3rd Annual Meeting, Paris April 18 - 2024

International Muon Collider Collaboration *Structure and progress*

Nadia Pastrone INFN-Torino

for the MUon collider STrategy network - MUST team INFN - CERN - CEA - IJCLAB - KIT - PSI - UKRI - (BNL-USA not beneficiary)

Towards a Muon Collider Eur. Phys. J.C 83 (2023) 9, 864

Web page: http://muoncollider.web.cern.ch

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730

Unique physics potential

A dream machine to probe unprecedented energy scales and many different directions at once!

Strong and crucial synergies to design the machine and the experiment to reach the physics goals with energy and luminosity allowing % precision measurements

→ Physics benchmarks steer machine parameters and experiment design

Energy efficiency of present and future colliders

Thomas Roser et al., <u>Report of the Snowmass 2021 Collider Implementation Task Force</u>, Aug 2022

Nadia Pastrone – MUST WP5.1 – April 2024

The effective energy reach of hadron colliders (LHC, HE-LHC and FCC-hh) is approximately a factor of seven lower than that of a lepton collider operating at the same energy per beam

US P5 Report – December 2023

Exploring the Quantum

Quantum Universe P5 report & Muon Collider & key messages

Realization of a future collider will require resources at a global scale and will be built through a world-wide collaborative effort where decisions will be taken collectively from the outset by the partners. This differs from current and past international projects in particle physics, where individual laboratories started projects that were later joined by other laboratories. The proposed program aligns with the long-term ambition of hosting a major international collider facility in the US, leading the global effort to understand the fundamental nature of the universe.

In particular, a muon collider presents an attractive option both for technological innovation and for bringing energy frontier colliders back to the US. The footprint of a **10 TeV pCM muon collider is almost exactly the size of the Fermilab campus.** A muon collider would rely on a powerful multi-megawatt proton driver delivering very intense and short beam pulses to a target, resulting in the production of pions, which in turn decay into muons. This cloud of muons needs to be captured and cooled before the bulk of the muons have decayed. Once cooled into a beam, fast acceleration is required to further suppress decay losses.

Although we do not know if a muon collider is ultimately feasible, the road toward it leads from current Fermilab strengths and capabilities to a series of proton beam improvements and neutrino beam facilities, each producing world-class science while performing critical R&D towards a muon collider. At the end of the path is an unparalleled global facility on US soil. This is our Muon Shot.

Nadia Pastrone – MUST WP5.1 – April 2024

4a) Support **vigorous R&D** toward a cost-effective 10 TeV pCM collider based on proton, **muon**, or possible wakefield technologies, including an evaluation of options for US siting of such a machine, with a goal of being ready to build major test facilities and demonstrator facilities within the next 10 years

> [see sections 3.2, 5.1, 6.5, and also Recommendation 6]

IMCC @ CERN

After the ESPPU recommendation in June 2020: Laboratory Directors Group (LDG) initiated the Muon Collider Collaboration July 2, 2020

Project Leader: Daniel Schulte

March 312025

Objective:

- In time for the **next European Strategy for Particle Physics Update**,
- the Design Study based at CERN since 2020 aims to
- establish whether the investment into a full CDR and a demonstrator is scientifically justified.
- It will **provide a baseline concept**, well-supported performance expectations and assess the associated key risks as well as cost and power consumption drivers.
- It will also identify an R&D path to demonstrate the feasibility of the collider.

Scope:

- Focus on the high-energy frontier and two energy ranges:
- **3** TeV if possible with technology ready for construction in 10-20 years
- Input documents -10+ TeV with more advanced technology, the reason to choose muon colliders
- Explore synergies with other facilities' options (neutrino/higgs factory)
- Define **R&D path**

US P5 – International partnership

Stability of the program requires implementing the framework for our international partnerships!

In the case of the Higgs factory, crucial decisions must be made in consultation with potential international partners. The FCC-ee feasibility study is expected to be completed by 2025 and will be followed by a European Strategy Group update and a CERN council decision on the 2028 timescale. The ILC design is technically ready and awaiting a formulation as a global project. A dedicated panel should review the plan for a specific Higgs factory once it is deemed feasible and well-defined; evaluate the schedule, budget and risks of US participation; and give recommendations to the US funding agencies later this decade (Recommendation 6). When a clear choice for a specific Higgs factory emerges, US efforts will focus on that project, and R&D related to other Higgs factory projects would ramp down.

Parallel to the R&D for a Higgs factory, **the US R&D effort should develop a 10 TeV pCM collider (design and technology)**, such as a muon collider, a proton collider, or possibly an electron-positron collider based on wakefield technology. **The US should participate in the International Muon Collider Collaboration (IMCC) and take a leading role in defining a reference design.** We note that there are many synergies between muon and proton colliders, especially in the area of development of high-field magnets. R&D efforts in the next 5-year timescale will define the scope of test facilities for later in the decade, paving the way for initiating **demonstrator facilities within a 10-year timescale** (Recommendation 6).

Progress since the last Annual meeting

MuCol – EU INFRA-DEV project A Design Study for a Muon Collider complex at 10 TeV center of mass

Strong commitment of the International Community to:

- ✓ consolidate the baseline design of the facility at 10+ TeV
- ✓ design/optimize the facility and the experiment: **R&D plan**
- \checkmark identify priorities and synergies

Accelerator R&D Roadmap implementation Detector R&D Roadmap implementation →DRD collaborations Interim Report ready to be submitted

This project has received funding from the European Union's

Research and Innovation programme under GA No 101094300.

https://www.usparticlephysics.org/2023-p5-report/

Now preparing for formal U.S. Community engagement after P5 Report

Nadia Pastrone – MUST WP5.1 – April 2024

Key Challenges of the facility

Accelerator R&D Roadmap

Bright Muon Beams and Muon Colliders

Panel members: **D. Schulte**,(Chair), M. Palmer (Co-Chair), T. Arndt, A. Chancé, J. P. Delahaye, A.Faus-Golfe, S.Gilardoni, P.Lebrun, K.Long, E.Métral, N.Pastrone, L.Quettier, T.Raubenheimer, C.Rogers, M.Seidel, D.Stratakis, A.Yamamoto *Associated members:* A. Grudiev, R. Losito, D. Lucchesi

Technically limited timeline

presented to CERN Council in December 2021 published <u>https://arxiv.org/abs/2201.07895</u> now under implementation by LDG + Council...

Roadmap Plan

Label	Begin	End	Description	Aspira	ational	Min	imal
				[FTEy]	[kCHF]	[FTEy]	[kCHF]
MC.SITE	2021	2025	Site and layout	15.5	300	13.5	300
MC.NF	2022	2026	Neutrino flux miti-	22.5	250	0	0
			gation system				
MC.MDI	2021	2025	Machine-detector interface	15	0	15	0
MC.ACC.CR	2022	2025	Collider ring	10	0	10	0
MC.ACC.HE	2022	2025	High-energy com- plex	11	0	7.5	0
MC.ACC.MC	2021	2025	Muon cooling sys- tems	47	0	22	0
MC.ACC.P	2022	2026	Proton complex	26	0	3.5	0
MC.ACC.COLL	2022	2025	Collective effects across complex	18.2	0	18.2	0
MC.ACC.ALT	2022	2025	High-energy alter- natives	11.7	0	0	0
MC.HFM.HE	2022	2025	High-field magnets	6.5	0	6.5	0
MC.HFM.SOL	2022	2026	High-field solenoids	76	2700	29	0
MC.FR	2021	2026	Fast-ramping mag- net system	27.5	1020	22.5	520
MC.RF.HE	2021	2026	High Energy com- plex RF	10.6	0	7.6	0
MC.RF.MC	2022	2026	Muon cooling RF	13.6	0	7	0
MC.RF.TS	2024	2026	RF test stand + test cavities	10	3300	0	0
MC.MOD	2022	2026	Muon cooling test module	17.7	400	4.9	100
MC.DEM	2022	2026	Cooling demon- strator design	34.1	1250	3.8	250
MC.TAR	2022	2026	Target system	60	1405	9	25
MC.INT	2022	2026	Coordination and integration	13	1250	13	1250
			Sum	445.9	11875	193	2445

Project organization

International Muon Collider Collaboration

Summary of activities towards R&D plans

Each WP is working to identify challenges and R&D plans towards a baseline design:

- Physics and MDI
- Proton complex
- Target design
- Muon Cooling
- Accelerator Complex
- Collider Ring
- **RF** Technology
- Magnet Technology
- Cooling cell integration

ure at 5σ + 2[cm]

Demonstrator

FAST

nstrumentation

and Matching

phase rotation

L = 146.34 [m]

120

100

s [m]

140

Ε

0.2

0.4

z (m)

0.0

0.6

0.8

R&D plans – timelines – priorities

 Ministration
 Ministratis and theadding and theadding and theadding and theadding and t

Fully included in the agenda of the next International Annual Meeting @ CERN March 12-15, 2024 → MDI workshop @ CERN March 11-12, 2023

→ first lattice at the 10 TeV centre of mass energy → Machine Detector Interface (MDI)
 → RF and magnet technology (including HTS) test plans are on-going
 → Integration of a cooling cell → Planning for a demonstrator is mandatory
 → MuCol Cooling cell Workshop @ CERN January 18-19, 2024

Interim Report @ Accelerator R&D Roadmap and MuCol

→ All progress on technology studies, design study of each component and first lattice @ 10 TeV

→ Machine Detector Interface (MDI) Design → Beam Induced Backgroud mitigation

→ Experiment Design @ 10 TeV → Detector Magnet choice and design under study

→ Detector R&D and Full simulation studies

Machine concept

Fully driven by muon lifetime, otherwise would be easy

Status of IR lattice design @ 10 TeV

Challenges: small ß*, large ß functions in FF, strong chromatic effects

	\sqrt{s} =3 TeV	\sqrt{s} =10 TeV
Version	US MAP	IMCC (v0.7)
FF scheme	Quadruplet (with dipolar component)	Triplet (with dipolar component)
ß*	5 mm	1.5 mm
L*	6 m	6 m
Max. field at inner bore	12 T	20 T

3 TeV IR lattice (MAP):

Beam-induced Background

Background is a significant driver for MDI design - background sources:

- Muon decay
- Beam halo losses and Beam-beam (mainly incoherent e-/e+ pair production)

The technical design of the nozzle started:

- Integration and support inside detector
- Shielding segmentation and assembly
- Selection of specific material (tungsten heavy alloy)
 - → machining is an important aspect
- Heat extraction (cooling)
- Alignment, vibrations, tolerances, etc.
- Dedicated vacuum chamber inside nozzle

Preliminary study in detector magnet

Detector magnet workshop – 5 October 2023

Upon request from Detector group, some preliminary calculations on a possible solution for a detector solenoid has been performed, based on CMS cable

Main features:

- Tracker region: -2200 < z < 2200, 0 < r < 1500
- B at IP: 3.66 T
- B = 3.60 ± 0.08 T
- Field uniformity: ±2.3%
- (Almost no optimisation)
- Max Br = 0.12 T
- Stored energy: 2.25 GJ
- Current density: 12.3 MA/m²
- Total coil thickness: 288 mm
- Current: 19.5 kA

FAST

- Cable size: 72 x 22 mm²
- Inductance: 11.85 H

Main show stopper: no one produces aluminium stabilised cables Main advantage: similar to something existing & working

Magnet Demands @ Muon Collider

Collider Ring Magnets

- assessing realistic performance targets for the large bore (range of 150 mm) collider magnets in close collaboration with beam optic, MDI, and energy deposition studies
- focusing on the design of the combined functions dipoles in the arc, which are a good sample of the magnet challenges
- 3 TeV collider: low-temperature superconducting (LTS) magnets with fields up to 10 T will be explored
- 10 TeV collider: will require fields up to 16 T
- huge electromagnetic force in such magnets is a severe limitation for the use of known coil technology, and especially for Nb3Sn
- The study will consider adopting a stress management mechanical system, which is an innovative approach for accelerator magnets, especially to be adapted to combined functions magnet. HTS materials are a less mature technology with superior tolerance to stress and strain and expected to unfold their potential for magnettechnology in the next future.

Towards realistic performances

<u>AIM</u>: Assess realistic performance targets for the collider ring magnets

Constraints and limits:

- Margin on the critical surface
- Maximum hot spot temperature during quench (i.e. transition to normal state)
- Maximum stress in the coils and in the support structures
- <u>Maximum cost</u>

Upper limits to magnet performance (in terms of magnetic field and aperture) were assessed using an innovative and comprehensive approach [ref], also presented at MT28], which exploits analytical evaluations and FEM codes to include in the calculation all the constrains listed before. The results are the plots below for NbTi, Nb3Sn and REBCO.

Muon Collider RF system

Linac: ~1-5 ms

FAST

- SNS: **402.5, 805** MHz
- ESS, SPL, CERN-L4:
 352, 704 MHz
- PIP-II: **325, 650** MHz

Muon cooling RF

- Many frequencies in Buncher, Rotator, Merge, Final Cooling
- Cooling cells have two harmonic frequencies:
 - MAP: **325, 650** MHz
 - Alternative: **352, 704** MHz

Nadia Pastrone – MUST WP5.1 – April 2024 🔹

Accelerator SRF

- LA, RLA: ~1-10 ms
 - MAP: **325, 650** MHz
 - CERN-L4, SPL, ESS: 352, 704 MHz
- Rings: CW
 - MAP: 1300 MHz (very high)
 - LEP: 352 MHz; LHC: 400 MHz
 - FCC: 400, 800, 650(?) MHz
 - CEPC: 650 MHz

20

Cooling Channel

TO DESIGN A HIGH-EFFICIENT IONIZATION COOLING CHANNEL:

 the performance of a normal conducting cavity may degrade when the cavity is operated in strong magnetic fields

LH₂-Absorbe

reduced transversal but

increased longitudinal en

 the magnetic fields cause RF cavity breakdown at high gradients

am direction

high transver

NC RF system for muon capture and cooling very large and complex RF system with high peak power – under study

Region	Length [m]	N of cavities	Frequenci es [MHz]	Peak Gradient [MV/m]	Peak RF power [MW/cav.]
Buncher	21	54	490 - 366	0 - 15	1.3
Rotator	24	64	366 – 326	20	2.4
Initial Cooler	126	360	325	25	3.7
Cooler 1	400	1605	325, F F	22, 30	
Bunch merge	130	26	108	~ 10	
Cooler 2	420	1746	32	22, 30	
Final Cooling	140	96	30		
Total	~1300	3951	F		=> ~12GW

Solenoids for a muon collider need to be

compact (reduce cost),

agnetic field

Cavities

mechanically strong (withstand extraordinary e.m. forces) and well protected against quench (large stored energy)

A field of 40 T (minimum), up to 60 T (target) is needed to meet emittance specification at the end of the cooling stage

2

sumed

Muon cooling cell – design

Bare coils and RF cavity

FAST

HTS tape

HTS tape: 5 km of 4 mm

General scope: use of the HTS tape for learning about noninsulation technology (a novelty that recently is changing the way how magnets are designed.

Focused scope: build a series of small coils and a final one that would allow to validate the design of the Split Coils of the RFMFTF (Radio Frequency in Magnetic Field Test Facility).

Winding of the first Ni coil at LASA (Dec 2023)

Test carried out until breakage at a few hundred of mT, in LN. Lesson learnt: new winding procedure to densify packing factor (Low performance HTS tape used for first tests)

Reference REBCO tape (CERN courtesy)

Substrate	Stainless steel /
(material/thickness)	50 μm
Cu stabilizer	Electroplated /
(type/thickness)	20 µm per side
(Re)BCO thickness	≈2.5µm
Dimensions (width x thickness)	12.1 mm x 0.11 mm

Demonstrator Facility: a crucial step

Suitable site exists on CERN land and can use PS proton beam

• could combine with **NuStorm** or other option

Step forward

MUST will support to establish an **international collaboration** and develop an **optimized R&D roadmap** towards a future muon collider, including the definition of **optimum test facilities and possible intermediate steps**

MS15: International workshop on muon source design M18 → Report
 MS16: International workshop to define R&D plans M36 → Report
 D5.1: International collaboration plans towards a multi-TeV muon collider M46

Evaluation report

Including cost and power consumption scale estimate

- **R&D plan:** magnets, RF test-end, cooling This requires some scenarios and timeline *Investigating synergies on physics and technologies*
- Initial study for the demonstrator

extras

Options @ 10 TeV Scale

Proposal Name	Power Consumption	Size	Complexity	Radiation Mitigation
MC (14 TeV)	~300	27 km	ш	III
FCC-hh (100 TeV)	~560	91 km	П	Ш

FCChh MC-10-14

RF Systems High field magnets Fast booster magnets/PSs High power lasers Integration and control Positron source 6D μ -cooling elements Inj./extr. kickers Two-beam acceleration e^+ plasma acceleration Emitt. preservation FF/IP spot size/stability High energy ERL Inj./extr. kickers High power target Proton Driver Beam screen Collimation system Power eff.& consumption

Collider magnets challenges

AIM: Assess realistic performance targets for the collider ring magnets

Main challenges:

High magnetic field to have a compact collider-> 16T <u>(L_{ring}=10 km, E_µ^{COM}=10 TeV)</u>

- Status of the art: LHC NbTi dipoles, 8T @ 1.9 K.
- ➤ B_{MAX}(NbTi)=8 T -> o achieve a higher magnetic field, new superconducting materials, assembly technologies, stress management and quench protection techniques are required!
- > $F_{Lorentz} \propto B^2$ -> higher magnetic field-> higher stress!
- **Large aperture** (150 mm) to host radiation shielding for the muon decay product \succ F_{Lorentz} scales with the aperture: higher aperture -> higher stress! (N.B. LHC dipole aperture = 56 mm)
- Straight sections must be avoided to minimize the radiation induced by the collimated neutrino beams -> **<u>combined function magnets</u>** are required (dipoles+quadrupoles, dipoles+sextupoles) -> design and stress managment much more complicated!

There are currently no technological solutions for the required specifications, such magnets must be designed and demonstrated from scratch! There are several R&D programs on going to build high-field dipole demonstrators, but no one has the specific requirements necessary for the muon collider. FAST

Nadia Pastrone – MUST WP5.1 – April 2024

- Close to state of the art •
- \sim 11T/150mm (Nb₃Sn) •
- 600 magnets, 5 m length •
- Operating temperature: 4.5 K •

10+ TeV collider (10 km ring):

- HTS magnets, R&D is required •
- ~15T/150mm (ReBCO, hybrid) •
- 1200 magnets, 5 m length
- Operating temperature: 4.5...20 K

Collider Ring

ECOM

Higgs Factor

to

~10 TeV