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Task: heterogeneous frameworks

People:

CERN EP-SFT:
• Mateusz Fila - fellow

• Benedikt Hegner - staff

Students:
• Oleksandr Shchur - Ukrainian Remote Student

• Josh Ott - Summer Student Programme 2024

Connections with other CERN activities
• Participating in discussions of NextGenTrigger Task 1.7: Common software
developments for heterogeneous architectures.

• Following the developments in scheduling in Gaudi and Athena
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Event-processing application frameworks

Many HEP domain specific
applications follow similar concept:
For each event:
• Load event data
• Checkout non-event data,
meta-data

• Apply transformations, filters
• Write output

Frameworks (Gaudi, CMSSW, …)
support creating such application by
providing:

• Execution engine
• Configuration layer
• Event data, non-event data,
meta-data management

• Shared resources, services
• …

Mateusz Fila | EP-SFT | EP R&D Software Working Group Meeting | Heterogeneous frameworks current status 3



Heterogeneous frameworks
A few decades of experimental
framework evolution:

• Single-process, single-thread
event loop

• Parallel event processing with
multiple processes

• Parallel event processing with
multiple threads

• Gradual introduction of offload
to accelerators and multi-node
super-frameworks

Our R&D project:
• Explore new libraries and
systems for heterogeneous
computing

• Prototype new heterogeneous
schedulers starting from a
greenfield

• Use realistic workflows extracted
from the current frameworks
used by the LHC experiments
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Workflow description



Data-flow graph

Directed acyclic graph (DAG) describing data
dependencies between data transformations.
A data-flow graph consists of:

• Algorithms - vertices describing the
transformations (rectangular shape)

• Data objects - vertices describing the
data (oval shape)

• Directed edges representing dependency
relation

ConditionsLoader

BeamSpot

EventReader

EventInfo TrackCollection

PrimaryVertexFinder

VertexCandidates
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Control-flow graph

DAG or subgraphs describing non-data
dependencies and conditional scheduling of
the algorithms.

Sequential, OR logic, lazy evaluation

Parallel, AND logic, eager evaluation

WriterAlg

ReaderAlg

AlgB AlgCAlgA
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Workflows extracted

• ATLAS standard reconstruction
test job (q449)

• ∼800 algorithms
• ∼3700 data-objects

• FCC ALLEGRO full simulation
• Artificial workflows featuring
specific scenarios
(sequential and parallel chains,
complex dependencies, …)

Extracted information:
• data-flow graph
• control-flow graph
• algorithms’ timings

Data-object memory footprints
measured for selected workflows.
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Measuring data-object memory footprints



Data-object memory footprints

Memory footprints information is used as a baseline
when building mockup workflows as they affect the
data-transfers in heterogeneous setups

• Most current compute accelerators utilize
relatively slow buses

• Communication between nodes is usually
even slower

• Moving data takes significant time, especially
introducing latency

CPU

Task A

Task B

Memory
transfer

GPU

Task C

Task E

GPU

CPU Memory
transfer

Task D

CPU
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Data-object memory footprints – challenges

It’s difficult to define a size of
relevant data as often the
data-model components are
connected
Memory footprint can be affected by:

• type size
• memory layout and alignment
• ownership
• indirections

Approximate values are enough for
the use case

struct MCHit {
uint cellID;
Vector3 position;
set<HitContribution> contribs;

};

struct HitContribution {
uint pdg;
float deposit;
Particle* particle;

};
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Extracting memory footprints
No silver bullet solution for all the data
models:

• Individual object info not accessible
from heap profilers like Massif

• Specialized tools such as
limited to working with

static libraries

• Can be inferred from container size
for POD-based data models such as
key4hep/EDM4hep

• Tracking malloc allocations -
overheads, assumptions about
ownership and indirections

class size [B]

AnyDataWrapper<int> 8
AnyDataWrapper<double> 8
AnyDataWrapper<Vector3F> 24
AnyDataWrapper<Vector4F> 32

We managed to extract reasonably
accurate measures for some of the
workflows
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Scheduling with new task-parallel libraries



Taskflow

taskflow/taskflow
“A General-purpose Task-parallel
Programming System — write parallel
programs with high performance and
simultaneous high productivity”

• Advertised as a modern
replacement for oneTBB

• Actively developed and
maintained, stable release 3.8

• Modern C++ API based on tasks
• Developed at the University of
Wisconsin–Madison
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Selected taskflow features

• Single node scheduling
• No built-in data-handling
• Built-in support for
parallel-pipeline pattern

• Built-in support for GPU-offloading and
conditional tasks, features of high
importance for event-processing
frameworks but with limited support in
oneTBB

MuonBuilder

MuonsFilter

MergeMuonsAlg

true

filterFailed

false
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Building demonstrator with taskflow

Selected highlights from developing the demonstrator project for
scheduling with taskflow m-fila/taskflow-fwk :

• Excellent documentation, very clean API
• Require some effort to reproduce Gaudi decision-hub logic
• Still need to manually take care of CUDA streams and devices when
using taskflow cudaFlow API

• Currently no built-in support for coroutine-like concurrency with
resumable tasks
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https://github.com/m-fila/taskflow-fwk


Scheduler demonstrator using taskflow

• Single process, no-GPU
• Mocking-up ATLAS
reconstruction workflow with
CPUCrunchers

• 4 worker threads

• 3 events total

• 2 concurrent event slots
taskflow_demo --threads 4 --slots 2 --event-count 3
--logs-trace trace.json --dfg data/ATLAS/q449/df.graphml
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Current status

• Implemented data-flow graph scheduling with taskflow
• Working on expressing custom control-flow logic implemented in
Gaudi with taskflow conditional tasks

• Investigating efficient offloading with taskflow cudaFlow API
• No major issues encountered so far
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Framework demonstrator in Julia



Demonstrator project

FrameworkDemo.jl key4hep/key4hep-julia-fwk :

• Explore possibilities of creating an event-processing application
framework in Julia

• Not “just” port existing framework to Julia
• First try high level approach using available
task schedulers, parallel execution frameworks in Julia

• Initial goal: demonstrate scheduling realistic HEP workflow
in Julia using Dagger.jl package
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https://github.com/key4hep/key4hep-julia-fwk


Dagger.jl

JuliaParallel/Dagger.jl
“Dagger.jl is a framework for parallel
computing across all kinds of
resources, like CPUs and GPUs, and
across multiple threads and multiple
servers.”

• Under active development,
current version 0.18.13,
unstable public API

• Active and responsive
community, weekly user
meetings, active channel at
Julia’s slack

• Developed at MIT
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https://github.com/key4hep/key4hep-julia-fwk


Selected Dagger features

• Single thread used to run the core scheduler,
tasks executed in workers

• Hierarchical worker pool aware of multiple threads, processes
and devices

• Configurable worker pool, works out of the box with Julia arguments
--threads, --procs, --machine-file

• Supports nested parallelism
• Built-in distributed data-handling
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Building demonstrator with Dagger

Tried two APIs for expressing algorithm dependencies:

Task dependencies:

task = Dagger.@spawn Producer()
Dagger.@spawn Consumer(task)

Overheads and boilerplate to express
algorithms producing multiple
data-objects

Data dependencies:

object = DataObject()
Dagger.spawn_datadeps() do

Dagger.@spawn Producer(
Out(object))

Dagger.@spawn Consumer(
In(object))

end
Encountered scaling issues with
scheduling using multiple processes
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Mockup application demonstrator

Trace from ATLAS reconstruction data-flow mockup:

Room for improvements: currently ∼ 3 times slower than the taskflow
demonstrator, noticeable overheads for short (<10 ms) tasks

julia -t 3 --project bin/schedule.jl
--logs-trace trace.json data/ATLAS/q449/df.graphml
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Event pipelining

Parallel execution of multiple events resembles
parallel-pipeline pattern

• Not yet natively supported by
Dagger

• Currently demonstrator is
spawning an independent
task-graph for each event

• Worth investigating upcoming
Dagger “streaming tasks” aimed
at repeatable tasks

Mateusz Fila | EP-SFT | EP R&D Software Working Group Meeting | Heterogeneous frameworks current status 21



Event pipelining example

Single event

• Single process
• 1 scheduler thread
• 3 worker threads

• Sequential chain of algorithms
• 10 events total
• 3 concurrent events

We still need to understand and minimize the overheads

julia --project -t 4 bin/schedule.jl --event-count 10
--max-concurrent 5 data/demo/sequential/df.graphml
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Distributed scheduling example

CPU-crunching calibration per process

Local

Remote

Remote

• 1 local process
• 2 remote processes over SSH

• Sequential chain of algorithms
• 16 events total, 8 concurrent events

Proof of principle with many aspects to improve: minimizing data-migrations, efficient
communication protocols, compatibility with cluster managers…
julia --project -L setup.jl --machine-file=machines.txt -t 3
bin/schedule.jl --event-count 16 --max-concurrent 8
data/demo/sequential/df.graphml
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Interacting with Dagger community

Dagger.jl is very ambitious and
not everything is working without problems…

…but we had positive experience working
on our issues with the Dagger developers:

• Opened issues - answered, fixed
• Requested new features - implemented task names
• Opened PRs - timely reviewed
• Problems, questions - answered on slack or over zoom
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Summary and outlook



Summary

Heterogeneous frameworks R&D:

• Extracted information about workloads used by the experiments
• Ongoing development of single-node demonstrator using taskflow
• Investigating scheduling in new programming languages

• Demonstrator for framework in Julia using Dagger.jl

• No critical limitations identified so far,
investigation with both demonstrators will continue
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Outlook

Phase I:

• Continue investigating demonstrators with taskflow and Dagger
• Evaluate schedulers’ throughput and scaling

Phase II:

• Shift focus from single-node schedulers to distributed schedulers
• Study energy-efficienct scheduling with heterogenous nodes
• Implementation strategies for next generation frameworks
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Taskflow-demonstrator m-fila/taskflow-fwk
FrameworkDemo.jl key4hep/key4hep-julia-fwk

• Mateusz Fila, CERN EP-SFT
mateusz.jakub.fila@cern.ch

• Benedikt Hegner, CERN EP-SFT
• Oleksandr Shchur, Ukrainian Catholic University,
CERN Ukrainian Remote Student Program

• Josh Ott, North Carolina State University,
CERN Summer Student Programme

The work has been supported by the CERN Strategic Programme on
Technologies for Future Experiments. https://ep-rnd.web.cern.ch/

https://github.com/mfila/taskflow-fwk
https://github.com/key4hep/key4hep-julia-fwk
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