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Overview

e
|. Introduction to Accelerators

Il. Accelerator beam dynamics

Ill. CERN accelerator complex
* Proton Synchrotron Booster
e Space charge

* Proton Synchrotron
* Tailoring of bunches

e Super Proton Synchrotron
* Instabilities

* Large Hadron Collider
e Beam-beam effects




Reminder: CERN Accelerator Complex
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CERN Proton chain

1. LINAC-4 160MeV (H-)

2. Proton Synchrotron Booster 2GeV
3. Proton Synchtrotron 26GeV

4. Super Proton Synchrotron 450 GeV
5. Large Hadron Collider 7Tev

CERN lon chain

We’ll focus on the proton beams towards

the LHC

* Brief overview of each synchrotron up
to the LHC

 Examples of main limitation in each
machine




CERN Accelerator Complex




CERN Accelerator Complex — PSB

* PSB: Proton Synchrotron Booster

* The first circular accelerator of the
Complex

e 1strun: 1972

 Main purpose: to increase the
number of protons that PS can
accelerate.

* |t comprises 4 superposed rings

— Essentially, they are 4 different
synchrotrons with common
characteristics (magnets, etc.)




PSB — Space Charge

* PSB: Proton Synchrotron Booster
» The first circular accelerator of the Complex
 Main purpose: to increase the number of protons that PS

can accelerate.

Why did we need a new accelerator to
increase the number of protons???

— We wanted to increase the number of protons while maintaining a small emittance
—> Emittance defines the beam size — larger emittance would require a larger aperture
— Emittance cannot decrease along the chain — luminosity depends on the emittance

“set” in the injectors
* At low energies, the coulomb forces developing within the bunch dominate the dynamics —

SPACE CHARGE




PSB — Space Charge
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PSB — Space Charge

:> The closer to the center of the bunch

1. Transverse Amplitude e
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PSB — Space Charge

The lower the energy

2. Energy the larger the detuning
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PSB — Space Charge

3. Transverse Beam Size
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PSB — Space Charge

:> The larger the intensity

4. Bunch Intensity the larger the detuning
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PSB — Space Charge

5. Longitudinal Settings |::> : Smallgr bunch Iength — larger detuning |
 Detuning changes with the synchrotron motion

Tune Diagram Longitudinal Phase Space
6.40 0.006
6.35} _
- = = 0.004 +
6.30¢
0.002 ¢
6.25
55,2[} W 0.000
6.15¢
=0.002 |
6.10}
—=0.004
6.05¢
60000 605 610 615 620 625 6.30 000 =3 20 -0 0 10 20 30 40
Oh z

03/06/2024 . Asvesta'| Introduction'to’Accelerators 1




PSB — Space Charge

e Since space charge is caused by the beam itself
it cannot be avoided
* Some “mitigation” strategies: _
e Starting the acceleration right after injecting '
the beam — minimize the time at low energy :
e Use nonlinear magnets (sextupoles & :
octupoles) to mitigate resonances — mev: o |
minimize effects on losses & emittance :
blow-up .
* Use an additional RF system pulsing on a af
higher harmonic to reduce the longitudinal '

line density & elongate the bunches

-400 -200 0 200 400




CERN Accelerator Complex — PS

* PS: Proton Synchrotron

 CERN'’s first accelerator

e 1Strun: 1959

* Even today it accelerates beams
(protons and ions) for the LHC and
other CERN experiments

* The bunches and their spacing is
defined in the PS

e Consists of 100 combined function
magnets

—> The same magnet bends and focuses
the beam!




PS — Tailoring of bunches

* PS: Proton Synchrotron
* The bunches and their spacing is defined in the PS

How can we change the number of
bunches & the space between them?

— We need more RF systems so that we can have additional “harmonics” (similar to the PSB
case shown before)
— Changing the voltage ratios and the phase of the different systems:
—> Merge bunches
— Split bunches
— Rotate bunches




PS — Tailoring of bunches

— Changing the voltage ratios (also 2 , ,
adjusting phases etc) of the different — Sinale Harmenic
systems we can change the shape of the 1t +12kV
bunch (& the longitudinal profile) iy

 We start with a single RF system Of

* We include a second RF system at h,=2h, _
and we start changing the contribution of 5

the 2 systems (voltage)

» If we keep changing the contributions of
the two systems we can fully separate
the bunches! _x

0 100 200 300 400 500
t (ns)




PS — Tailoring of bunches

LHC bunches in the PS

 The PSB can provide up to 4
bunches per injection (one
out of each ring)

 Two injections in the PS (4+2)

* One bucket is kept empty

* Each bucket is split in three
after the second injection

1. Inject four bunches (h=7)
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Time [ms]

Wait 1.2 s for second injection
10

2. Inject two more bunches (h=7)
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Time [us]




PS — Tailoring of bunches

LHC bunches in the PS

 The PSB can provide up to 4

 Two times a double splitting

 Bunch rotation before
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F. Tecker: “Longitudinal beam dynamics” (CAS)




PS — Tailoring of bunches
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F. Tecker: “Longitudinal beam dynamics” (CAS)
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PS — Tailoring of bunches
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CERN Accelerator Complex — SPS

~—w N

e SPS: Super Proton Synchrotron

* The 2" |arger accelerator at CERN
with a circumference of 7km

e 1strun: 1976

* Discovery of the W and Z bosons
during its operation as a collider

* Today it operates as an accelerator
producing beams (protons and ions)
for the LHC and other CERN
experiments

* For the LHC, it accumulates short high
intensity bunches for several injections




SPS — Instabilities

e SPS: Super Proton Synchrotron

* For the LHC, it accumulates short high intensity bunches for several
injections

* Injecting 4 * 72 bunches in the SPS we start observing beam losses

* Looking more carefully in the intensity evolution of each bunch — losses
mainly for the later bunches

Could we have an effect from the

. first bunches to the other ones? | I B R
. : Qo : :
— : — : : N :
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G. Rumolo, K.Li : “Instabilities Part I: Introduction — multiparticle systems, macroparticle models and wake functions”




SPS — Instabilities

* |n fact, the bunches can interact B
with the environment in the
accelerator (vacuum pipe, =
cavities, instrumentation devices ﬂ
etc) :

* Asthe bunches move on the s
direction, they can create fields:
“Wakefield”

 The wakefield depends on the
distribution of our bunches and
can cause a collective response

¥
field (t=D..end(D o b {peak)}
Cutplane normal: 1, 0,0
: 05 %
[« 2

o

20 Maimumn [¥fm]: -co dB Max
Sample( 139 ) 1
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G. Rumolo, K.Li : “Instabilities Part I: Introduction — multiparticle systems, macroparticle models and wake functions”




SPS — Instabilities
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H. Bartosik: “Beam dynamics and optics studies for the LHC injectors upgrade”
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E. Koukovini-Platia et al: “Source of horizontal instability at the CERN Proton Synchrotron Booster”




SPS — Instabilities

Curing Instabilities

E. Koukovini-Platia et al: “Source of horizontal instability at the CERN Proton Synchrotron Booster”

Careful modelling of the electromagnetic

properties of our equipment allows for

predictions of certain instabilities

* Changes in the design or the materials of

a piece of equipment could suppress this
response

Feedback systems — observe the bunch motion

and apply “kicks” to cancel any deviations from

the desired state

Introduce nonlinear elements — they can

change the incoherent tune spread and help

damping the coherent instability

C. Zannini et al: “The SPS transverse instabilities at injection”
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CERN Accelerator Complex — LHC

LHC: Large Hadron Collider
The largest accelerator at CERN with
a circumference of 26.7km

15t run: 2008
Two beams circulate in opposite ‘-"‘;’*’ncf__ﬂ
directions driven by 1232 .
superconducting dipoles, 14.3m long
with up to 8T field in temperatures of
1.9 K

Operates with protons and ions




CERN Accelerator Complex — LHC

* There are 8 interaction points, in 4 of
which the detectors of the main
experiments (ATLAS, CMS, ALICE, LHC-
B) are placed

 The main purpose: the production,
detection and study of Higgs bosons

* Ongoing works for its upgrade until
2029

* High Luminosity LHC (HL-LHC) to
increase LHC performance (~x10)




LHC — Beam-beam

 LHC: Large Hadron Collides
 Two beams circulate in opposite directions
* There are 8 interaction points (4 collision points)

Does the interaction affect the
dynamics of the system?




LHC — Beam-beam

Does the interaction affect the dynamics of the

system? . W QUAD BEND

Of course! | | |

* Even the optics change drastically to accommodate
the need for squeezing down the beamsize!

* To minimize the beta functions for the collision —
huge increase of the beta functions in the close
vicinity of the interaction point

 The interaction of the two beams is the strongest
nonlinearity in the accelerator

Bx,y [km]

Distance to IP1 [m]

» We will only consider part of these effects

F. Soubelet et al: “Rigid waist shift: A new method for local coupling corrections in the LHC interaction regions”




LHC — Beam-beam

We can define two different regimes
for the beam-beam force

* The interaction for the colliding
bunches — Head On

e The interaction for the non-
colliding bunches — Long Range

* Both strongly nonlinear
> Tune spread!




LHC — Beam-beam

* The contribution of the Head On to the
tune spread is much larger than the
Long Range.

* Reminder: the tune spread coming from
space charge looks very similar to the
head-on!

* In reality, during collisions, the two
contributions are combined!

-> Dangerous resonances are overlapped!

S. Fartoukh et al., PRSTAB, 2015




LHC — Beam-beam

Mitigation strategies:

* The contribution of the long-range interaction is very ""';{"_ ST * = i
similar to that of a wire in the vicinity of the beam s e QAT ’” i
» Attempting compensation with a wire — Wi A e !
tunespread shape dominated by the head on '+ + a | j
contribution Winl 55, I
* To avoid losses from strong resonances N2 s

e careful tune choice
e apply corrections using dedicated elements (up
to dodecapole correctors installed in the LHC!)
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Summary

B
* Delivering high Luminosity for the LHC experiments can be very challenging

* The various accelerators at CERN work together to produce high quality beams

* Some since 1959!
e Each accelerator has different characteristics that can lead to very different dynamics!
* We tried giving a single (partial!) example of some effects, but In most cases

multiple of these are co-existing!

* PSB: space charge + instabilities + bunch splitting (not for LHC)

e PS: bunch tailoring + space charge + instabilities + transition crossing

* SPS: instabilities + space charge + transition crossing (not for LHC)

 LHC: beam-beam + instabilities + optics perturbations ...

»In our continuous efforts to improve our beams for all the CERN experiments we end
up with more challenges that we need to overcome!




