

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

Innovative Superconducting Thin Film Coated Cavities

3rd Annual Meeting Paris, 18 April 2024

Cristian **Pira**

on behalf of iFAST **WP9** Collaboration

İFAST

I.FAST WP9 Collaboration

reduces cryogenic power by a factor of 3

Innovative Superconducting Thin Film Coated Cavities Paris, 18 April 2024

Nb₃Sn on Cu: Multiple challenges

- ► A15 are Brittle materials
- ► Complicate Phase Diagram
- Low melting point substrate
- Substrate preparation
- Interface diffusion
- ► Target Production
- Coating Parameters
- ► Trapped Flux
- ► Tuning

Nb₃Sn on Cu: Multiple challenges

- ► A15 are Brittle materials
- ► Complicate Phase Diagram
- Low melting point substrate
- Substrate preparation
- Interface diffusion
- Target Production
- Coating Parameters
- ► Trapped Flux
- ► Tuning

ARIES

IFAST

Nb₃Sn on Cu: Multiple challenges

- ► A15 are Brittle materials
- ► Complicate Phase Diagram
- Low melting point substrate
- Substrate preparation
- Interface diffusion
- Target Production
- Coating Parameters

FAST

- Trapped Flux
- Tuning

Started in March 2024

WP9 Structure

Task 9.2

Innovative SC accelerating cavity **prototype 1.3 GHz cavity coating and testing**

Task 9.1

Coordination and strategy

for innovative superconducting accelerating cavities

Task 9.3

Optimisation of process parameters and target development for SRF cavity coating with **A15 material 6 GHz cavities**

Task 9.4

Surface engineering by atomic layer deposition

ALD

Task 9.5

Improvement of mechanical and superconducting properties of RF resonator by **laser radiation**

Task 9.6

Optimization of flat SRF thin films production procedure

QPR and HWR

Task 9.1Task Leaders: Claire Antoineand Oleg B. MalyshevCoordination and Strategyfor innovative SC accelerating cavities

WP9 Meetings every 3 months

On scopes:

-	Preparation of the ESPP R&D roadmap report:	done
	 implement our expertise in the organisation of future Int¹ thin film R&D 	
-	Leading Implementation of TF SRF theme as a part RF Coordination Panel	ongoing
	- aiming to gather all European TF activities together in a common project/collaboration	
-	Coordinating with DESY/CERN	ongoing
-	Coordinating with Thin films TTC group	ongoing
-	Snowmass letter of interest	done
_	Participating in in SRF 2023 Organising Committees	done

Organization of the 2024 Thin Film SRF workshop officially sponsored by IFAST (scientific committee + local organisation) **in progress**

16–20 September 2024 - Université Paris-Saclay, France

Registration deadline is May 24, 2024

https://indico.cern.ch/event/1376902/

I.FAST WP9 R&D program cover all the cavity production chain

Innovative Superconducting Thin Film Coated Cavities Paris, 18 April 2024

Cavity forming

Task 9.2 Task Leader: Cristian Pira

Innovative Superconducting Thin Film Coated Cavities Paris, 18 April 2024

Seamless Spinning

Cavity Forming

Forming technology adopted to produce 1.3 GHz (task 9.2) and 6 GHz (task 9.3) elliptical seamless Cu R&D substrates to all partners

PRIMARY GOAL:

High internal surface quality

OPTIMIZED PRODUCTION PROTOCOL:

- ► CNC machine
- Reduced Annealing Temperature (400 °C, previous 500 °C)
- New intermediate Deep Drawing Step

LAST YEAR RESULTS

- New design for dies
- Testing of new dies
- OFE Copper procurement finished
 - ► Ready for 1.3 GHz production

New 1.3 GHz Die for Spinning produced by Piccoli

cristian.pira@Inl.infn.it

Surface Polishing

Task 9.2 Task Leader: Cristian Pira

Innovative Superconducting Thin Film Coated Cavities Paris, 18 April 2024

Methallographic Polishing

and David Longuevergne **Claire Antoine** Courtesy of Oleksandr Hryhorenko,

MP polished Nb QP

Innovative Superconducting Thin Film Coated Cavities Paris, 18 April 2024

cristian.pira@Inl.infn.it

Methallographic Polishing

RF test on QPR done in the

HZB Helmholtz

Zentrum Berlin

framework of

Task 9.5

×

414 MHz, 4.5 K

+ Baseline

× Polished

60

65

55

70

80

90

► Measurement of R_{res} resistance below 1 nOhm

60

50

40 45 50

► Reproducible results (x2 QPR so far)

Keckert

ഗ

and

O. Kugeler

Longuevergne,

Ū.

Antoine,

Ċ

of O. Hryhorenko,

Courtesy

Plasma Electrolytic Polishing PEP

NFN

Innovative Superconducting Thin Film Coated Cavities Paris, 18 April 2024

Atomic Layer Deposition

Task 9.4 Task Leader: Thomas Proslier

Innovative Superconducting Thin Film Coated Cavities Paris, 18 April 2024

Atomic Layer Deposition Coatings

Atomic Layer Deposition Research Scale Reactor

- Atomic Layer Deposition Development Scale Reactor
- High vacuum oven ØxL: 50x110 cm.
- Temperature: 30-450°C
- 8 precursor lines : 4 solids, 2 liquids, 2 gases.
- Chamber adaptation (cavités, QPR).
- In situ: RGA.

- Engineering superconducting surface for high Q operation by Atomic Layer Deposition (ALD) and thermal treatments
- Engineering superconducting surface for high gradient
 operation by ALD and thermal treatments:
 Doping without chemistry and multilayers

Courtesy

Atomic Layer Deposition Coatings

N.Lochet , D.Bafia, L.Grasselino, T. Proslie

T. Junginge

Hrabo

Y. Zheng, D.

A. Four, F. Miserque,

C. Antoine,

Delatte,

Courtesy of Y. Kalboussi, B.

✓ Increased Q at low field for 3D superconducting resonators 1,3 GHz. Publication + patent

✓ Increased penetration field on samples by 24%. First depositions of multilayers in 1.3 GHz cavities

N doped cavity by ALD of NbN. Optimization underway.
 First depositions of multilayers in 1.3 GHz cavities

Doping by ALD: NbN (5nm) + thermal treatment High Q studies for Qubits and accelerators 220 8×10¹⁰ EP+Al₂O₃+anneal (650°C-10 hrs) 1.42 - 1.6 K Baseline (EP) 1E11 27 MV/m 7×10¹⁰ 210 -6×10¹⁰ 2 K 200 5×10¹⁰ H_{c1} [mT] $\vec{O}_{4x10^{10}}$ ď 190 1E10 5-6 MV/m 3×10¹⁰ 180 2×10¹⁰ After doping 1×10¹⁰ Baseline 170 1E9 0 10 20 30 10 15 25 30 35 1E-4 0.001 0,01 0,1 10 20 1E-5 E_{ACC} [MV/m] E (MV/m)

High Gradient for accelerators increased penetration field

ALD coating

SC Thin Film Development

Task 9.2 Task Leader: Cristian Pira

 Task 9.3

 Task Leader: Reza Valizadeh Internet Science and Petricogy

Innovative Superconducting Thin Film Coated Cavities Paris, 18 April 2024

Lehrstuhl für Oberflächen- und Werkstofftechnologie

From NbN to NbTiN by HiPIMS

Goal: SS or SIS structure by PVD+ALD

R. Ries², E. Seiler², D. Tikhonov⁴, M. Vogel¹, R. Zierold³

Zubtsovskii Ż of Courtesy

13th Int. Particle Acc. Conf.

ISBN: 978-3-95450-227-1

Innovative Superconducting Thin Film Coated Cavities Paris, 18 April 2024 cristian.pira@Inl.infn.it

21

UNIVERSITÄT SIEGEN Lehrstuhl für **NbTiN** Coatings LOT Oberflächen- und Werkstofftechnologie by DC/HiPIMS co-sputtering **Decreased pressure** leads to film NbTiN (002) NbTiN (111) densification SS multilayer structure 0.7 Pa 0.9 Pa co-NbTiN / HiPIMS-Nb / Cu co-NbTiN: 1.1 Pa **Parameter Optimization:** 1.3 Pa 1.5 Pa a dia tala di mandati sa tanàna 14 an co-NbTiN 1.6 Pa Deposition pressure: 1.8 Pa 40 20 (deg) **HiPIMS-Nb Deposition Angle (composition) Deposition pressure: 1.8 Pa** "Nb_{0.73}Ti_{0.27}N" at 1.3 Pa → Tc = 14.3 K "Nb_{0.82}Ti_{0.18}N" at 1.1 Pa → Tc = 15.1 K Substrate bias: NbTiN (002) +20° NbTiN (111) Cu (111) Pronounced columnar structure - Rough surface OV **Deposition pressure: 1.2 Pa** Intensity Zubtsovskii **Nb** [0°] 50V **Ti** [-40°] 150V Ŕ of Nanocrystalline structure - Denser grain packing cristian.pira@Inl.infn.it 35 20 (deg) 40 45

Innovative Superconducting Thin Film Coated Cavities Paris, 18 April 2024 22

Optimized Coating Recipe

- Nb Thick Barrier Layer > 30 um
- Coating Parameters:
 - Pressure = 2*10⁻² mbar
 - Power = 16 W
 - T substrate ≥ 600 C

A thick Nb buffer layer accommodate the Nb₃Sn coating Coating performance validation on Nb substrate

Nb₃Sn Coatings

Last results (March 2024):

Rs of 23 nΩ @ 20 mT @ 4.5 K Quench >70 mT @ 4.5 K

Equivalent to a Q of 9*10° @5 MV/m @4.5 K Almost 1 order of magnitude better than LHC!!! Room for improvement

Innovative Superconducting Thin Film Coated Cavities Paris, 18 April 2024

Nb₃Sn Cathode and System Development Path to final prototype

- I.3 GHz Vacuum system ready
- Magnetron source commisioned

Nb₃Sn on bulk Nb to validate coating performances

Innovative Superconducting Thin Film Coated Cavities Paris, 18 April 2024

INFN

1.08+004

104-003

d de viter

10+003

238-025

41

8-Roda (Dep)

Nb₃Sn Coatings

KK

100

Chairmal No.

Science and

two is these said also del

Innovative Superconducting Thin Film Coated Cavities Paris, 18 April 2024

IFAST

V₃Sn Coatings

Science and Technology Facilities Council

reza.valizadeh@stfc.ac.uk

Post Processing

Task 9.5 Task Leader: Arturs Medvids

Laser Annealing

Innovative Superconducting Thin Film Coated Cavities Paris, 18 April 2024 reza.valizadeh@stfc.ac.uk

of A. Medvids Courtesy

30

ms-Flash Lamp Annealing (IFAST Innovation Fund Project)

HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF

Material crystallinity improved in all thin film superconductor tested

- On Nb and NbN coatings FLA produce a narrower hysteresis curve
- On Nb₃Sn coatings FLA improve lattice parameter (closer to bulk values)

FLA system for 6 GHz cavities

- Holding System Ready
- Vacuum system commissioned

Holding system for the flash lamp and cavity

Zhou

ഗ

and

Prucnal

Ś

of

Courtesy

reza.valizadeh@stfc.ac.uk

Post Processing

SC Properties Evaluation

Task 9.3 Task Leader: Reza Valizadeh 🖾 Science and Facilities Council

Innovative Superconducting Thin Film Coated Cavities Paris, 18 April 2024

Magnetic Field Penetration

- Larger sample up to 10 cm diameter can examined
- * No indentation on the film in centre
- * Magnetic shield made hudge improvement in result quality

Comparisons.

Data Analysis has improved since the Introduction of a Magnetic Shield

Courtesy of L. Smith

SC Properties

Fvaluation

DC/AC Superconducting Properties Evaluation

DC magnetisation measurements

Vibrating Sample Magnetometer

Small planar samples (~ 2x2 mm - cutting)

AC magnetisation measurements

- Susceptibility temperature scans
- Tc of different films in Multilayer and SIS samples

Nb3Sn	Cu_28_06_23	160	17
Substrates: Cu,			
Sapphire	Cu_06_07_23	530	16.5
	Cu_24_07_23	350	17
STFC	Cu_08_12_23	300	16.7
1.12.2023 series	Sapp_28_06_23	50	17.5
	Sapp_06_07_23	60	17.5
Reza	Cu_RTdep_510C	430	14.7
	Sapp_24_07_23	930	17.5
	Cu_RTdep_340C	-	-
Nb3Sn	Cu_CD3MM-020	610	16.8
Substrate: Cu	Cu_CD3MM-002	740	16.8
12.1.2024 series	Cu_CD3MM-015	580	16
STFC			
D.Seal			
Nb3Sn	Cu_Run33	300	13.2
Substrate: Cu,			
Sapphire	Cu_Run33_50Nb	700	9.3 + 16.8
8.2.2024 series	Sapp_Run33	860	16.8
INFN			
Dorothea Fonnesu			

A quality control check for all the samples made within IFAST WP partners

Smith

Ĺ

of

Courtesy

RF Measurements

Task 9.6 Task Leader: Oliver Kugeler HZB Helmholtz Zentrum Berlin

Innovative Superconducting Thin Film Coated Cavities Paris, 18 April 2024

Sample RF test with 7.8 GHz Choke cavity

Science and

Technology Facilities Council

Innovative Superconducting Thin Film Coated Cavities Paris, 18 April 2024

reza.valizadeh@stfc.ac.uk

RF measurements

Low Power SRF Test

- All main components manufactured and delivered
- Aim to begin vacuum & cryo tests by end of April
- RF System to be developed
 - A single system for 1 8 GHz
 - New LU postdoc to be in charge of this from next week

1.3 GHz High power RF Facilities

- Designs completed & in manufacturing stage
- RF System: A single system for 650 MHz, 700 MHz and 1.3 GHz P ≤ 200 W
- Aim to commission in June/July with 2-cell bulk Nb 1.3 GHz cavity previously tested at Fermilab

Science and Technology

WP9 Status

IFAST WP9 Milestones

MS	Description	Month
37	International thin film workshop organisation in Sep. 2024 (web site + Report) (Postpone to data mistake in Grant Agreement)	28 ↓ 42 (Oct. 2024)
38	First seamless copper 1.3 GHz cavity produced as substrate for the coating of the SC film (Report)	12
39	Coating facility built and tested at STFC, USI and INFN (Report)	12
40	Construction and operation of the cavity dedicated ALD system (Report)	24
41	A facility for laser operation for complex 3D treatment is tested on 1.3 GHz cavity (Report) (Postpone to technical challenges)	36 ↓ 43 (Nov. 2024)
42	ARIES samples prepared for renewed SC film deposition (Report)	6

IFAST WP9 Deliverables

D	Description	Month
9.1	Thin-Film SRF roadmap report. Summaries of the results obtained within the workpackage and prospective inspired from WP advances as well as discussions at TF-SRF 2022. (Postpone to data mistake in Grant Agreement)	35 ↓ 45 (Jan 2025)
9.2	RF test on coated resonant cavity. Resonant cavity coated and tested with an alternative material to Niobium with a $Q_0 > 10^9$ at 4.2 K and 1.3 GHz. (Postpone to technical challenges)	46 ↓ 48 (Jan 2025)
9.3	First 6 GHz cavity coated and characterised. Results from the morphological and SC characterisation of first coated cavity with an alternative material to Niobium. (Postpone to technical challenges)	36 ↓ 42 (Oct 2025)
9.4	Deposition of superconducting multilayers on cavities. 1.3 and 3 GHz Nb and Cu cavities coated and tested with multilayers.	46
9.5	 1.3 GHz Nb-coated cavity irradiated by laser in Ar atmosphere and RF tested. Increasing of the field of magnetic flux entry in Nb coated 1.3 GHz cavity irradiated by laser in argon atmosphere. Standard RF testing 	45
9.6	Test of thin-film samples. Four thin film samples reprocessed by 4 different techniques and tested with QPR.	46

WP9 Outputs in 2023

Disseminations

Plenary Talk Claire Antoine - R&D in Superconducting RF: Thin Film Capabilities as a Game Changer for Future Sustainability

Posters from partners

SRF 2023 GRAND RAPIDS

Plenary Talks Cristian Pira – Progress in European thin film activities Oleksandr Hryhorenko - Recent advances on metallographic polishing for SRF application Yasmine Kalboussi - Surface Engineering by ALD for Superconducting RF Cavities (Early Career Inv. Award Winner)

Posters from partners

Daniel Seal "Optimisation Of Niobium Thin Film Deposition Parameters For SRF Cavities (3rd prize Best Student Poster)

Various Workshop and Seminar Talks

Publications

2 Publications in International Journals

More than 20 conference proceedings

Conclusions

- **On track** with Deliverables and Milestones (minor delays due to technical challenges)
- WP9 Collaboration Team demonstrate:
 - Optimum partners collaboration within each task and between the tasks
 - Collaboration extended to new partners (HZDR, CERN, DESY)
- Creating new opportunities to continue the R&D on thin film cavities and move it to higher TRL
- Strongly potential interest of industry on Nb₃Sn for SRF
 - (see Michael Pekeler's presentation on Wednesday)

2024 Thin Film SRF workshop, 16–20 September 2024, Paris

https://indico.cern.ch/event/1376902/

IFAST

) IFAST

DIFAST

WP9 Innovative Superconducting Thin Film Coated Cavities

Thankyou!

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

A CONTRACT OF THE OWNER OF THE MERICAN AND THE OWNER OF THE OWNER