

Accelerator & Technology Sector

Beams Department

Accelerator Beam Physics Group

# Particle Accelerators and Beam Dynamics

Foteini Asvesta

Eurolabs 2024

#### Disclaimer

#### Based on:

- Y. Papaphilippou: "Introduction to Accelerators"
- Summer student lectures:
  - B. Holzer, V. Kain, and M. Schaumann
- CERN accelerator school (CAS):
  - F. Tecker: "Longitudinal beam dynamics"
- Joint Universities Accelerator School (JUAS):
  - F. Antoniou, H. Bartosik and Y. Papaphilippou: "Linear imperfections" and "nonlinear dynamics"
- Books:
  - K. Wille: "The Physics of Particle Accelerators"
  - S.Y. Lee: "Accelerator Physics"
  - A. Wolski: "Beam Dynamics in High Energy Particle Accelerators"
  - H. Wiedemann: "Particle Accelerator Physics"

Images: cds.cern.ch

#### Overview

#### I. Introduction to Accelerators

#### II. Accelerator beam dynamics

- Transverse beam dynamics
  - Optics functions
  - Tune and resonances
- Longitudinal beam dynamics
  - Acceleration
  - Synchrotron motion

### Reminder – Synchrotron



#### The most common accelerator

- Fixed beam trajectory | magnetic field changes synchronous to the energy
- Magnets around the beam path to control the motion | bending (dipoles) & focusing (quadrupoles)
- Electric fields used to accelerate (RF cavity) the beam







How do particles move under the influence of these elements?

→ Transverse & Longitudinal Beam Dynamics

**Charges in electromagnetic fields** 



# Maxwell's equations for electromagnetism







electric field diverges from electric charges



 $\nabla \cdot \mathbf{B} = 0$ 

**Gauss law for magnetism** 

no isolated magnetic poles





Faraday's law of induction

changing magnetic fields produce electric fields



$$\nabla \times \mathbf{B} = \mu_0 \mathbf{j} + \frac{1}{c^2} \frac{\partial}{\partial t} \mathbf{E}$$

**Ampere-Maxwell law** 

changing electric fields and currents produce circulating magnetic fields

#### Lorentz force

Force acting on charged particles moving under the influence of electromagnetic fields

$$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$$

• Kinetic energy (T) change is caused by the **electric field** – *acceleration* 

$$\frac{dT}{dt} = \mathbf{v} \cdot \mathbf{F} = q\mathbf{v} \cdot (\mathbf{E} + \mathbf{v} \times \mathbf{B}) = q\mathbf{v} \cdot \mathbf{E}$$

- Horizontal component of the Lorentz force (particle moving on the longitudinal plane  $\mathbf{F_x} = q(E_x v_z B_y)$
- For high energy (relativistic limit):  $\upsilon_z \approx c \& \upsilon_z B_y >> E_x$  (1 T corresponding to 300 MV/m)
  - → Magnetic fields much more efficient for *steering*

#### Transverse motion – Field expansion



- In a synchrotron we want to study particles on the design orbit
- Magnetic fields are present all along s
- The magnetic field at the vicinity of the particle can be expanded as:

$$\frac{e}{p}B_{y}(x) = \frac{e}{p}B_{y0} + \frac{e}{p}\frac{dB_{y}}{dx}x + \frac{1}{2!}\frac{e}{p}\frac{d^{2}B_{y}}{dx^{2}}x^{2} + \frac{1}{3!}\frac{e}{p}\frac{d^{3}B_{y}}{dx^{3}}x^{3} + \cdots = 1$$

#### **Linear terms**

Dipole

Quadrupole

Sufficient terms for a synchrotron



### Transverse motion – Dipoles

In a circular accelerator of energy **E**, with **N** dipoles, each of length **L** 

• Bending angle: 
$$\theta = \frac{2\pi}{N}$$

• Bending radius: 
$$\rho = \frac{L}{\theta}$$

• Dipole field: 
$$B = 2\rho p/(qNl)$$

- → Choosing a dipole magnetic field: the length is determined (and vice versa)
- → For higher fields, smaller and fewer dipoles can be used
- → Ring circumference (cost) depends on field selection







7000 GeV Proton storage ring dipole magnets N = 1232 l = 15 m q = +1 e

$$\int B \, dl \approx N \, l \, B = 2\pi \, p / e$$

$$B \approx \frac{2\pi \ 7000 \ 10^9 eV}{1232 \ 15 \ m \ 3 \ 10^8 \frac{m}{s} \ e} = 8.3 \ Tesla$$

#### Transverse motion – Dispersion

#### **Reminder:**

- From the RF cavities | bunches formation:
  - The particles forming a bunch have a spread of momenta around the reference particle
  - $\rightarrow$  Off-momentum particles ( $\Delta p/p$ , with respect to the reference)





$$ightarrow$$
 Off-momentum particles:  $B(\rho + \Delta \rho) = \frac{P_0 + \Delta P}{q} \Rightarrow \frac{\Delta \rho}{\rho} = \frac{\Delta P}{P_0}$ 

- The off-momentum particles follow a different orbit than the reference!
- $\rightarrow$  The different orbit when  $\Delta p/p = 1$  is called: **Dispersion**





### Transverse motion – Quadrupoles

• Quadrupoles can have a focusing effect similar to lenses, where:  $\alpha = -\frac{y}{f}$ 

Quadrupole with field:  $(B_x, B_y) = G \cdot (y, x)$ 

and force:  $(F_x,F_y)=k\cdot (-x,y)$  ,  $k=rac{G}{B
ho}$ 

• Acts as a lens with focal length:  $f=rac{1}{k \cdot l_O}$ 

#### **Reminder:**

 Quadrupoles with a focusing effect in one plane have a defocusing in the other







#### Transverse motion - FODO

#### **Alternating gradient focusing:**

- Alternating focusing and defocusing lenses can have an overall focusing effect
- Combination of lenses with focal lengths,  $f_1$  and  $f_2$  in a distance d gives a focal length:

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 f_2}$$

• if  $f_1 = -f_2$ , we get an overall focusing effect:

$$\frac{1}{f} = \left| \frac{d}{f_1 f_2} \right|$$



#### **FODO** structure

- "Cell" of alternating focusing and defocusing elements (along with drifts, dipoles etc)
- Structure repeats itself giving a strong periodicity in the ring



#### Transverse motion – FODO



The equations of motion moving along the FODO structure:

$$x'' + \left(k(s) + \frac{1}{\rho(s)^2}\right)x = \frac{1}{\varrho(s)} \frac{\Delta p}{p}$$

**Quadrupole contribution** (strong focusing)

**Dispersive** contribution

**Dipole contribution** (weak focusing)

Setting 
$$K_x(s) = \left(k(s) + \frac{1}{\rho(s)^2}\right)$$

Setting  $K_x(s) = \left(k(s) + \frac{1}{\rho(s)^2}\right)$  and  $K_y(s) = -k(s)$  we obtain Hill's equations, with  $K_{x,y}(s)$  depending on the

position s and  $K_{x,y}(s+L) = K_{x,y}(s)$  periodic functions, where L is the periodicity

Solutions describe a quasi harmonic oscillation, where **amplitude**, **phase** (and **dispersion**) depend on the position

s in the ring

$$y(s) = \sqrt{\varepsilon_{y}\beta_{y}(s)} \cos(\varphi_{y}(s))$$

$$x(s) = \sqrt{\varepsilon_{x}\beta_{x}(s)} \cos(\varphi_{x}(s)) + O(s) \frac{\Delta p}{p}$$

#### Transverse motion – betatron oscillations





- Particles perform oscillations (betatron) around the design orbit
- The motion is bound from the **envelope**  $(\sqrt{\varepsilon_y \beta_y(s)})$ ,
  - $\beta_{\nu}(s)$ : beta function characteristic of the ring
  - $\varepsilon_y$ : **emittance** is a **constant** of the motion (Liouville's theorem: the area is preserved)
    - It defines an **ellipse in the phase space** (Courant-Snyder invariant)

$$\varepsilon_y = \gamma_y(s)y^2(s) + 2\alpha_y(s)y'(s)y(s) + 2\beta_y(s){y'}^2(s),$$
  
  $\alpha,\beta,y$ : optics functions

- It cannot be changed by the optics functions
- The envelope gives the beam size of a particle ensemble
- # of oscillations per turn, <u>tune:</u>  $Q = \frac{1}{2\pi} \int \frac{ds}{\beta(s)}$

#### Resonances

The tunes in the respective planes:  $(Q_x, Q_y)$ 

Define resonance conditions described by:  $mQ_x + nQ_y = l$ ,

- where m,n,l integers
- m|+|n| the resonance order
- If the above condition is satisfied:
  - Particle losses
  - Emittance increase

| Resonances               | Machine Periodicity |                |
|--------------------------|---------------------|----------------|
| Magnetic Field Component |                     |                |
|                          | Systematic          | Non Systematic |
| Skew                     |                     |                |
| Normal                   |                     |                |



# Magnetic Field Component



Normal components become skew when rotated by half the rotation symmetry

Normal Quadrupole

45° Rotation Skew Quadrupole





Normal Sextupole

30° Rotation

Skew Sextupole



Plots from:

T. Satogata et al., "Magnets and Magnet Technology", USPAS2013

# Machine Periodicity

Non-Systematic Resonance  $3Q_v = 13$ 





# Machine Periodicity





The errors **sum up** – strong resonance

#### Transverse motion – betatron resonances

Under normal conditions the emittance is preserved turn after turn:

 Observing the phase space turn-by-turn we get the emittance ellipse



In the presence of a strong **resonance**:

- Emittance of a particle on the 1st turn
- Emittance increases on the 2nd turn
- Emittance increases further on the 3rd turn

Emittance (and amplitude) will keep increasing until the particle is lost



#### Mitigation measures:

- 1. Careful tune choice avoid resonance condition
- 2. Higher order elements corrections to cancel the effect of the resonance

#### Transverse motion – phase space

The phase space gets distorted in the vicinity of driven res

- Changing our tune to approach a resonance:
  - Starting with well defined ellipses
  - Approaching the resonances forming islands depe







Used in PS Multi-Turn-Extraction

### Longitudinal motion - Acceleration

#### Reminder:

- Acceleration in a synchrotron is achieved in the RF cavities, using a voltage V
- During operations, we have a synchronous RF phase for which the energy gain fits the increase of the magnetic field at each turn. → condition for constant radius

• Energy gain per turn:

$$qV\sin\phi = qV\sin\omega_{RF}t$$

• synchronous phase:

$$\phi = \phi_s = const$$

 RF synchronism - frequency must be on the revolution frequency (1 turn around the ring):

$$\omega_{RF} = h\omega_{rev}$$



*h* (integer): harmonic number

- number of RF cycles per revolution
- Defines the maximum number of bunches in the synchrotron (available RF buckets)

# Longitudinal motion – $f_{RF}$ and $\phi_s$ change

During acceleration "*ramping*" energy & the magnetic field are changing:

- The revolution frequency changes:  $\omega(B, R_s)$
- From the synchronism condition RF frequency needs to follow (using  $p(t) = eB(t)\Gamma$ ,  $E^2 = (m_0c^2)^2 + p^2c^2$ ):

$$\frac{f_{RF}(t)}{h} = \frac{v(t)}{2\rho R_s} = \frac{1}{2\rho} \frac{ec^2}{E_s(t)} \frac{r}{R_s} B(t) = \frac{c}{2\rho R_s} \hat{1} \frac{B(t)^2}{(m_s e^2 / ecr)^2 + B(t)^2} \hat{y}^{\frac{1}{2}}$$

- Similarly, the phase,  $\phi_s$  needs to follow
- From Bp:  $(\Delta p)_{turn} = e\rho \dot{B}T_r = \frac{2\pi e\rho R\dot{B}}{\Rightarrow} (DE)_{turn} = (DW)_s = 2\rho erR\dot{B} = e\hat{V}\sin f_s$

Can be omitted at the relativistic limit where B >>  $m_0c^2/(ecr)$ 

 $\rightarrow \phi_s = \arcsin\left(2\pi\rho R \frac{\dot{B}}{\hat{V}_{ss}}\right)$ 

# Longitudinal motion – Dispersion effects

#### Reminder:

Off-momentum particles follow a different orbit than the design: *Dispersion* 

• The *orbit length* is different – the *momentum compaction factor* shows the variation of the orbit length with respect to the variation of the momentum:

$$\alpha_c = \frac{dR/_R}{dp/_p}$$

• From different momentum, different velocity & different path: different time (& revolution frequency) to arrive to the RF cavity – *slip factor*, variation of the revolution frequency with respect to the variation of the momentum:

$$h = \frac{\mathrm{d} f_r}{\frac{f_r}{\mathrm{d} p}}$$

# Longitudinal motion – Dispersion effects

The revolution frequency change depends both on the orbit and velocity change:

$$\frac{df_r}{f_r} = \frac{d\beta}{\beta} - \frac{dR}{R} = \frac{d\beta}{\beta} - \alpha_c \frac{dp}{p}$$
• For  $\frac{d\beta}{\beta}$ :  $p = mv = bg \frac{E_0}{c}$   $\Rightarrow \frac{dp}{p} = \frac{db}{b} + \frac{d(1-b^2)^{-\frac{1}{2}}}{(1-b^2)^{-\frac{1}{2}}} = \underbrace{(1-b^2)^{-1} \frac{db}{b}}$ 

• Finally, we get the relation between momentum compaction and slip factor:

$$\eta = \frac{1}{\gamma^2} - \alpha_c$$

• The energy in which  $\eta = 0$ , is called **transition energy**:

$$\gamma_t = \frac{1}{\sqrt{\alpha_c}}$$

- $\triangleright$  Below  $\gamma_t$  ( $\eta$ >0) the arrival at the cavity depends on the velocity
- $\triangleright$  At  $\gamma_t$  ( $\eta$ =0) the velocity change and the path length change compensate each other
- $\rightarrow$  Above  $\gamma_t$  (n<0) the arrival at the cavity depends only on the path length

# Longitudinal motion – Phase stability

#### Reminder:

- Phase focusing: bunches are formed as particles arriving at the cavity before or after the synchronous particle are "brought closer" to it
- This stands for  $\phi_s < \pi/2$  as:
  - $M_1 \& N_1$  will move towards  $P_1$  => **stable**
  - M<sub>2</sub> & N<sub>2</sub> will go away from P<sub>2</sub> => unstable

energy gain (velocity dominates)  $\Phi_s \qquad \pi - \Phi_s \qquad t$ 

This behaviour is true below

# Longitudinal motion – Phase stability

#### Since:

- Below  $\gamma_t$  ( $\eta$ >0) the arrival at the cavity depends on the velocity
- Above  $\gamma_t$  ( $\eta$ <0) the arrival at the cavity depends only on the path length
- > The behaviour for the phase stability is reversed around transition crossing



# Longitudinal motion – Transition crossing

Change of stable phase implies:

• Crossing transition during acceleration makes the previous stable synchronous phase unstable.

The RF system needs to make a rapid change of the RF phase, a "phase jump".



• Such a manipulation is needed at the CERN PS

# Longitudinal motion – Synchrotron oscillations

Operating below transition & at constant energy (and B)

- Synchronous phase  $\phi_0=0$
- Particle with a  $\phi > \phi_0$ : particle gets accelerated and moves towards  $\phi_0$
- Particle with a  $\phi < \phi_0$ : particle gets decelerated and moves towards  $\phi_0$
- > Particles will start performing oscillations around the synchronous particle



# Longitudinal motion – Phase space



### Takeaways

#### **Transverse motion**

- The beam moves in *FODO structure*
- Particles perform oscillations around the design orbit called *betatron*
- Turn-by-turn the ellipse formed in the phase space is called *emittance*
- The number of betatron oscillations in 1 turn is called tune
- Emittance remains constant for "normal" conditions
- In the presence of *resonances* in the tune space, the emittance increases
- The **beam size** is defined as  $\sqrt{\varepsilon_y \beta_y(s)}$

#### **Longitudinal motion**

- Synchronism: RF frequency needs to be locked to revolution frequency
- During acceleration the *phase and frequency* need to adjust to the *energy & B increase*
- Path length changes with momentum momentum compaction factor
- Frequency changes with momentum slip factor
- Phase stability depends on transition energy
- *Phase jump* to cross transition
- Particles perform oscillations around  $\phi_s$  called **synchrotron**