % refactor: Move large parts of Vertexing to .cpp files #2953

o %o refactor!: ImpactPointEstimator moves to cpp file #2971

o }- refactor!: Move and Grid Density finders to cpp #2973

https://github.com/acts-project/acts/pull/2842

Vertexing refactoring

m Custom concrete type-erased type for input tracks
m Use delegate for parameter extraction (experiment interface)

B Add IVertexFinder interface to allow for different vertex finders (nested for
seeding)

®m Use switch dispatch in separate compilation units to hide heavy Kalman math
B Untemplate many classes, split into header and implementation files

Build-time ~ -40% memory consumption ~ -20%, runtime performance unaffected

Paul Gessinger 2024-07-17

First public ATLAS+ACTS performance
results

ACTS integration into ATLAS software
R .
measu?&ents

. Track fit
Triplet seeds Track candidates oo

B Adding implementations using ACTS tools

® Add option allowing running a tracking chain with pieces using ACTS

B At the same time: enable ACTS output Event Data Model (EDM) to use ATLAS IO
infrastructure

» Converters for validation to allow reusing robust tooling in place
» No conversions foreseen for final configuration

® At this time: full tracking chain using ACTS available!
» Post-processing currently using non-ACTS components

Paul Gessinger 2024-07-17

PLOTS-IDTR-2023-04

x
X
A

ACTS Clusterization Strips , Pixel

MO ———— o F T T T T T T T 3
£ 10] ATLAS Simulaton Preliminary -~ ACTS i Atter] g [ATLAS Simulation Preliminary ~-ACTS inAthena 3
g [V5=14TeV, HL-LHC rr—"(t“urrenlAmena] S of ffx;e[yé:t&goc urrent Athena 3
. . o g ITkLayout: 03-00-00 P | S E o ; Sl 3

u Re'mplementatlon Of § 8: :b??vggi_u,/-\menaza.012 :] f‘; 5;’ icﬁ'uriigivo‘ Athena 24.0.12 ;‘u D
pixel and strip S o SR A R !
. e ~ [1 E ol 5
clustering £ e < 1 2% - 4
» Based on prior ATLAS e T EM,..M" E
implementation, with E ‘ ‘ ‘] ettt
.pe . o) 0.5 1 15 2 25 3 35 4
some modifications 0 05 1 15 2Ll o Cluster
® Number of clusters and g 0T
. . @ g5 ATLAS Simulation Preliminary -+-ACTS in Athena 3

cluster sizes agree with B g f-ueu e = curent Aena

% ; ITk Layout: 03-00-00
current ATLAS SW x § 1F Actswnin avem2s0rz

"~ °E Innermost Barrel Layer o El
m Slightly favorable timing i T
compared to current 2 e .
2F |
ATLAS SW £ 3
T - R
Cluster ||

Paul Gessinger

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2023-04/

PLOTS-IDTR-2023-04

ACTS Clusterization timing

- 3 — 18T .
2 r q D E |
< [ATLAS Simulation Preliminary] < 1.7 ATLAS Simulation Prellmlnary =
o L Vs=14TeV, HL-LHC, ITk Layout: 03- 00 oo i @ 4 gE 15=14TeV, HL-LHC, ITk Layout: 03-00-00 :*:5
E 251 muo=200 — E “PF i me=200 +# E
= [ACTSv29.10 R = 15F Actsw2ei0 3
o F Athena 24.0.12 - o E Athena 24.0.12 + 3
e L] S 14F E
s 2 - 5 E 3
X ++] X 135 E
In| r + ++ N | E E
o C + ++] o 1.2 + =
[+ - (=} E |
g 150 2t as 7 g 1.1} E
> L —— i > E =
< L ++ —e— Current Athena, Mean + RMS | < 1} —e— Current Athena, Mean + RMS
1* —— —=— ACTS in Athena, Mean + RMS o 9; —=— ACTS in Athena, Mean + RMS é

R T E N R R ER b (o 085‘\HH\HH\HH\H‘EX103

150 200 250 300 350 400 . 150 200 250 300

Number of Pixel Clusters Number of Strip Clusters

B ACTS Clusterization faster than previous Athena implementation
B Pixel: timing differences constant vs. event complexity
m Strips: ACTS implementation has larger speedup at lower complexity

Paul Gessinger

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2023-04/

PLOTS-IDTR-2023-04

ACTS tracking efficiency

& MRS Simuiaton Prefminary T
B 3 ; S = 14 TeV, HL-LHC e ff, U= 200 E
® Simulation of tt events with pileup with SRR S o Sndlepp=icey
Standard Athena WorkﬂOW ? ACTS v29.1.0, Athena 24.0.12 gle 4, p = E
H . g li+ s ++H++++ T
m Configured ACTS tracking chain: S *H Lt + Y E
clusterization, space-point formation, 09F et e,
seeding, combinatorial track finding 2 ++**+++++ -
using Combinatorial Track Finder (CKF) E
m CKF is a complete reimplementation! coEoE A e
m Outputs converted to standard ATLAS ™ Single . efficiencies reasonably high
tracks (note: reconstruction requires
» Ambiguity resolution (without refitting) pr > 900 MeV at central n!)
using non-ACTS tools m it efficiency within striking distance target
» Standard performance validation toolchain performance

All of this is pending thorough optimization & tuning!

Paul Gessinger 2024-07-17

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2023-04/

PLOTS-IDTR-2023-04

ACTS resolution

B Transverse impact parameter resolution = 220

directly from the ACTS CKF (no refitting) 2 2% e o etminary é

B Produces results compatible with the ® IGOEE gg@éﬁf&mﬁﬂ24-0-12 3
standalone Kalman Filter a0 200, Trhpy 1 G He

» Caveats: no smoothing, no in-fit 120:#»* ‘4”‘*72
measurement calibration 1gg§ b RE

» KF independently validated against the o) " et 3
ATLAS workhorse: the global y? fitter 201 “A‘A‘“‘%Mw»m s -

® Resolution here mainly due to e et
composition of track population under GoEoE e e

study

Paul Gessinger

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2023-04/

Conclusion

B Three productive years with EP R&D
®m Great exchange with other WPs, especially calorimetry on OpenDataDetector!
B ACTS library saw lots of developments during that time!

® Monitoring and testing infrastructure has greatly expanded

» Reproducibility tests for all workflows
» Increased trust in results obtained
» Critical for ATLAS integration

B |n parallel: support of developments for GPU tracking

= Transitioned to LD Staff with WP2 (ATLAS) in the Next Generation Triggers
project
= Will keep working on ACTS, keep in touch!

Paul Gessinger 2024-07-17

	Python bindings in the Examples
	Continuous integration developments
	FPE monitoring
	EDM4hep + PODIO integration
	Vertexing refactoring
	First public ATLAS+ACTS performance results

