

3rd I.FAST Annual Meeting

Luca Garolfi (CERN & TERA Foundation, WP4, Task Leader 4.1 & 4.2)

The I.FAST Academia-Industry Exchange Programme

The EU-supported project <u>LFAST</u> announces the possibility to apply for a grant to finance a programme of exchange of knowledge, expertise, and working practices of new accelerator and magnet component technologies between an <u>LFAST European</u> <u>Accelerator Development Laboratory</u>* (here called the LFAST Laboratory) and a European Industrial Company (here called the Company).

The programme offers the opportunity for a Company to send an engineer or technician for one or several visits to one of the LFAST Laboratories and for a LFAST Laboratory to send a scientist, engineer or technician to a Company for one or several visits. A grant of up to 7000 € can be requested for financing such a technical exchange programme which should put emphasis on transfer between the two parties of knowledge, expertise, and working practices of design, fabrication and testing of new advanced technological components for frontline accelerator and magnet research and/or technology infrastructures.

The partners

SEE

South East European International Institute for Sustainable Technologies

2 months July – August 2023

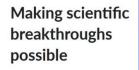
Advancing humanity. **Engineering remarkable.**

Our leading-edge expertise, software, and electronics enable organisations to make scientific breakthroughs, deliver state-of-the-art cancer treatments, develop healthcare innovations and bring clean fusion energy to the world.

The South East European International Institute for Sustainable Technologies (SEEIIST)

proposed in late 2016 by Prof. Herwig Schopper, a former Director General of CERN and initiator of the international SESAME project in Jordan, received first official political support by the Government of Montenegro in March 2017.

The project will be implemented around the idea of the real international cooperation in the SEE region, gathering scientists, engineers, medical doctors, young people and technicians within the joint research infrastructure with the mission "Science for Peace". The Institute will be a regional Centre of Excellence based on the state-of-art sustainable technology which will assure high competitiveness to the rest of Europe. It will promote the regional collaboration in the fields of science, technology and industry and will represent a knowledge-based economy project. Particular component of the project is a platform for education and training for young scientists, researchers, technicians, medical doctors, biologists, biomedicine engineers and others who will contribute to the improvement of the whole Region in terms of technological advances, medical innovations, scientific achievements, industrial empowerment and economic benefits.


cancer treatment Medical Our technology and experience in system engineering and integration; regulatory practice, patient safety and device usability, will guide you through the entire development process to get your products to patients faster.

COSYLAB

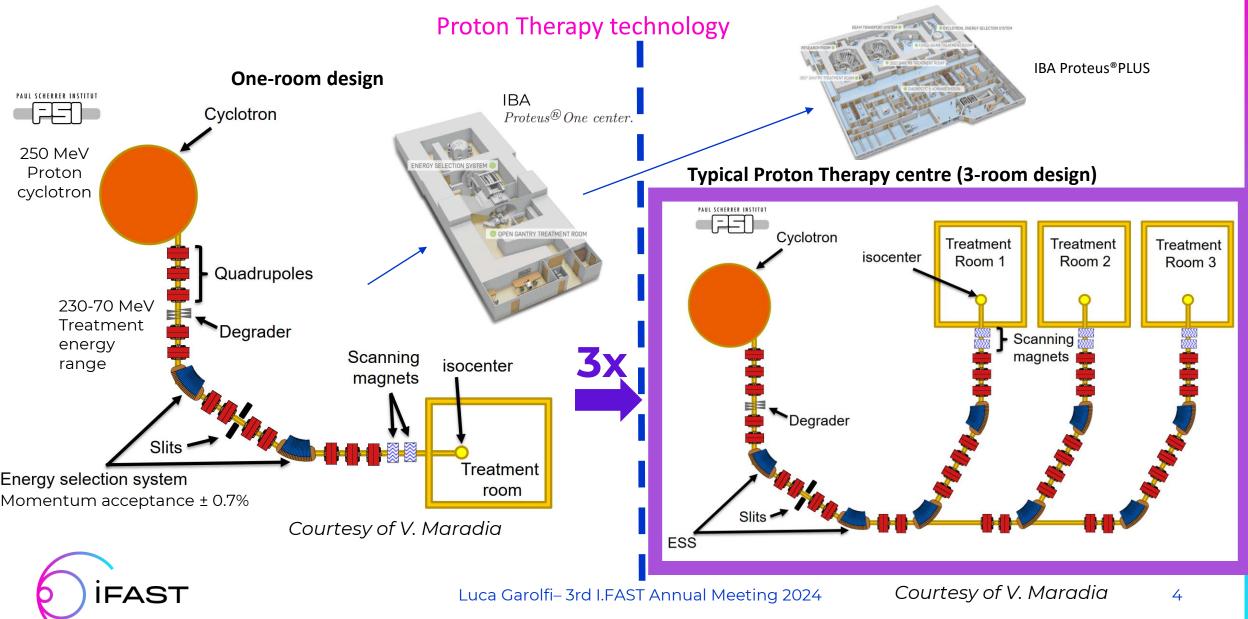
Pushing the

boundaries of

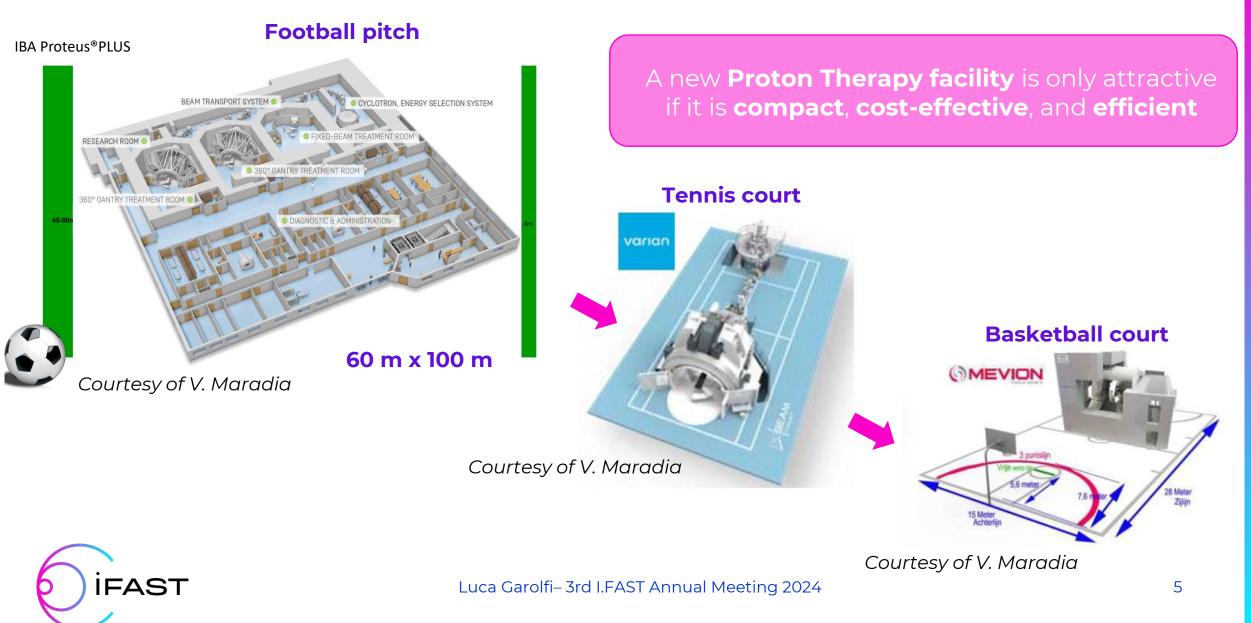
Science

Our scientists and engineers can help you launch your software systems faster and with less risk so you can concentrate on exploration.

Powering the world's most complex machines


Industrial

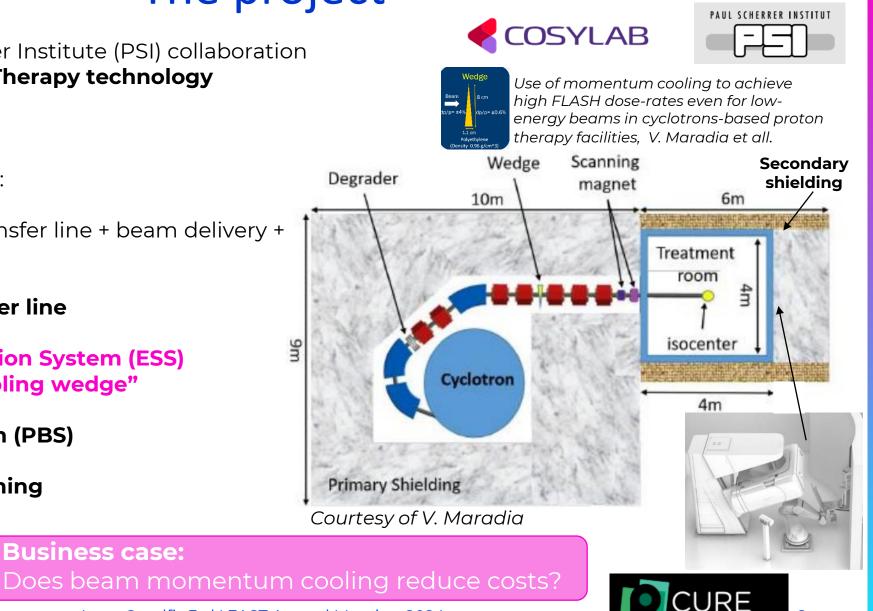
Based on our experience in designing industria systems for a wide range of industries, we will work with you from the initial concent to the site acceptance test, to make sure your machine is delivered on time, within budget and according to the highest quality and regulatory standards



Luca Garolfi- 3rd I.FAST Annual Meeting 2024

The collaboration project context

"The race toward compactness"


"The project"

- COSYLAB GmbH Paul Scherrer Institute (PSI) collaboration •
 - Commercialise a Proton Therapy technology
- Peculiar characteristics:
- **Compact foot-print** (16 x 9 m2):
 - Infrastructure + shielding
 - cyclotron vault + beam transfer line + beam delivery + treatment room

Business case:

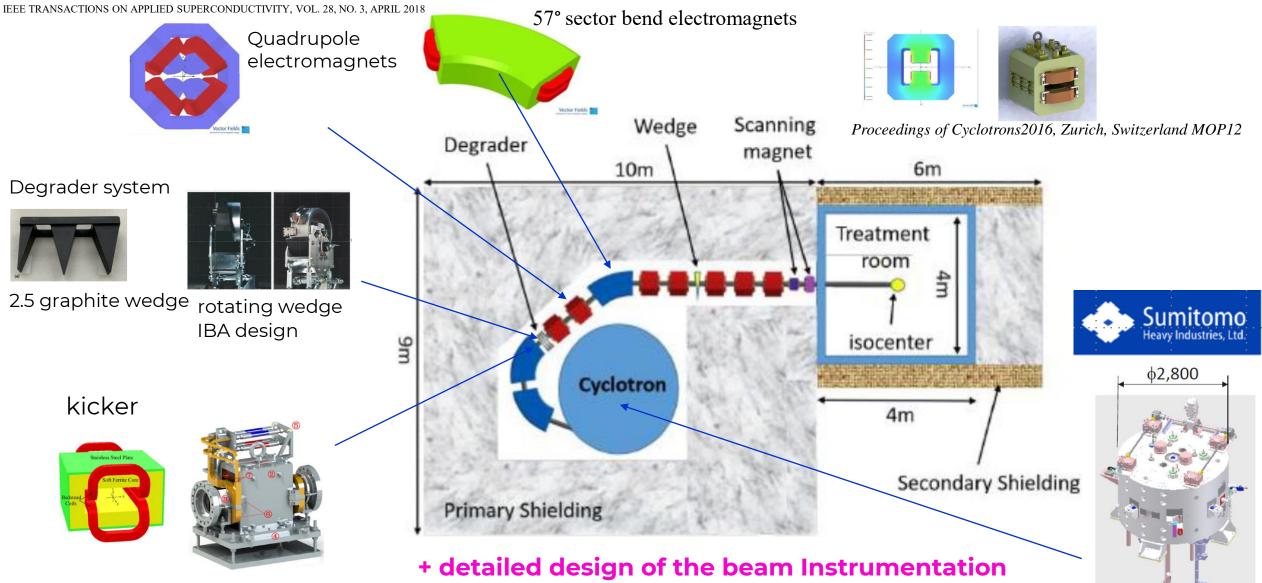
- Gantry-less fixed beam transfer line
- Replacement of Energy Selection System (ESS) with a "beam momentum cooling wedge"
- Pencil Beam Scanning System (PBS)
- "Chair-based" patient positioning (e.g., P-cure type)

FAST

Luca Garolfi- 3rd I.FAST Annual Meeting 2024

Objective #1: Engineering Requirements

Treatment Room	1-3		
Footprint of the facility	${\sim}140~{\rm m}^2$ (1-room) and ${\sim}250~{\rm m}^2$ (3-room)		
Transmission (cyclotron to isocenter)	${\sim}15\%$ (70 MeV beam)		
Max beam current	~ 120 nA (70 MeV beam) assuming 800 nA from cyclotron		
Beam Size at isocenter	Similar to commercial facilities (i.e. IBA facilities)		
Momentum spread of the beam	$\pm 0.5\%$		
Scanning	Downstream scanning		
Scanning area	$40^{*}40 \text{ cm}^{2}$		
Field delivery time	${<}10~{\rm sec}$ for any size tumor (including hypofractionation)		
Dose rate at isocneter	${\sim}1520~{\rm Gy/s}$ (70 MeV beam) at Bragg peak on central axis		

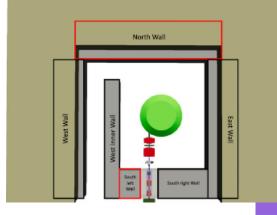

- Superconducting (SC) proton cyclotron (1x):
 Max beam energy: 250 MeV;
 - Max beam current extracted: 800 nA;
- Fast-switch kicker electromagnet (1x):
 - <100 us;
- **57-deg sector bend electromagnet** (3x):
 - Bending radius: 1.5 m;
 - Pole gap: 60 mm;
 - Operating field range: 0.8 1.62 T;
- In-line or rotating degrader wedge (1x);
- Quadrupole electromagnet (7x):
 - Effective length: 368 mm;
 - Aperture (radius): 50 mm;
 - Operating field range: 5.7 10.6 T/m;
- Polyethylene, Plexiglas wedge (beam momentum cooling)
- Coupled scanning magnets system (beam delivery)

Courtesy of V. Maradia

Objective #2: Product Design Specification

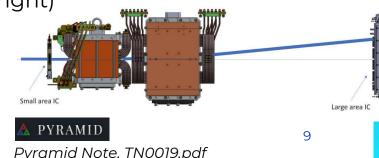
capability of the nowadays most advanced Pencil Beam Scanning (PBS) cancer treatment

Nuclear Inst. and Methods in Physics Research, A 940 (2019) 199-205


Objective #3: Business case

- SC cyclotron cost:
 - max extracted beam energy: 250 MeV → size, RF system capacity
 - max extracted **beam current**: 800 nA \rightarrow 50 nA \rightarrow only particle source adjustment
- Shielding requirements: Monte Carlo simulation for materials activation
 - scaling at 50 nA
- Transfer line cost:
 - Vacuum system: off-the-shelf components (pipes, valves, pumps)
 - **Diagnostics:** replace Ionisation Chambers (IC) and MultiLayer Faraday Cups (MLFC) with Scintillation Screens (HUT facility) or "Beam Monitors"
- Beam delivery system cost:
 - Coupled scanning magnets + QA diagnostics basis solution (Pyramid)
- Patient positioning system cost: commercial P-cure (chair) / LeoCancer (upright)
- Capital single-room facility cost breakdown ("Top-down approach")

Luca Garolfi– 3rd I.FAST Annual Meeting 2024


Eur. Phys. J. Plus (2022) 137:889 https://doi.org/10.1140/epjp/s13360-022-0296<mark>0-9</mark>

detector-group.com

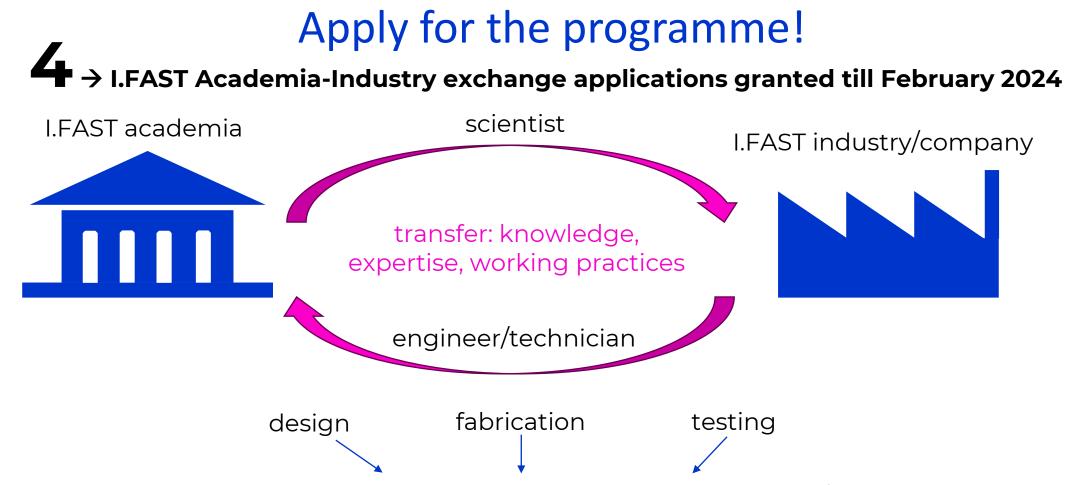
Nuclear Inst. and Methods in Physics Research, A 998 (2021) 165208

Achievements

SEEIIST

- relation with the scientific stakeholder of the PT facility design
- knowledge of PT key systems and cancer treatment techniques
- detailed project documentation:
 - product design specification
 - Bill of Materials (BOMs)
- Business case analysis:
 - structured cost breakdown and comparison
- **COSYLAB GmbH:**

FAST


•

- successful collaboration with PSI PT researchers, and scientists
- business analysis to enhance its services and market position:
 - technical design documentation, and cost-effective insights
 - technical insights on the compact facility's systems integration

V. Maradia, L. Garolfi

Subject: advanced technological components for accelerators and magnets and/or technology infrastructures

A grant of up to 15 k€ can be used to finance: salary, travel, subsistence

IFAST

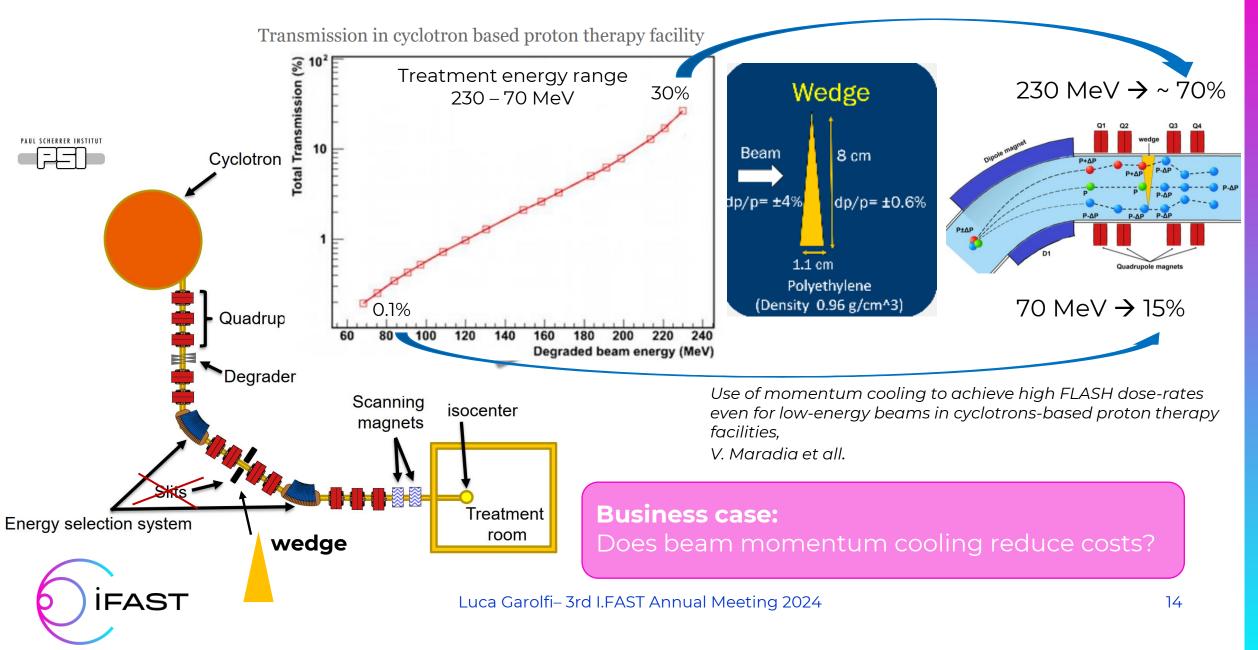
Application process:

- contact your industrial collaborator
- formulate an exchange proposal
- submit a fund request

https://ifast-project.eu/ifast-traineeship-programme

Thank you for your attention

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.


IFAST

Back-up

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

"Beam momentum cooling"

The objectives

- Prepare a comprehensive **product design specification documentation that** highlights:
 - the capability of the nowadays most advanced cancer treatment (PBS)
 - the reduced physical footprint compared with the most compact one-room PT designs on the market
- Detailed Bill of Materials (BOMs) that allows for a "bottom-up" components breakdown cost of cyclotron, beam transfer line, beam delivery system and patient positioning system

Detailed Engineering Requirements study

nn COSYLAB	Account			
Document UID	Revision	Status	Link	Date (last change)
Product Design Specification Example	0.1	Draft		2023-09-01

Compact gantry-less PT facility

Product Design Specification

	Name	Role/Company	Signature and Date
Author(s)	Luca Garolfi	Collaborator	

Science / supprise MAMil Acceleration Preshing Supprise Construction Construction

Detailed **Bill of Materials (BOMs) of components**