
AdePT Status Report
EP R&D Software Working Group Meeting

18 Sep 2024

1

Project Targets

● Understand usability of GPUs for general particle transport simulation
○ Seeking potential speed up and/or usage of available GPU resources for HEP simulation

● Provide GPU-friendly simulation components
○ Physics, geometry, field, but also data model and workflow

● Integrate in a hybrid CPU-GPU Geant4 workflow

2

GPU Simulation components

● Physics: G4HepEM
○ G4HepEM is a compact rewrite of EM processes, focusing on performance and targeted at

HEP detector simulation applications
○ It was adapted for use on the GPU

● Geometry: VecGeom
○ GPU adaptation built on top of the original VecGeom GPU/CUDA support
○ Includes several GPU-focused improvements, like an optimised navigation state system, and

a BVH navigator.
● Magnetic Field: Work in progress on a Runge Kutta field propagator

○ Currently only a uniform field with a helix propagator is validated

3

Recent developments

● New method for Geant4 integration

● New method for scoring

● Refactoring of AdePT into a library
○ Previously, the project consisted on a series of mostly independent examples
○ There has been a major refactoring to reorganise the project into a library, simplifying

integration into external applications
○ Example integration with the GeantVal HGCAL Test Beam app

● Gaussino Integration

● Progress towards an asynchronous AdePT backend

● Major development in VecGeom’s Surface geometry model

4

Geant4 Integration

● Previously AdePT integrated into Geant4 applications using the
Fast-simulation hooks

○ They provided an easy way to define a region for GPU transport
○ However, this approach is not flexible when trying to do GPU transport in multiple regions or

even the complete geometry

● A new integration approach uses a specialized G4VTrackingManager
○ Much more customizable than the Fast-simulation hooks
○ Simplifies the integration from the user’s point of view

5

Geant4 Integration

● AdePT Integration using the specialized AdePT Tracking Manager

○ The user only needs to register the AdePTPhysicsConstructor in their physics list

○ AdePT can be configured through an API, for simplicity we also provide several macro
commands for this

○ We recently provided an example integration with the HGCAL Test-beam application developed
by Lorenzo Pezzotti for geant-val, which can be seen in this PR

■ Besides the CMake integration of AdePT, there are minimal changes needed in the user
application

6

https://github.com/geant-val/HGCALTB/pull/19/files

Scoring

● Previously, the AdePT kernels included a simplified scoring that was done on
device

○ Only the final information about Edep per volume was returned
○ The main motivation was avoiding the overhead of regularly sending information back to the host
○ One of the main questions about scoring on device is how to implement more realistic scoring

codes
● The current approach is sending back hit information, and calling the

user-defined sensitive detector code on CPU
○ No significant overhead has been observed
○ No changes to the SD code are needed
○ The information retrieved from the GPU should cover most use cases
○ In case of complex scoring code however, this reduces the code fraction that can be accelerated

on GPU

7

Gaussino Integration

● Gaussino is a framework allowing to configure and to steer the different phases of
detector simulation

● It provides wrappers for the Geant4 physics constructors and allows to build the
physics list (using the Geant4 modular physics list mechanism) using a simple
Python configuration

GaussinoSimulation(
 PhysicsConstructors=[
 "GiGaMT_AdePTPhysics",
 "GiGaMT_G4EmStandardPhysics",
 "GiGaMT_G4EmExtraPhysics",
 "GiGaMT_G4DecayPhysics",
 "GiGaMT_G4HadronElasticPhysics",
 "GiGaMT_G4HadronPhysicsFTFP_BERT",
 "GiGaMT_G4StoppingPhysics",
 "GiGaMT_G4IonPhysics",
 "GiGaMT_G4NeutronTrackingCut"])

● Gaussino has now been extended with such a
wrapper for the AdePTPhysicsPhysicsConstructor
(see slide 6)

● this allows to run Geant4+AdePT simulation by
simply adding the appropriate line in the Python
configuration

8

Gaussino integration

● Additional AdePT configuration can be passed through the Gaussino wrapper for
Geant4 configuration macros

GiGaMTRunManagerFAC("GiGaMT.GiGaMTRunManagerFAC").InitCommands = [

 "/adept/setVecGeomGDML calochallenge.gdml",

 "/adept/addGPURegion CaloRegion" #"/adept/setTrackInAllRegions true"]

● Using the scoring mechanism discussed on slide 7
○ AdePT reads which volumes in Gaussino (Geant4 geometry) are sensitive and marks them for

the GPU
○ Scores the energy depositions in those volumes
○ Sends them back to the host and calls the appropriate Gaussino sensitive detectors to create

hits as in a normal Geant4 simulation
● No modification to the user scoring code are (in principle) required

9

Gaussino integration - Calo Challenge setup

● Gaussino - AdePT integration has
been successfully used for the Calo
Challenge setup

● Physics results show a very good
agreement with Geant4

● In events of 1000 x 1GeV gammas:

○ x7 speedup in single-thread mode
○ x5 speedup with 4 threads

● If there are enough particles sent to
the GPU, the gains can be significant

○ these numbers can be considered as
upper limits for real events

10

Gaussino integration - issues and next steps

● AdePT integration through Gaussino works out of the box except…
○ When user code expects to have access to full MCtruth information associated to the hits

■ We assign the hits to the particle which entered the GPU region
● More sophisticated approaches possible but need to be application-specific

○ When user code relies on custom ‘user track information’ attached to tracks
■ We can’t carry it over in the GPU regions, so some specific approaches need to be

adopted
● Next steps

○ Currently working on full LHCb setup with AdePT integrated through Gaussino
■ Working fine out of the box, with all LHCb sensitive detectors and monitoring functioning

● Debugging some discrepancy in the number of hits
○ Probably due to some cuts

○ Tests with min-bias events on the way

11

Major Issues

● We have identified two major performance bottlenecks: Geometry and kernel
scheduling

○ The current solid-based geometry has two main issues on GPU:
■ The relatively large number of solid types causes warp divergence
■ The code is complex and register-hungry, which limits the maximum occupancy

○ The current approach to kernel scheduling blocks the calling thread while the GPU transports
a batch of particles

■ This has a very visible effect when the GPU is saturated

12

Current performance results

● Previous AdePT performance results were obtained using electron-only
events

○ Good for showing the potential speedup in an ideal scenario, but not realistic

● The current version of AdePT has been benchmarked with TTbar events
○ The tests shown here were done using the CMS2018 geometry, transporting particles on GPU

across the entire detector

13

CMS Run2, TTbar, full detector EM transport on the
GPU, No field, Nvidia A100, 1-16 Threads

► For low numbers of threads, offloading
the EM transport to the GPU gives
some speedup, which decreases as the
number of CPU workers increases and
the GPU becomes more saturated.

14

CMS Run2, TTbar, full detector EM transport on the
GPU, No field, Nvidia A100, 1-96 Threads

● At a certain point the GPU becomes
saturated. Geometry is a major factor in
how early this happens

● Due to the current way of scheduling the
kernel launches, this means that the GPU
starts blocking the CPU threads

○ The Geant4 worker is currently
steering the GPU loop, being idle
while the GPU kernels are running

● More research into non-blocking
scheduling strategies is ongoing

15

Asynchronous kernel scheduling

● Currently, CPU threads track particles across the geometry, and buffer EM
particles entering marked GPU regions

● When the buffer is full, the thread triggers the transport on GPU
○ The caller blocks until the GPU finishes tracking

● As long as the GPU is not saturated this is inefficient, but we still see a
speedup

● However when the GPU becomes slower, it stops the CPU from tracking
particles in other regions

16

Asynchronous kernel scheduling

● Asynchronous scheduling prototype

● Only one instance of AdePT running in the
background

● It continuously runs the transport loop

● All G4 workers communicate with AdePT
asynchronously

○ Host threads can continue with CPU work (e.g. Hadrons)
while transport runs in the background

17

G4
Worker AdePT

G4
Worker AdePT

G4
Worker AdePT

G4
WorkerG4
WorkerG4
Worker AdePT

Asynchronous kernel scheduling

● Promising results in early tests

● In this example, the GPU was never
saturated

● The single-threaded speedup is
preserved when increasing the
number of threads

18

● recursive calls, virtual functions, complicated algorithms high register and stack
usage low occupancy on GPU

● very different complexity per solid high divergence
● uncoalesced memory accesses high latency
● relies on small pushes for knowing in which volume one is requires double precision

VecGeom solid model is a huge bottleneck on GPU

19

Dispatcher
(virtual)

Box

Tube

Cone

Polyhedron

Significant divergence in the solid model

VecGeom surface model optimized for GPUs

● recursive calls, virtual functions, less complicated algorithms lower register and
stack usage higher occupancy on GPU?

● reduced complexity per surface lower divergence?
● uncoalesced memory accesses high latency (intrinsic to geometry)
● State is known by navigation, no pushes required, enables potential use of mixed

precision

Reduced divergence using surfaces

Dispatcher
(virtual)

Box

Tube

Cone

Polyhedron

Significant divergence in the solid model

VecGeom uses a bounded surface approach

● 3D bodies represented as Boolean
operation of half-space CommonSurfaces

○ First and second order, infinite
○ Just intersections for convex primitives

e.g. box = h0 & h1 & h2 & h3 & h4 & h5

● Storing the solid imprint (frame) as a
bounded FramedSurface

21

6x (planar half-space +
window frame)

h0

h1

h2 h3

h5

h4

All solids supported

22

Conversion time and memory footprint under control

touchables
[million]

conversion
time [s]

memory
[MB]

cms_2018 2.1 5.1 307

cms_TB_HGCAL 0.06 0.8 51.4

cms_2026D110 13.1 59.8 673

LHCb_Upgrade 18.5 92.8 173

LHCb_ECal_HCal 18.4 0.8 6.7

ATLAS_EMEC 0.08 1.4 132

CMS HGCAL Test Beam

CMS 2026 D110

LHCb ECal HCal ATLAS EMEC
Correctness tested with randomized raytracing

● Bounding Volume Hierarchies (BVH) are used to speed up collision detection within 3D
objects. Number of checks scale with Log(n)

● VecGeom has a BVH navigation algorithm for the solids model

● Original BVH adapted using the bounding boxes of surfaces

23

HGCAL Test Beam LHCb Calorimeters CMS 2026 D110

Looper 1.097 s 3.007 s 26.78 s

With BVH 0.226 s 1.006 s 2.60 s

Speedup 4.9x 3.0x 10.3x

Run time of ray tracing with 10M rays

BVH acceleration structure for factors of speedup

Surface model still slightly slower than solid model

24

AdePT
HGCAL Test beam: 100 primary electrons with 10 GeV

Solid model: 2.62 s
Surface model: 2.77 s

LHCb calorimeters: 8 ttbar events

Solid model: 21.22 s
Surface model: 26.25 s

Why slower after all the advertisement?

Ongoing optimizations

25

Lower register usage?
AdePT is using a single kernel which is still at the maximum registers / thread

Kernel must be split (separate physics, geometry, magnetic field etc)

Mixed precision: 2x speedup in HGCAL TestBeam over solid model in raytracing due
to 128 registers/thread breakpoint (work in progress, not fully correct)

FindNextVolume Relocation Max. Occupancy

Solids 256 220 16%

Surfaces (double) 146 142 25%

Surfaces (mixed) 123 122 33%

26

Lower divergence?

Reduced divergence using surfaces

Dispatcher
(virtual)

Box

Tube

Cone

Polyhedron

Significant divergence in the solid model

Ongoing optimizations

27

Lower divergence?

Boolean solids can have virtual surfaces require full logic evaluation of all surfaces expensive!
Solution: reduce number of boolean hits by marking “safe” surfaces at construction

Reduced divergence using surfaces

Dispatcher
(virtual)

Box

Tube

Cone

Polyhedron

Significant divergence in the solid model

Boolean Boolean

Ongoing optimizations

28

Lower divergence?

● Overlaps in the geometry lead to wrong results
● Correctness achieved with overlap detection + relocation
● Relocation expensive & source of divergence

Other sources of divergence need to be further evaluated
(different BVH tree, different amount of frames per surface)

Box 2

Box 1

Missing the overlapping
entering surface leads to
missing Box 2 entirely

Ongoing optimizations

29

Memory accesses pattern?

Surface model seems to do worse than solid model:

● Memory access random in both cases but solid model seems to do more compute
per access

● Surface model seems to use only a small fraction of the 32 bytes per memory
transaction

Low level solutions:

● improve memory read per memory transaction,
● improve compute per memory read (recomputing over storing data)

Ongoing optimizations

Summary and outlook

30

AdePT can run complex setups and has been validated.

Two major bottlenecks were identified:

1. Kernel scheduling
● Asynchronous kernel scheduling very promising, further optimization in progress
● Currently testing kernel split to increase occupancy

2. Geometry
● VecGeom surface model has drastically improved over the last month, still slightly

slower than solid model.
● Promising avenue with mixed precision
● Many other optimizations underway

31

