

Leonida A. GIZZI

CNR, Istituto Nazionale di Ottica, Pisa, Italy

iFAST 3rd Annual Meeting

WP6 Task structure and objectives

WP6: Novel particle accelerators concepts and technologies (Objectives)

- Define a roadmap towards low-energy and high-energy physics applications
- Organise the biannual European Advanced Accelerator Concepts workshop (EAAC)
- Build a roadmap for new, efficient laser drivers for laser-plasma accelerators
- Develop innovative targets for laser-plasma acceleration
- Develop a new passive system to improve laser-driver control and quality

TaskNameTask Leader6.1Novel Particle Accelerators Concepts and Technologies (NPACT)M. Ferrario (INFN) - WP Leader6.2Lasers for Plasma Acceleration (LASPLA)L. A. Gizzi (CNR)6.3Multi-scale Innovative targets for laser-plasma acceleratorsC. Thaury (CNRS)6.4Laser focal Spot Stabilization Systems (L3S)F. Mathieu (CNRS)

Participants: CEA, CERN, CNR, CNRS, DESY, INFN, U. OXFORD, THALES, AMPLITUDE Technologies

WP6 Deliverables and Milestones

Deliverables related to WP6			
D6.1: EAAC workshops and strategies. ACTIVITY IN PROGRESS	M42		
resulting strategies	11112		
D6.2: LASPLA Strategy. ACTIVITY IN PROGRESS	M46		
Report on a strategy for laser drivers for plasma accelerators.	10140		
D6.3: Electron acceleration experiments with new targets. <i>Report on electron acceleration with micro-scale target at a kHz repetition rate, and with long</i>			
targets at the multi-Joule level. REPORT DELIVERED			
D6.4: Improvement of the laser intensity stability on target. REPORT BEING DELIVERED <i>Report showing the stability on two laser facilities before and after improvement.</i>	M36		

MS21: Report on the novel accelerator landscape in Europe, facilities, projects and capabilities at the beginning of the 2020's. Lead – DESY, **M24**, Publication, website (Task 6.1) **REPORT DELIVERED**

MS22: LASPLA Workshop/School. Lead – CNR, M30, Report (Task 6.2) REPORT DELIVERED

MS23: Target manufacturing and characterization. Lead – CNRS, M12 Report (Task 6.3) - REPORT DELIVERED

MS24: Hypothesis on the causes of the instabilities of the focal spot profile. Lead – CNRS, **M24** Publication (Task 6.4)- **REPORT DELIVERED**

Task Leader: Leonida A. GIZZI – CNR-INO

<mark>Gizzi, I.FAST 3rd Annual meeting, 17-19 April 2024</mark> LeO

Status of laser driver development

Current reqirement for LPA driver: PW-class system, with high repetition rate (≈kHz) Demanding high average power

LASPLA Objectives

Establish a roadmap to foster delivery of **advanced industrial laser drivers** with high-repetition rate and higher efficiency, for the first user laser-plasma based accelerators.

Establish a coordination activity with networking and training of main laser labs and industrial partners, focused on laser-driver R&D.

Major effort required to fill the gap between **existing** and **required** laser technology

**L.A. Gizzi et al., A viable laser driver for a user plasma accelerator, NIM A 909 , 58 (2018); https://doi.org/10.1063/1.4984906

SYNERGY WITH LASERS FOR INERTIAL FUSION ENERGY

From ICF IGNITION@NIF ...

... to Inertial Fusion Energy

<complex-block>

Massive investments in lasers needed, and started.

HiPER+: Single beamline specifications

An InfraDEV EU proposal for Inertial Fusion Energy - 2024

Task 6.2 (LASPLA): Roadmap for laser driver development

Parto of the WP6: Novel Particle Accelerators Concepts and Technologies of i.FAST

WP6: Novel particle accelerators concepts and technologies

Objectives

- Define a roadmap towards low-energy and high-energy physics applications
- Organise the biannual European Advanced Accelerator Concepts workshop (EAAC)
- Develop innovative targets for laser-plasma acceleration
- Demonstrate improved beam features with the new targets
- Develop a new passive system to improve beam-pointing stability
- Define solutions to stabilize beam profile in the focal spot and ensure a shot-to-shot stability of the Strehl ratio

Tasks

Task	Name	Task Leader
6.1	Novel Particle Accelerators Concepts and Technologies (NPACT)	M. Ferrario (INFN)
6.2	Lasers for Plasma Acceleration (LASPLA)	L. Gizzi (CNR)
6.3	Multi-scale Innovative targets for laser-plasma accelerators	C. Thaury (CNRS)
6.4	Laser focal Spot Stabilization Systems (L3S)	F. Mathieu (CNRS)

THALES Amplitude High TRL Ti:Sa, 100 Hz, multi Joule scale (EuPRAXIA-Like) - 1-10 kW Coherent combination of multi-J-scale beams . Short-medium term solution High TRL – Industrial development in progress ٠ Proof-of-principle user laser at J level accelerator Needs components testing Longer term solution **Existing "Commercial"** Scalable, efficient ٠ 100 Hz,<100 W, J-SCALE front-end Needs high brightness, & lower cost diode lasers Efficient diode laser technology for pumping Needs materials and components R&D Diode pumped, direct CPA, kHz, multi- Joule scale ٠ TRUMPF High efficiency with advanced lasing materials (DPSSL) と LIGHT ツ CONVERSION ٠ Optical parametric chirped pulse amplification (OPCPA) with ٠ diode pumping Post-compression of thin-disk lasers ***EKSPLA** Coherent combination of fibers

Task 6.1 6th European Advanced Accelerator Concepts workshop

YEAR 3 - Held on 18-22 September 2023 at Elba, Italy

Task 6.2 LASPLA Laser Technology Workshop

Held on 19th, 20th and 22nd of September 2023 in the framework of the 6th EAAC 2023 at Elba, Italy

- Major progress on industrial & scientific laser development;
- Robust industrial multi kW, thin disk laser technology + NL Pulse compression;

FAST

- Coherent combination of fibers aiming at few cycle, 100 Hz;
- OPCPA based on robust and high beam quality DPSSL pump lasers;
- Progress in the development of pump lasers for high average power Ti:Sa system;
- Direct diode-pumping of Thulium-doped now in robust development phase and needs coordinated effort across labs for materials and architecture;
- Strong impulse to diode laser developments for high average power, new wavelengths, high energy density, compactness.

Dissemination of IFAST 6.2 activity

L.A.Gizzi, Novel high-intensity lasers for plasma acceleration, Invited talk at the 109 th Congress of the Italian Physical Society, 11-15 Sept. 2023, Salerno, Italy

LA.Gizzi, Laser and plasma studies at ILIL, Invited talk at the CMD30 and FISMAT 2023 Joint conference, 4-8 September 2023, Milano, Italy

LA Gizzi, Science and Technology of laser drivers for plasma accelerators, Invited Lecture at the INFN Erice Accelerator School, EMFCSC, 27 Jul – 2 Aug, 2023, Erice Italy

LA, Gizzi, The EuPRAXIA Compact Plasma Accelerator Infrastructure and Perspectives for Nuclear Applications, Invited talk at the International Conference on Applications of Nuclear Technique, June 18-24, 2023, Crete, Greece.

LA.Gizzi, Lasers for Plasma accelerators, Workshop on "Lasers, from nanoscale to petaWatt" 6-9 September 2022, Université Côte d'Azur, Nice, France

EuPRAXIA: Baseline Laser Design

The current EuPRAXIA laser design relies on Titanium Sapphire technology to address average (10 kW) and peak (PW) power as required by the project (1-5GeV LWFA).

L.A. Gizzi, et al., A viable laser driver for a user plasma accelerator, NIMA 909, 58 (2018); https://doi.org/10.1063/1.4984906
R. Assmann et al., EuPRAXIA Conceptual Design Report, The EPJ-ST 229, 3675–4284 (2020); https://doi.org/10.1140/epjst/e2020-000127-8
Water cooled Ti:Sa amplifier under development at ELI-HU (After V. Cvhykov et al., Opt. Lett, 41, 3017, 2016)
Fluid (D₂O) cooled Nd:YAG laser, 20 kW CW pump power, D₂O (After X. Fu *et al.*, Opt. Express, **22**, 18421 (2014)
Fluid (Siloxane) cooled Nd:YLF laser, 5 kW CW pump power (After Z. Ye et al., Opt. Express, 24, 1758 (2016)

Underpinning EuPRAXIA-like Laser driver TDR

Eupraxia laser development is aimed at delivering more efficient, kW-PW laser driver for plasma acceleration at >100 Hz rate

Developments ongoing at national level (NextGeneration EU)

>4 M€ investment

FUTURE SYSTEM

- PW class.
- 100 Hz repetition rate,
- multi kW average power,
- diode pumped,
- Thermal load effects.

Establish the platform for 100 Hz operation LPA with **twofold objective**:

- **Biomedical** developments VHEE-RT • & FLASH (100 MeV - 250 MeV);
- Front-end level test platform for multi GeV LPA driver development.

IN PROGRESS

- >30 TW peak power
- 100 Hz repetition rate
- 100 W average power
- **Diode pumped**
- **Thermal load effects**

VHEE-RT

Laser TDR Working plan: PACRI Infratech proposal

PLASMA ACCELERATOR SYSTEMS FOR COMPACT RESEARCH INFRASTRUCTURES

Funding for scaleup of collaborative TDR development (within InfraTECH proposal PACRI)

EuPRAXIA laser driver (100 Hz) and longer term options (1 kHz)

- Laser-driven 2nd site development and (new) excellence center(s) on laser technologies will boost activities
- Leveraging on developments ongoing at national level (all partners)

Thulium based gain materials

1.47 um

Cross Relaxation

Main features

- Emission at 2 µm, eye safe;
- Ultrashort possible (<100 fs);
- High peak power \approx PW;
- High average power(scalable from kW to 300 kW);
- Direct pumping at 800 nm, using diodes operating in CW mode (available and scalable);
- Multi-pulse extraction at high repetition rate
- 10 kHz; Ideal for accelerator technology;
- High efficiency;

FAST

• Mature material technology (crystal growth or ceramics);

High Efficiency enabled by multipulse extraction (energy storage)

Relatively new approach for short pulse operation: needs R&D, but promising

Demonstration of a 1 TW peak power, joule-level ultrashort Tm:YLF laser*

333

E=1.59 J Pulse duration=270 fs P=1.7 TW Pump: 35.3 kW p.p. 40 ms

Thulium starting to show real potential for a new, efficient driver platform.

*I. Tamer et al., Optics Letters **49**, 1583 (2024)

Our platform: Tm in Sesquioxide

Accurate characterizaton of absorbed pump energy to measure quantum efficiency

2µm, kHz, mJ front-end: operational@CNR

:NRINO

Task Leader: Cedric THAURY, CNRS-LOA

Task 6.3 multi-scale innovative targets for laserplasma accelerators : laser-plasma waveguide

First demonstration of **controlled injection** and acceleration in a laser-plasma waveguide

- \rightarrow High-quality ~1 GeV beams with a J-class laser (LOA)
- \rightarrow High-quality >2 GeV beams with a 10 J laser (Apollon)

loa

CENTER

pollon

Task 6.3 multi-scale innovative targets for laserplasma accelerators : kHz targets

Differential pumping for using light gases at high rep. rate

loa

CENTER

Task 6.3 multi-scale innovative targets for laserplasma accelerators : kHz targets

Stable mono-energetic beams

FAST

	Mean	rms
Energy	2.9 MeV	5 %
Energy spread	1.8 MeV	3 %
charge	2 pC	3%
divergence	17 mrad	4 %
Beam pointing		1.5 mrad

Task Leader: Francois MATHIEU, CNRS-LULI

Task 6.4 - Summary of activities in P1

 Characterization of beam pointing stability with high sensitivity for accelerator-level performace

FAST

Measurement done over 1 hour in the target chamber

The beam stability is \pm 3 $\mu rad PTV$

Objective is \pm 0,1 μrad PTV

- Installation of active stabilization loop in the amplification stages <u>completed</u> Beam stability improved by a factor 2
- Characterization of the mechanical frame under progress
- Aiming at +/- 0,15 µrad PTV stability requisite for particle beam stability in a laser driven accelerator

Task 6.4 - Summary of activities in P1

Characterization of focal spot stability with most advanced metrology framework

Measurement done with a **wavefront sensor** running at 200Hz and a cw laser

Evolution sur 70 fir

Strehl ratio varies from 0.25 to 0.85

- 0.75 0.70 0.85 0.60 0.55 0.50 0.45 0.40 0.35 0.40 0.35 0.30 0.25
- Installation of new system to minimize airflow
 Strehl stability improved up to ± 7.8%.
- Procurement of an 1kHz active loop under progress
- Aiming at +/- 2% PT>V stability on the Strehl ratio, since the stability

FAST

Summary

- Strong progress on laser driver developments for plasma acceleration:
 - Increasingly involving industrial partners
 - Industrial femtosecond Ti:Sa laser technology with diode-pumped pump lasers being established at 100 W
 - Tm:based CPA DPSSL architecture aiming at high efficiency and demonstrating fs operation
 - Major advances in gas targets for LPA
 - Significant achievements in active beam stability
- Milestones and Deliverables on track
- Activity towards preparation of the LASPLA Strategy document D6.2 is ongoing

IFAST

Thank you for your attention!

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.