The CLEAR Facility and Program for the Practical Days

P. Korysko*

EURO-LABS Advanced Training School on Operation of Accelerators

June, 2024

*pierre.korysko@cern.ch

Outline

- CLEAR Beam Line: History & Parameters
- Tools and Methods used.
- Selected Medical Applications performed at CLEAR in 2023.
- Medical Applications planned at CLEAR in 2024.
- Conclusions.

CLEAR Beam Line: History & Parameters

CLEAR Scientific and Strategic goals

Scientific and strategic goals:

- Providing a test facility at CERN with high availability, easy access and high-quality ebeams.
- Performing R&D on accelerator components, including beam instrumentation prototyping and high gradient RF technology.
- Providing an **irradiation facility** with Very High Energy Electrons (VHEE), e.g., for testing electronic components in collaboration with ESA or for medical purposes.
- Maintaining CERN and European expertise for electron linacs linked to future collider studies.
- Using CLEAR as a **training** infrastructure for the next generation of accelerator scientists and engineers (**including YOU!**).

CLEAR is a versatile electron linac and an experimental beamline, operated at CERN as a multi-purpose user facility.

CLEAR Timeline

- Approved December 2016.
- Began operation in 2017.
- Flexible beam program.
 - 8-12 hours a day.
 - 5 days a week.
- **Independent** of LHC runs and long shutdowns.
- **2017** \rightarrow 19 weeks of beam.
- $2018 \rightarrow 36$ weeks of beam.
- **2019** → 38 weeks of beam.
- **2020** \rightarrow 34 weeks of beam (despite Covid-19).
- **2021** \rightarrow 35 weeks of beam (despite Covid-19).
- **2022** \rightarrow 37 weeks of beam and 27 experiments.
- $\mathbf{2023} \rightarrow \mathbf{38}$ weeks of beam and more than 30 experiment.

The CLEAR Beam Line in 2023

CLEAR Beam Parameters in 2023

Parameter	Value
Energy	60 – 220 MeV
Energy spread	< 0.2 % rms (< 1 MeV FWHM)
Bunch length	0.1 – 10 ps RMS
Bunch charge	10 pC – 1.5 nC
Normalised emittance	3 – 20 μm
Bunches per pulse	1 – 200
Max. charge per pulse	86 nC
Repetition rate	0.833 – 10 Hz
Bunch spacing	1.5 or 3.0 GHz

What does CLEAR offer?

- Really versatile beam parameters (energy, size, dose, charge, length, repetition rate, position, etc.).
- Flexible beam program.
 - 8-12 hours a day (more, if needed).
 - 5 days a week (on the weekend, if needed).
- A large range of existing hardware available (C-Robot, linear stages, YAG screens, cameras, controls, etc.).
- Numerous tools available to design and build the experiments (milling, grinding, drilling machines, saws, 3D-printer, laser cutter, etc.).
- Adaptive software to remotely control the hardware and log the measured data.
- Some members of the CLEAR Operation team can help the users to develop, design, build, install and uninstall both hardware and software components needed for the experiment.
- Dedicated experts to operate the machine and solve issues.
- A follow up after the experiment to share, filter and understand the recorded data.

CLEAR in 2023

- 38 weeks of beam.
- More than 30 experiments performed.
 Full list available on https://pkorysko.web.cern.ch/CLEAR/Table/CLEAR_experiments.html
- More than 20 tours of CLEAR were given in 2023 for students, artists, journalists, companies, CERN personnel...
- CLEAR parameter ranges were increased (beam charge, repetition rate, stability, beam size, etc.).
- 14 conference proceedings and posters, 8 journal papers (published or being reviewed), 9 PhD Thesis (defended or being written) and numerous presentations at workshops and conferences.
- New beam line dedicated to irradiations and medical applications was designed and will be operational in 2025.

CLEAR 2023 Program

Experiment #	Experiment	Institute
1	Joint Universities Accelerator School Practical Days	ESI
2	Intercomparison between 5 neutron monitors	CERN, Politecnico di Milano, PSI, ELI-Beamlines
3	Scintillating Fibres VHEE UHDR Real-Time Dosimetry	University of Oxford
4	Passive-time VHEE UHDR dosimetry	CERN
5	Beam Profiler detector for the LUXE experiment	INFN Bologna
6	VHEE Scatterers	University of Oxford
7	Wall Current Transformer	Bergoz Instrumentation
8	Plasmid Irradiations	University of Manchester
9	VHEE-UHDR-FLASH-RT	CHUV
10	Bunch Length Measurement with ChDR-EOSD	CERN
11	VHEE UHDR Scintillator and Biological Samples	University of Victoria
12	AWAKE Cherenkov Diffraction Radiation BPM	University of Oxford
13	Electro-Optical Spectral Decomposition	CERN
14	Cherenkov Light Production and Absorption in Quartz Fibers	INFN Bologna
15	ChDR EOSD	CERN
16	Bunch Profile Monitor for FCC-ee	KIT
17	Real-Time Beam Dose Monitors	University of Oxford
18	Plasma Lens	University of Oslo
19	VHEE Scatterers	University of Oxford
20	AWAKE Cherenkov Diffraction Radiation BPM	University of Oxford
21	VHEE Chemistry Studies	CHUV
22	VHEE Real-Time Dosimetry using Cuvettes	University of Strathclyde
23	Optical Fiber Beam Loss Monitors	CERN/University of Liverpool
24	CLIC Cavity Beam Position Monitors	Royal Holloway, University of London
25	Novel Emittance Measurements	University of Liverpool
26	CARE (Cable Ageing REsearch) studies	CERN
27	VHEE Passive & Active Dosimetry	CERN
28	FCC Bunch Length Monitor	CERN
29	VHEE Scatterers	University of Oxford
30	Broadband Pick-ups for the PSI Positron Production Project	PSI
31	microBPMs	CERN
32	scCVD, pCVD, Si LGADs, 3D Si sensors, 3D Diamonds Detectors	The University of Kansas
33	In-Vitro Radiation Sensitivity Studies of Normal and Tumour Cells	CHUV
34	Real-time VHEE UHDR Dosimetry	University of Oxford
35	AWAKE Spetrometer Scintillator Screen	University College London

Tools and Methods

The C-Robot

phantom

- In order to facilitate the precise control of samples for multiple irradiations, the CLEAR-Robot (C-Robot) was designed and built by members of the CLEAR Operation Team.
- It consists of **3 linear stages**, **6 limit switches**, a **3D-printed grabber**, **two water tanks** and an **Arduino board**.
- It has a precision in position in 3 axis of 50 µm.
- · It is fully remotely controllable from the CERN Technical Network.
- Thanks to a **mounted camera**, it can also measure the **beam sizes** and **transverse positions** at the longitudinal position of the sample.
- It is an open-source project: pictures, 3D renders, drawings and all the codes for the Arduino and the Graphical User Interface can be found on: https://pkorysko.web.cern.ch/C-Robot.html
- Used for 100% of Medical Applications in CLEAR in 2023.
 Image: Second seco

Mounted

camera Grabber

Storage

What can the C-Robot do?

Graphical User Interface Experiment setup w/ beam Camera Position plots Status and Checks Controls Position Y/X Zero seeks Select the holder to pick up 8000 To the Beam tank Zero seek X Camera Absolute 6000 Zero seek \ Absolute 4000 Zero seek Z Absolute 2000 Storage tank Limit switches e⁻ beam 2000 4000 6000 80.00 Min X (steps) Position Z/X 500 9 ~ 1000 1500 Emergency button 29 X/Y interlock region N 2000 31 32 Storage/Beam tank 2500 X position Stepper status 100 in beam (mm) 3000 4000 60.00 Stepper is not moving 80.00 Put holder in beam X (steps) Grabber status Position Z/Y Bring back holder Close 500 Filter IN - 1000 Update status Last STEPPER POS Z 2340 1500 Command X/Y interlock region Temperatures N 2000 Storage area e⁻ beam Beam 27.56 2500 Temp probe 1 (°C) 3000 Temp probe 2 (°C) 26.43 2000 4000 6000 80.00 Y (steps) (9.9460.9.12476+0 Get C-ROBOT temperatures Plots Debug

The C-Robot in action in CLEAR

Link to Video

The C-Robot in action with beam

Link to Video

Experimental Setup & Dosimetry for VHEE at UHDR irradiations

P. Korysko - EURO-LABS Practical Days - Jun. 2024

16

Selected Experiments performed at CLEAR in 2023:

In vivo radiobiology at UHDR

Goal:

Compare the impact of 200 MeV VHEE irradiations at UHDR and CDR on *Drosophila melanogaster larvae*.

Experiment:

Deliver 15 to 45 Gy at UHDR and CDR to larvae with VHEE and measure the eclosion rate.

A. Hart & T. Esmangart de Bournonville

EPFL

Focus the beam on the tumor in order to minimize vacuum the dose and damage on the nearby healthy tissues. Source **Experiment:**

Measure the beam sizes on a YAG screen in the water phantom (good model of the human body) and perform irradiations on long dosimetry films holders placed at different longitudinal positions.

EURO-LABS Practical Days P. Korysko -Jun. 2024

Goal:

VHEE Strong Focusing

Water phantom 30 x 30 x 30 cm³

lens diameter, D: 20 cm voxel depth in water: 15 cm

VHEE Scatterers

10

0

-10

y [mm]

Goal:

Obtain a flat beam that has a constant transverse distribution at patient's tumor in order to minimize the dose and damage on the nearby healthy tissues. **Experiment:**

Measure beam profiles, sizes and intensity on a YAG screen and films after carefully inserting two scatterers with the beam with the C-Robot.

Scatterer 1 Scatterer 2 Screen

VHEE GRID

No photograpi

Goal:

Study the dose at UHDR for highly non-uniform dose distributions using a GRID Collimator (Spatially-fractionated RT, known for normal tissue sparing). **Experiment:**

Compare the dose values and profiles with and without the GRID collimator inserted for different water depths, with the YAG screen and films.

M. Bazalova-Carter, N. Clements, N. Esplen & A. Hart

Practical Days

What will you do?

- **Transport** and **align** the beam from the electron gun to the end of the machine using the beam instrumentation devices along the line and the steering magnets.
- Measure the beam energy thanks to the spectrometer line.
- **Measure** the **beam charge** with the Integrating Current Transformers.
- Measure the beam position and size with scintillating screens and cameras.
- **Perform quadrupole scans** to measure the emittance and the Twiss parameters.
- Measure the photo-cathode quantum efficiency.
- Use the C-Robot to irradiate samples.
- **Operate** the accelerator from start to end.

The CLEAR Control Room

Beam charge measurement and transport

Beginning of the line: Beam charge = 167 pC End of the line: Beam charge = 155 pC Beam transport = 93 %

Beam Energy and Transverse Profile

Measurement of the beam energy with the spectrometer line (VESPER)

Measurement of the beam profile, position and size at the end of the line (THz)

Quadrupole Scans

Horizontal beam size as a function of the quadrupole current

Vertical beam size as a function of the quadrupole current

Alignment of the beam in the quadrupoles

Beam Shape Contest: Take part !

Smallest beam:3 bunches with transverse37 um x 33 umspace separation

Octupolar fields

Fishy Beam

Demon's face

Valentine's day beam

Cat head

« The Eye »

Monster's claws

Thank you

