

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

UNIVERSITÀ DEGLI STUDI DI MILANO Facoltà di scienze e tecnologie

Energy-saving superconducting magnets in accelerators and beamlines

3rd I.FAST Annual Meeting

Samuele Mariotto on Behalf of LASA research Group

Project Goal and Objectives

- Energy consumption of particle accelerator facilities is expected to increase in the future: Upwards electricity price trend is foreseen
- Need for «Improvement of energy efficiency»
 - European Strategy for Particle Physics 2020
- «Cryogen-free superconducting magnets instead of common resistive magnet for heavy particles beam lines»
- Objectives:

FAST

- Use of MgB2 or HTS conductors
- Energy consumption 5-20 lower
- Work @ T=8-20 K with solid conduction cooling to reduce cryogenic power consumption

MNP33-Dipole

NA62-CERN

7560 MWh

Courtesy D. Tommasini, CERN

SM2-Dipole Compass-CERN **6953 MWh**

4 Possible Ways

1. Revamping

Reuse the same iron yoke and magnet interfaces substituting copper with superconductors.

- Possible superconducting material for the coil: MgB2 or HTS conductors
- Cheapest solution

2. Superferric magnets

Modified iron geometries optimizing the shape to accommodate the superconducting coils and exploit its potential for low power consumption

3. Coil dominated design

Use **HTS conductors** for high fields with coil geometries optimized according to beam requirements

- Suitable for higher field values compared to resistive or iron-dominated magnets
- Magnet dimensions reduced

4. Exotic designs

Compact and **combined-function magnets**

• Specific design used to reduce space in the beamline and reduction of magnet numbers

Ramped Magnet Case Study

FAST

Dipolar «Window-Frame» Bending Magnets installed at CNAO. Dimensions of the coil are **compatible** with minimum bending radius (100 mm) required for **MgB**₂

MAGNET PARAMETERS

2280 A
380 A
1.74 T
5740 mm
30°C
21°C
2 units
700 kW

G. Bisoffi *et al.*, "Energy Comparison of Room Temperature and Superconducting Synchrotrons for Hadron Therapy", in *Proc. IPAC'22*, Bangkok, Thailand, Jun. 2022, pp. 3080-3083.doi:10.18429/JACoW-IPAC2022-THPOMS049

Main Challenges:

- Field quality: ± 2E-4 ΔB/B0 in 200x200 mm² aperture
- 2. Duty cycle depends from treatment

30 kW DC 262 MWh/year

S. Mariotto – Energy Saving SC Magnets – I.FAST 3rd Annual Meeting

MgB₂ Design @ 20 K

EM Design Target:

FAST

Bore Field of 1.74 T with FQ< \pm 2 units

756 Ropes MgB₂ rope conductor

- 2D Optimization and 3D simulation analysis
- Nominal current 226 A (old design 276 A)
 (14 % margin LL, 3.6 K temperature margin)
 Warning: optimization @ nominal current: FQ: 2.6 units

Rope Geometry

S. Mariotto – Energy Saving SC Magnets – I.FAST 3rd Annual Meeting

B [T]

[units]

▲ 1.59 ΔB/B

▲ 2.61

Losses Calculation

Volumetric Losses Density

▲ 16.5

A 235

Equivalent magnetization model used to evaluate average hysteretic losses in the conductor.

- •

Mechanical Design

	External Supports	Internal Supports
Diameter	50 [mm]	42 [mm]
Thickness	9 [mm]	6 [mm]
Length	47 [mm]	107 [mm]

FAST

- 5-mm-thick SS 316LN reinforcement bar around coils to limit deformations.
- A distributed set of 36 G10 cylindrical supports is adopted to sustain an active aluminium thermal shield (@ 60 K) and coils (@ 20 K).

Optimization of cylindrical supports dimensions and positioning to **minimize conduction heat load** on coil and thermal shield but able to withstand **200 MPa** of compressive load

6

Thermal Design

Aluminum **thermal shield** (6 mm thickness) working **@ 60 K** covered with **30 MLI** layers (minimzation of radiation load).

MAGNET	Coils @ 20 K		Shield @ 60 K	
Q support	1.1 [W]		35	[W]
Q CL	0.2 [W]		24	[W]
Q radiation	0.38 [W]		19.5	52 [W]
	Hyst	ISCC		IFCC
LOSSES	34.2 [W]	.1.55 [W]		0.17 [W]

FAST

20.2

▼ 20

21.7 K

7

\approx 7 times lower

AL230 Cryomech and AL60 Cryomech

S. Mariotto – Energy Saving SC Magnets – I.FAST 3rd Annual Meeting

Steady State Case Study

FAST

Originally a switching magnet, actually a bending unit before SINQ (Spallation source) with **50 tons** of weight. Produced field of **1.45 T** on **2.780 m** radius for **64 deg**.

Cooling power **190 kW** continuously mid-May to mid-Dec.

MAGNET PARAMETERS

	AHO
Air Gap	100 mm
Max. Current	1000 A
Max. Voltage	95 V
Max. Power	95 kW
R @ 20°C	83 mΩ
Cond. Dimensions	18.5×18.5 mm
Cooling Channel Diam.	11.5 mm
Water Flow	60 l/min
Pressure drop	8 bar
T Rise	23°C
Turns	144

715 MWh/year

8

HTS @ 50 K EM Design

Target of the electromagnetic design optimization

- Magnetic field of **1.45 T** at center.
- 2D Field optimization of coil cross-section
- Minimize Peak Field on conductor while obtain the maximum margin on LL (> 40%)
 - Scaling of the old ampere-turns (144 A x 1000 turns)

Dimensions	4 mm × 67 μm
Substrate Hastelloy	40 µm
Copper stabilizer	2 × 10 µm, RRR>20
Easy-way minimum bend	10 mm
Allower longitudinal strain	-0.4 % to 0.3 %
І _с , 50 К, 2 Т	Min. 500 A with B Max. 830 A with B_{\parallel}

F

Field

Peak

Thermo-Mechanical Design

Principal Strain (%)

- 5-mm-thick SS 316LN collar around the coil and set of SS 316LN rods to limit deformations during energization.
- Connection with Cryostat towards coil center performed with set of 16 G10 cylindrical supports
- MLI (30 Layers) used to reduce the radiation power on thermal shield
- Single stage current lead down to 50 K coil. Heat load = 28 W.
- Total energy consumption: 3.4 kW
 - (vs 190 kW resistive)

FAST

\approx 56 times lower

S. Mariotto – Energy Saving SC Magnets – I.FAST 3rd Annual Meeting

Other possible Solutions: MgB₂

Conclusions

Development project based on cryogen-free superconducting magnets

- MgB₂ or HTS conductors @ T=20 K
- Conduction cooling solutions

Case studies: **CNAO** 90° Dipole (ramped magnet) and **PSI** bending dipole (steady-state)

• **Coil geometry** suitable for MgB2 and HTS **curvature requirements**

3D Models developed using MgB2 rope conductor or HTS tapes

- Field requirements fulfilled at nominal current
- Ramped magnets (consumed energy scaling =1/7)
 - (Heat load and T_{op} balance optimization)
- Steady-state solutions

FAST

- Model developed to work @ 50 K with HTS (consumed energy scaled by 1/56)
- No need of thermal shield easier manufacturing process
- <u>Comparison of HTS with MgB₂ (energy scaling 1/40 for the MgB2 config.</u>)
 - Comparable results (Conductor cost/m and number of needed cryocoolers)

UNIVERSITÀ DEGLI STUDI DI MILANO Facoltà di scienze e tecnologie

Thank you for the Attention

Ministero dell'Università e della Ricerca

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.