
Heterogeneous frameworks current status

Mateusz Fila, Benedikt Hegner (CERN EP-SFT)
Oleksandr Shchur (Ukrainian Catholic University)
Josh Ott (North Carolina State University)
EP R&D Software Working Group Meeting
20.11.2024

Task: heterogeneous frameworks

People:

CERN EP-SFT:
• Mateusz Fila - fellow

• Benedikt Hegner - staff

Students:
• Oleksandr Shchur - Ukrainian Remote Student

• Josh Ott - Summer Student Programme 2024

Connections with other CERN activities
• Participating in discussions of NextGenTrigger Task 1.7: Common software
developments for heterogeneous architectures.

• Following the developments in scheduling in Gaudi and Athena

Mateusz Fila | EP-SFT | EP R&D Software Working Group Meeting | Heterogeneous frameworks current status 2

Event-processing application frameworks

Many HEP domain specific
applications follow similar concept:
For each event:
• Load event data
• Checkout non-event data,
meta-data

• Apply transformations, filters
• Write output

Frameworks (Gaudi, CMSSW, …)
support creating such application by
providing:

• Execution engine
• Configuration layer
• Event data, non-event data,
meta-data management

• Shared resources, services
• …

Mateusz Fila | EP-SFT | EP R&D Software Working Group Meeting | Heterogeneous frameworks current status 3

Heterogeneous frameworks
A few decades of experimental
framework evolution:

• Single-process, single-thread
event loop

• Parallel event processing with
multiple processes

• Parallel event processing with
multiple threads

• Gradual introduction of offload
to accelerators and multi-node
super-frameworks

Our R&D project:
• Explore new libraries and
systems for heterogeneous
computing

• Prototype new heterogeneous
schedulers starting from a
greenfield

• Use realistic workflows extracted
from the current frameworks
used by the LHC experiments

Mateusz Fila | EP-SFT | EP R&D Software Working Group Meeting | Heterogeneous frameworks current status 4

Workflow description

Data-flow graph

Directed acyclic graph (DAG) describing data
dependencies between data transformations.
A data-flow graph consists of:

• Algorithms - vertices describing the
transformations (rectangular shape)

• Data objects - vertices describing the
data (oval shape)

• Directed edges representing dependency
relation

ConditionsLoader

BeamSpot

EventReader

EventInfo TrackCollection

PrimaryVertexFinder

VertexCandidates

Mateusz Fila | EP-SFT | EP R&D Software Working Group Meeting | Heterogeneous frameworks current status 5

Control-flow graph

DAG or subgraphs describing non-data
dependencies and conditional scheduling of
the algorithms.

Sequential, OR logic, lazy evaluation

Parallel, AND logic, eager evaluation

WriterAlg

ReaderAlg

AlgB AlgCAlgA

Mateusz Fila | EP-SFT | EP R&D Software Working Group Meeting | Heterogeneous frameworks current status 6

Workflows extracted

• ATLAS standard reconstruction
test job (q449)

• ∼800 algorithms
• ∼3700 data-objects

• FCC ALLEGRO full simulation
• Artificial workflows featuring
specific scenarios
(sequential and parallel chains,
complex dependencies, …)

Extracted information:
• data-flow graph
• control-flow graph
• algorithms’ timings

Data-object memory footprints
measured for selected workflows.

Mateusz Fila | EP-SFT | EP R&D Software Working Group Meeting | Heterogeneous frameworks current status 7

Measuring data-object memory footprints

Data-object memory footprints

Memory footprints information is used as a baseline
when building mockup workflows as they affect the
data-transfers in heterogeneous setups

• Most current compute accelerators utilize
relatively slow buses

• Communication between nodes is usually
even slower

• Moving data takes significant time, especially
introducing latency

CPU

Task A

Task B

Memory
transfer

GPU

Task C

Task E

GPU

CPU Memory
transfer

Task D

CPU

Mateusz Fila | EP-SFT | EP R&D Software Working Group Meeting | Heterogeneous frameworks current status 8

Data-object memory footprints – challenges

It’s difficult to define a size of
relevant data as often the
data-model components are
connected
Memory footprint can be affected by:

• type size
• memory layout and alignment
• ownership
• indirections

Approximate values are enough for
the use case

struct MCHit {
uint cellID;
Vector3 position;
set<HitContribution> contribs;

};

struct HitContribution {
uint pdg;
float deposit;
Particle* particle;

};

Mateusz Fila | EP-SFT | EP R&D Software Working Group Meeting | Heterogeneous frameworks current status 9

Extracting memory footprints
No silver bullet solution for all the data
models:

• Individual object info not accessible
from heap profilers like Massif

• Specialized tools such as
limited to working with

static libraries

• Can be inferred from container size
for POD-based data models such as
key4hep/EDM4hep

• Tracking malloc allocations -
overheads, assumptions about
ownership and indirections

class size [B]

AnyDataWrapper<int> 8
AnyDataWrapper<double> 8
AnyDataWrapper<Vector3F> 24
AnyDataWrapper<Vector4F> 32

We managed to extract reasonably
accurate measures for some of the
workflows

Mateusz Fila | EP-SFT | EP R&D Software Working Group Meeting | Heterogeneous frameworks current status 10

https://objectintrospection.org/
https://github.com/key4hep/EDM4hep

Scheduling with new task-parallel libraries

Taskflow

taskflow/taskflow
“A General-purpose Task-parallel
Programming System — write parallel
programs with high performance and
simultaneous high productivity”

• Advertised as a modern
replacement for oneTBB

• Actively developed and
maintained, stable release 3.8

• Modern C++ API based on tasks
• Developed at the University of
Wisconsin–Madison

Mateusz Fila | EP-SFT | EP R&D Software Working Group Meeting | Heterogeneous frameworks current status 11

https://github.com/taskflow/taskflow

Selected taskflow features

• Single node scheduling
• No built-in data-handling
• Built-in support for
parallel-pipeline pattern

• Built-in support for GPU-offloading and
conditional tasks, features of high
importance for event-processing
frameworks but with limited support in
oneTBB

MuonBuilder

MuonsFilter

MergeMuonsAlg

true

filterFailed

false

Mateusz Fila | EP-SFT | EP R&D Software Working Group Meeting | Heterogeneous frameworks current status 12

Building demonstrator with taskflow

Selected highlights from developing the demonstrator project for
scheduling with taskflow m-fila/taskflow-fwk :

• Excellent documentation, very clean API
• Require some effort to reproduce Gaudi decision-hub logic
• Still need to manually take care of CUDA streams and devices when
using taskflow cudaFlow API

• Currently no built-in support for coroutine-like concurrency with
resumable tasks

Mateusz Fila | EP-SFT | EP R&D Software Working Group Meeting | Heterogeneous frameworks current status 13

https://github.com/m-fila/taskflow-fwk

Scheduler demonstrator using taskflow

• Single process, no-GPU
• Mocking-up ATLAS
reconstruction workflow with
CPUCrunchers

• 4 worker threads

• 3 events total

• 2 concurrent event slots
taskflow_demo --threads 4 --slots 2 --event-count 3
--logs-trace trace.json --dfg data/ATLAS/q449/df.graphml

Mateusz Fila | EP-SFT | EP R&D Software Working Group Meeting | Heterogeneous frameworks current status 14

Current status

• Implemented data-flow graph scheduling with taskflow
• Working on expressing custom control-flow logic implemented in
Gaudi with taskflow conditional tasks

• Investigating efficient offloading with taskflow cudaFlow API
• No major issues encountered so far

Mateusz Fila | EP-SFT | EP R&D Software Working Group Meeting | Heterogeneous frameworks current status 15

Framework demonstrator in Julia

Demonstrator project

FrameworkDemo.jl key4hep/key4hep-julia-fwk :

• Explore possibilities of creating an event-processing application
framework in Julia

• Not “just” port existing framework to Julia
• First try high level approach using available
task schedulers, parallel execution frameworks in Julia

• Initial goal: demonstrate scheduling realistic HEP workflow
in Julia using Dagger.jl package

Mateusz Fila | EP-SFT | EP R&D Software Working Group Meeting | Heterogeneous frameworks current status 16

https://github.com/key4hep/key4hep-julia-fwk

Dagger.jl

JuliaParallel/Dagger.jl
“Dagger.jl is a framework for parallel
computing across all kinds of
resources, like CPUs and GPUs, and
across multiple threads and multiple
servers.”

• Under active development,
current version 0.18.13,
unstable public API

• Active and responsive
community, weekly user
meetings, active channel at
Julia’s slack

• Developed at MIT

Mateusz Fila | EP-SFT | EP R&D Software Working Group Meeting | Heterogeneous frameworks current status 17

https://github.com/key4hep/key4hep-julia-fwk

Selected Dagger features

• Single thread used to run the core scheduler,
tasks executed in workers

• Hierarchical worker pool aware of multiple threads, processes
and devices

• Configurable worker pool, works out of the box with Julia arguments
--threads, --procs, --machine-file

• Supports nested parallelism
• Built-in distributed data-handling

Mateusz Fila | EP-SFT | EP R&D Software Working Group Meeting | Heterogeneous frameworks current status 18

Building demonstrator with Dagger

Tried two APIs for expressing algorithm dependencies:

Task dependencies:

task = Dagger.@spawn Producer()
Dagger.@spawn Consumer(task)

Overheads and boilerplate to express
algorithms producing multiple
data-objects

Data dependencies:

object = DataObject()
Dagger.spawn_datadeps() do

Dagger.@spawn Producer(
Out(object))

Dagger.@spawn Consumer(
In(object))

end
Encountered scaling issues with
scheduling using multiple processes

Mateusz Fila | EP-SFT | EP R&D Software Working Group Meeting | Heterogeneous frameworks current status 19

Mockup application demonstrator

Trace from ATLAS reconstruction data-flow mockup:

Room for improvements: currently ∼ 3 times slower than the taskflow
demonstrator, noticeable overheads for short (<10 ms) tasks

julia -t 3 --project bin/schedule.jl
--logs-trace trace.json data/ATLAS/q449/df.graphml

Mateusz Fila | EP-SFT | EP R&D Software Working Group Meeting | Heterogeneous frameworks current status 20

Event pipelining

Parallel execution of multiple events resembles
parallel-pipeline pattern

• Not yet natively supported by
Dagger

• Currently demonstrator is
spawning an independent
task-graph for each event

• Worth investigating upcoming
Dagger “streaming tasks” aimed
at repeatable tasks

Mateusz Fila | EP-SFT | EP R&D Software Working Group Meeting | Heterogeneous frameworks current status 21

Event pipelining example

Single event

• Single process
• 1 scheduler thread
• 3 worker threads

• Sequential chain of algorithms
• 10 events total
• 3 concurrent events

We still need to understand and minimize the overheads

julia --project -t 4 bin/schedule.jl --event-count 10
--max-concurrent 5 data/demo/sequential/df.graphml

Mateusz Fila | EP-SFT | EP R&D Software Working Group Meeting | Heterogeneous frameworks current status 22

Distributed scheduling example

CPU-crunching calibration per process

Local

Remote

Remote

• 1 local process
• 2 remote processes over SSH

• Sequential chain of algorithms
• 16 events total, 8 concurrent events

Proof of principle with many aspects to improve: minimizing data-migrations, efficient
communication protocols, compatibility with cluster managers…
julia --project -L setup.jl --machine-file=machines.txt -t 3
bin/schedule.jl --event-count 16 --max-concurrent 8
data/demo/sequential/df.graphml

Mateusz Fila | EP-SFT | EP R&D Software Working Group Meeting | Heterogeneous frameworks current status 23

Interacting with Dagger community

Dagger.jl is very ambitious and
not everything is working without problems…

…but we had positive experience working
on our issues with the Dagger developers:

• Opened issues - answered, fixed
• Requested new features - implemented task names
• Opened PRs - timely reviewed
• Problems, questions - answered on slack or over zoom

Mateusz Fila | EP-SFT | EP R&D Software Working Group Meeting | Heterogeneous frameworks current status 24

Summary and outlook

Summary

Heterogeneous frameworks R&D:

• Extracted information about workloads used by the experiments
• Ongoing development of single-node demonstrator using taskflow
• Investigating scheduling in new programming languages

• Demonstrator for framework in Julia using Dagger.jl

• No critical limitations identified so far,
investigation with both demonstrators will continue

Mateusz Fila | EP-SFT | EP R&D Software Working Group Meeting | Heterogeneous frameworks current status 25

Outlook

Phase I:

• Continue investigating demonstrators with taskflow and Dagger
• Evaluate schedulers’ throughput and scaling

Phase II:

• Shift focus from single-node schedulers to distributed schedulers
• Study energy-efficienct scheduling with heterogenous nodes
• Implementation strategies for next generation frameworks

Mateusz Fila | EP-SFT | EP R&D Software Working Group Meeting | Heterogeneous frameworks current status 26

Taskflow-demonstrator m-fila/taskflow-fwk
FrameworkDemo.jl key4hep/key4hep-julia-fwk

• Mateusz Fila, CERN EP-SFT
mateusz.jakub.fila@cern.ch

• Benedikt Hegner, CERN EP-SFT
• Oleksandr Shchur, Ukrainian Catholic University,
CERN Ukrainian Remote Student Program

• Josh Ott, North Carolina State University,
CERN Summer Student Programme

The work has been supported by the CERN Strategic Programme on
Technologies for Future Experiments. https://ep-rnd.web.cern.ch/

https://github.com/mfila/taskflow-fwk
https://github.com/key4hep/key4hep-julia-fwk
mailto:mateusz.jakub.fila@cern.ch

	Workflow description
	Measuring data-object memory footprints
	Scheduling with new task-parallel libraries
	Framework demonstrator in Julia
	Summary and outlook

