

Very high gradient RF Guns operating in the C-band RF technology (Task 7.4)

David Alesini, task coord. INFN-LNF (Frascati, Italy)

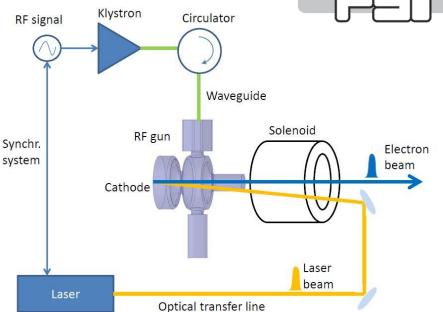
On behalf of the INFN-PSI Very High Gradient C band gun group

OUTLINE

1. Recap. on Goals and Responsibilities

2. Update on SW GUN Activities and High power test

3. Update on **TW GUN Activities**


TASK 7.4 STRUCTURE AND OBJECTIVES

- Design, realization and high power test of two different C-band (5.712 GHz) RF ٠ electron photo-guns operating at very high gradient cathode peak field (>160 MV/m):
 - \Rightarrow Standing Wave (SW) gun (INFN (IT), COMEB (IT))
 - \Rightarrow Travelling Wave (TW) gun (PSI (SW); VLD (NE))
- **Comparison** of the performances, **beam dynamics** simulations to exploit the device • potentialities

SW GUN

- **Research Institutions** involved: **INFN** (IT), **PSI** (SW); •
- Private Companies involved: VLD (NE), COMEB (IT)

Coordination •

FAST

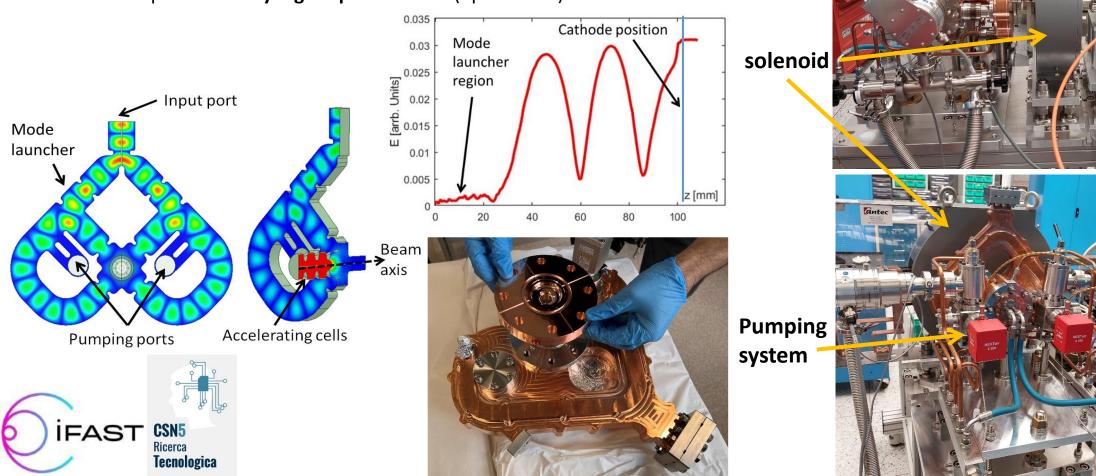
- Design and low power test of the SW Gun
- Solenoid design and procurement
- RF circulator procurement

mechanical construction and assembly of the SW gun

- design, brazing and low power characterization of the TW Gun
- hosting and setting up the facility to perform the highpower test

mechanical construction of the TW gun components

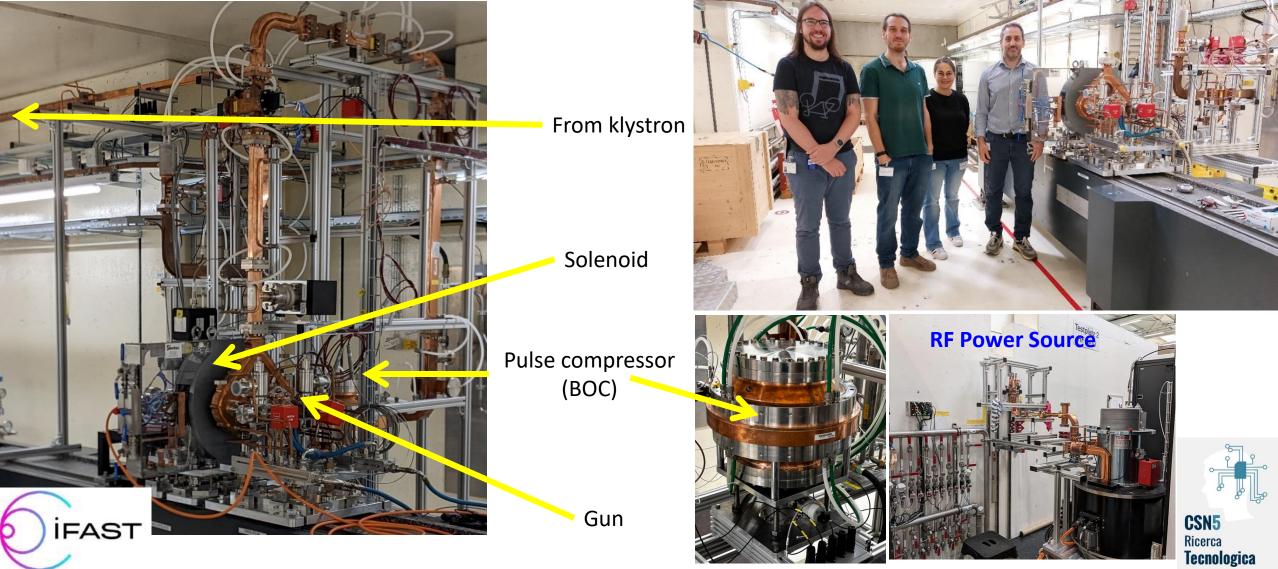
SW GUN FINAL ASSEMBLY


CSN5 Ricerca **Tecnologica**

Laser injection chamber

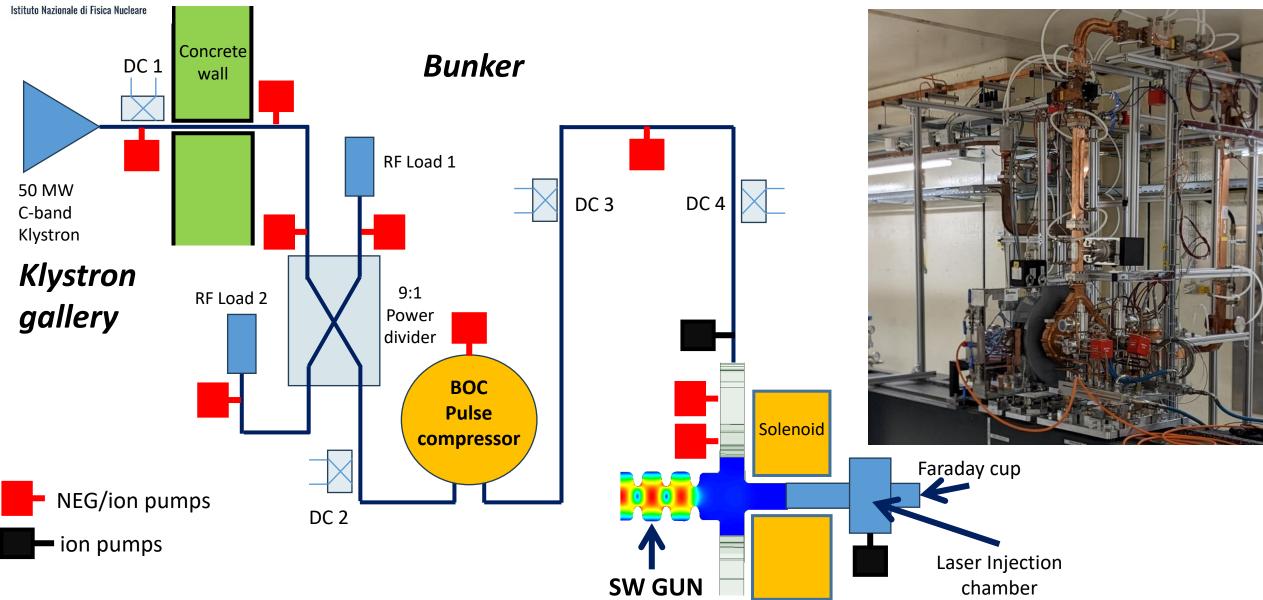
gun

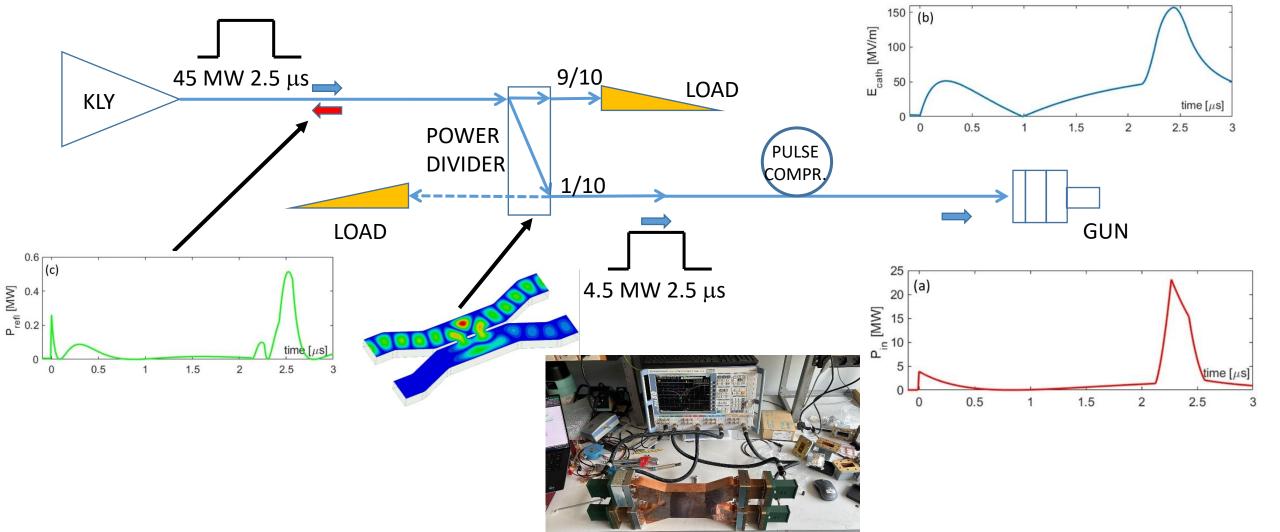
- The new C-Band RF gun, developed in the context of the INFN Commission V and • European I.FAST projects, has been realized and is now under high power test.
- It is a **2.6 cell standing wave cavity** with a four-port **mode launcher**, designed to • operate with short rf pulses (300 ns) and cathode peak field larger than 160 MV/m.
- It is fabricated using the **brazed-free technology** developed @INFN. •
- It allows to operate at **very high repetition rate** (up to 1 kHz).



SW GUN INSTALLATION AT PSI

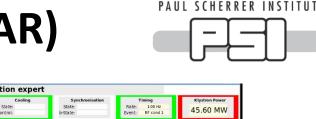
Istituto Nazionale di Fisica Nucleare


- \Rightarrow High power test stand and **bunker implemented by PSI**.
- \Rightarrow Installation of the SW gun with waveguides done in collaboration INFN-PSI


HIGH POWER TEST SCHEMATIC LAYOUT

ALTERNATIVE FEEDING SCHEME W/O ISOLATOR

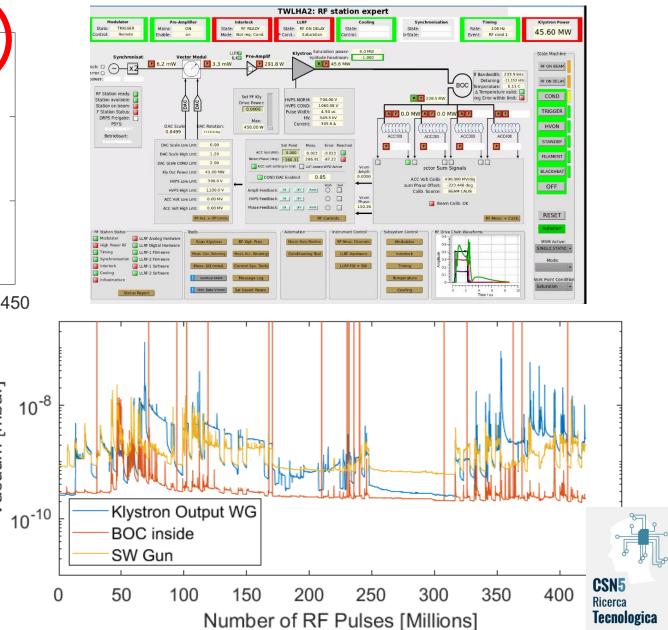
The original gun feeding scheme foresaw the use of a **new in-vacuum isolator**. The delivery of the isolator from the Company experienced some **delays** due to the difficulties that have been encountered in its realization. For this reason and also to have a backup solution in case of difficulties in reaching, with this new device, the required performances in term of power, **we have developed an alternative scheme using power dividers and a BOC-type pulse compressor** already available at PSI for the test of the travelling wave gun in the context of the I.FAST project.



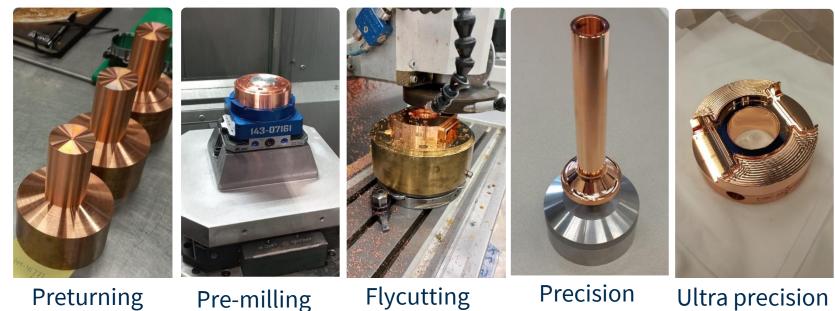


FAST

HIGH POWER TEST RESULTS (SO FAR)


Vacuum [mbar]

Very low number of RF gun breakdown (to be precisely calculated <5x10⁻⁷bpp) Oral IPAC 24

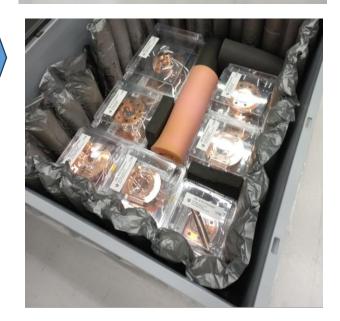


PAUL SCHERRER INSTITUT

SUMMARY OF ACTIVITIES: TW GUN

Preturning

FAST


D

Precision turning

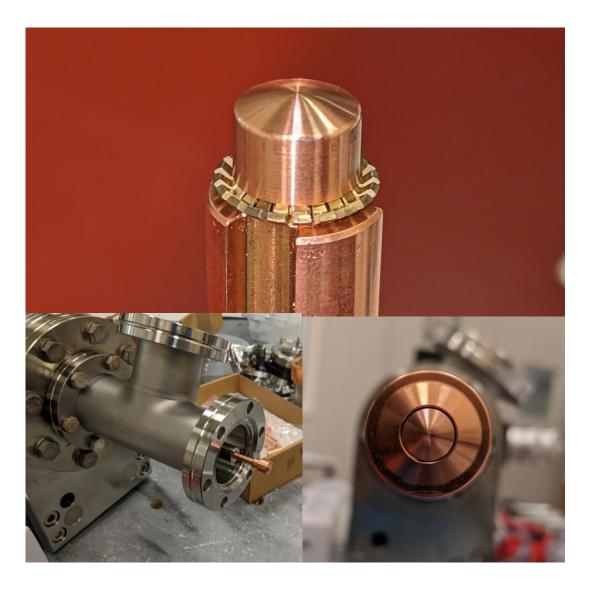
Ultra precision Milling

 \Rightarrow TW gun components have been machined

- \Rightarrow Delivery of the TW gun parts occurred on the 7th March 2024.
- \Rightarrow Brazing to occur within few weeks @ PSI
- \Rightarrow Final cathode design with VDL.

Courtesy T. Lucas, P. Craievich

PAUL SCHERRER INSTITUT



FAST

CATHODE FOR TW GUN DEVELOPMENT

- \Rightarrow A dummy inner-conductor was made to test the concept for the cathode.
- \Rightarrow The findings led to the development of a new cathode concept where the cathode was made in two pieces.
- ⇒ Furthermore, the spring was found to **plastically deform** with only a small force (compared to that observed in SwissFEL). This is under investigation.
- \Rightarrow Gap between cathode and wall increased from 230um to 480um for mechanical tolerances.

Courtesy T. Lucas, P. Craievich

FAST

COMPARISON OF THE TWO GUN PERFORMANCES

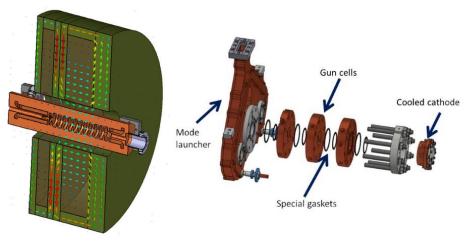
PHYSICAL REVIEW ACCELERATORS AND BEAMS 26, 103401 (2023)

PHYSICAL REVIEW ACCELERATORS AND BEAMS 26, 083402 (2023)

Toward a brightness upgrade to the SwissFEL: A high gradient traveling-wave rf photogun

Thomas Geoffrey Lucas[®], ^{*} Hans-Heinrich Braun, Paolo Craievich, Reto Fortunati[®], Natalia Kirchgeorg[®], Anastasiya Magazinik, Marco Pedrozzi, Jean-Yves Raguin, Sven Reiche, Mattia Schaer, Mike Seidel,[†] and Riccardo Zennaro *Paul Scherrer Institut, Forschungsstrasse 111 5232 Villigen PSI, Switzerland*

David Alesini and Anna Giribono INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, Frascati (Roma) 00044, Italy


(Received 31 March 2023; accepted 19 September 2023; published 19 October 2023)

Dynamics studies of high brightness electron beams in a normal conducting, high repetition rate C-band injector

A. Giribono[®],^{1,*} D. Alesini,¹ F. Cardelli,¹ G. Di Raddo,¹ L. Faillace,¹ M. Ferrario,¹ A. Gallo,¹
A. Gizzi,¹ S. Lauciani,¹ A. Liedl,¹ L. Pellegrino,¹ L. Piersanti,¹ C. Vaccarezza,¹ A. Vannozzi,¹
J. Scifo,^{1,2} L. Ficcadenti,³ G. Castorina,⁴ G. Pedrocchi,⁵ G. J. Silvi,⁵ and T. G. Lucas⁶
¹Laboratori Nazionali di Frascati, INFN, Via Enrico Fermi, 54 - 00044 Frascati, Italy
²ENEA - C.R. Casaccia, Dipartimento Fusione e Techologie per la Sicurezza Nucleare, E Via Anguillarese 301, 00123 Roma, Italy
³INFN-Roma1, Piazzale Aldo Moro, 2 - c/o Dipartimento di Fisica, 00185 Rome, Italy
⁴Università di Catania, Dipartimento Di Ingegneria Elettrica Elettronica E Informatica, viale A. Doria, 6 95125 Catania, Italy
⁵Università La Sapienza, Dipartimento di Scienze di Base e Applicate per l'Ingegneria, via A. Scarpa 14 00161 Roma, Italy

⁶Paul Scherrer Institut, Forschungsstrasse 111 5232 Villigen PSI, Switzerland

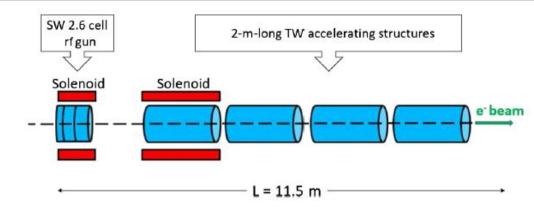
(Received 27 March 2023; accepted 18 July 2023; published 24 August 2023)

	SW gun	TW gun
Cathode field	160-180 MV/m	200 MV/m
Required RF power	19-23 MW/300 ns with isolator	82 MW/ 90 ns (with BOC, w/o isolator)
Technology	2.5 cells brazed free with mode launch.	12 cells, brazed, coaxial mode launcher
Solenoid	Single coil, after the gun	Around the structure with bucking coil

İFAST

COMPARISON OF THE TWO GUN PERFORMANCES

TABLE I. List of the working points described in this paper.


SW GUN

TW GUN

TABLE II. Summary of the beam dynamics performance of the current SwissFEL injector compared to the proposed injector upgrade.

Parameter	S-band SW gun [12,14]	TW rf photogun
Cathode gradient (MV/m)	100	200
Bunch charge (pC)	200	200
Extraction field strength (MV/m)	75.3	173.8
Transverse laser profile	Uniform	Uniform
Longitudinal laser profile	Uniform	Uniform
Laser beam radius (µm)	342	322
Thermal emittance (mm mrad/mm)	0.55	0.55
Laser pulse width (FWHM) (ps)	9.9	2.83
Laser pulse energy (nJ)	200	200
Energy (after gun) (MeV)	7.1	18.3
Energy (end of injector) (MeV)	130	130
Correlated energy spread (%)	0.22	0.16
Bunch length (µm)	931	326
Projected emittance (mm mrad)	0.221	0.185
Sliced emittance (mm mrad)		-48
Peak current (A)	19.74	55.5
Central 5D brightness (TA/m ²)	905	5155

	Low	charge	I	Medium	charge	High	charge	Units
Charge	75	75	200	200	200	500	500	pC
Average energy	125	105	123	250	200	200	125	MeV
Transverse normalized emittance (100%—rms)	0.15	0.18	0.25	0.25	0.37-0.69	1.3	0.65	mm mrad
Transverse normalized emittance (95%—rms)	0.11	0.13	0.18	0.16	0.25-0.45	0.80	0.44	mm mrad
Length (rms)	380	100	500	500	200-33	33	720	μm
Peak current	20	85	40	40	70-500	1000	70	Ampere
rf compression	off	on	off	off	on	on	off	
Repetition Rate	high	high	high	low	low	low	high	
Peak field @cathode	160	160	160	180	180	180	160	MV/m
TW structure accelerating field	15	15	15	31	31	31	15	MV/m

CONCLUSIONS

- SW GUN has been realized and is now under high power test at PSI.
- TW GUN: design activity concluded, fabrication of the components by VDL has been done. Brazing under way.

Deliverable D.7.4: mechanical realization and low power rf tests of the two guns (M38)

THANK YOU FOR YOUR ATTENTION

MAIN CONTRIBUTORS

INFN-LNF: F. Cardelli, G. Di Raddo, A. Vannozzi, A. Giribono, L. Faillace, A.Gallo, L. Pellegrino, M. Ferrario, A. Liedl, L. Spallino, S. Lauciani, C. Vaccarezza, V. Lollo, S. Pioli.

INFN-ROMA1: L. Ficcadenti, G. Pedrocchi, G. Castorina

PSI: T. Lucas, P. Craievich, R. Fortunati, R. Zennaro, M. Pedrozzi, F. Marcellini, J-Y Raguin, M. Schaer, C. Beard

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No101004730 and INFN Comission n. 5.

