

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

Data analysis for the accelerator domain

I.FAST Task 10.6

Karlis Berkolds (RTU)

Irena Dolenc Kittelmann (ESS), Agris Nikitenko (RTU), Thomas Shea, (ESS)

iFAST 3rd I.FAST Annual Meeting 2024-04-18

10.6 Task Summary

• Long term mission:

 Develop low-latency Machine Learning (ML) techniques to improve performance and availability of high-power facilities at the intensity frontier

• Goal:

• Identify signatures of potential errant beam conditions

• Scope:

- Identify relevant data
- Assess the predictive capabilities of selected ML models
- Prototype: proof of principle demonstration
 - The most promising ML model to be implemented on a low-latency network of FPGAs processing signals from an array of detector channels

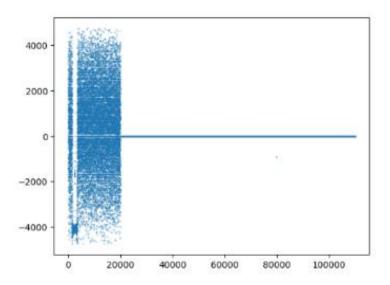
Data and prototyping setup

- Data acquired during commissioning of the ESS normal-conducting linac:
 - ESS Beam commissioning through DTL 4 (74 MeV)

ISrc 🏓 LEBT

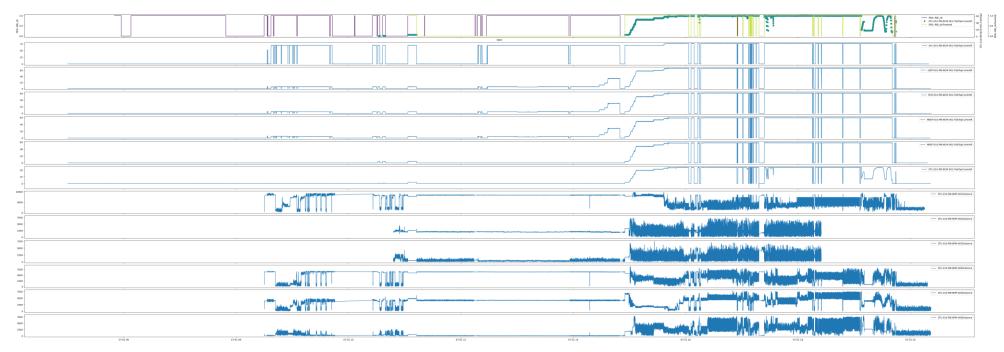
RFQ P

- Scalar data and waveform data from:
 - Beam Current Monitor (BCM)
 - Beam Position Monitor (BPM)
- Software: Python, Jupyter Notebooks, VS code
- Hardware: Local machine
- Challenges:
 - Limited Archiver capabilities
 - Data downloading speed
 - Data downloading format
 - Data query size
 - Local storage and retrieval


† 74 MeV

protons

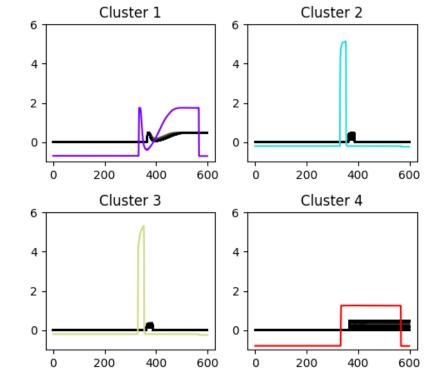
Processing Waveforms


- Usable count: ~12 000 machine cycles with beam pulse present
- Full Waveform size: 110 000 points
- Cut to leave only the representative part
 - ~3000 points

Filtering cycles with beam present

- Before the interlock
- Representative beam current
- Beam current value threshold

Clustering


- Grouping unlabeled examples
 - Relies on unsupervised machine learning
- Example feature data combined into similarity measure.
 - Similar examples grouped
- Approaches
 - Centroid-based clustering
 - Density-based clustering
 - Distribution-based Clustering
 - Hierarchical Clustering
 - Others...

Kshape Clustering

Selection:

- Waveforms are time series
- Waveforms can be shifted in time
- K-Shape clustering
 - Clusters Waveforms according to shape
 - Using Dynamic Time Warping
 - Similarity measure includes time shift
 - Requires: cluster count
 - Outputs:
 - Cluster index for each example
 - Cluster center shape

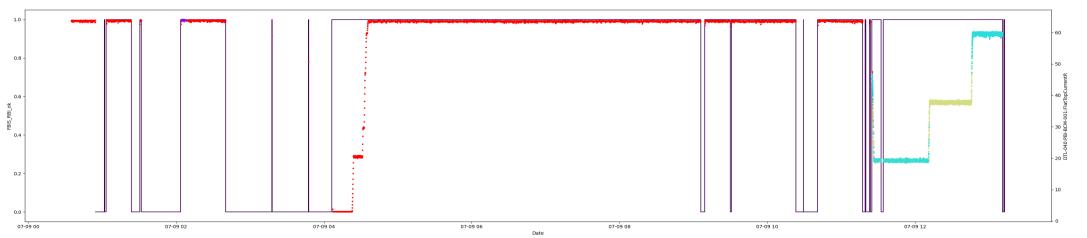
7

Estimating cluster count -Elbow method

ess

- Graphically find the optimal cluster count- k value.
- Each cluster count calculates the Sum of the square distance between points in a cluster and the cluster centroid.
- Pick the value from the "Elbow point."

Kārlis Berkolds



There is no clear Elbow point

distance

Searching for events before interlocks

- Clustering each individual waveform
- Determine cluster centre waveform
- Combine:
 - Clustering result
 - Current value
 - Interlocks

6000

5000

4000

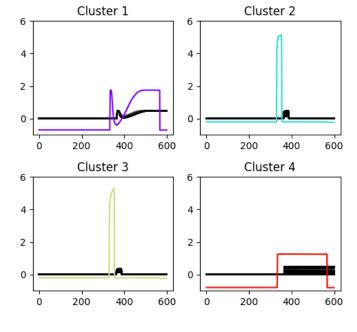
3000

2000

1000

1.0 1.5 2.0

DTL-030:PBI-BPM-002:SM-TR1-ArrayData


2378

2.5 3.0

4.0

3.5

3833

DTL-030:PBI-BPM-002:SM-TR1-ArrayData

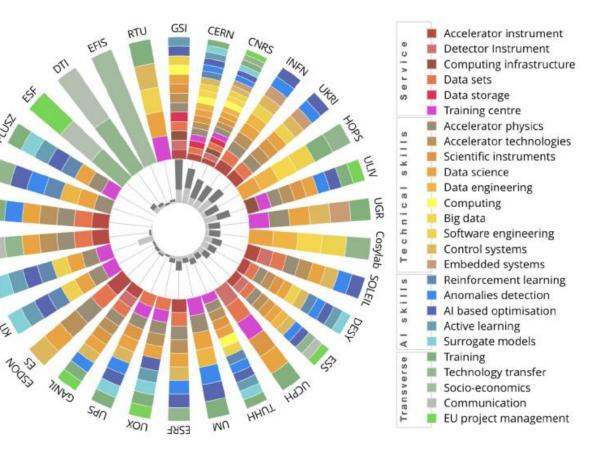
Initial results

- BPM Magnitude data sets:
 - Clusters waveforms
 - Some correlations with the current value
 - No apparent waveform change before the interlock

No distinct waveforms with the k-shape method

Correlations between systems and/or data variables

Current work – Random forest method


- Select a random machine cycle set with waveforms from different systems
- Use a random subset of waveforms to build decision trees
- Random Forest is created
 - Pass the data through the random forest to get predictions on the next waveform value.
 - Aggregate individual predictions to get the new value
- If there is a difference between prediction and actual value, there might be an **Event**

Yngve Levinsen

ARTIFACT

ARTificial Intelligence For Accelerators, user Communities and associated Technologies

- Horizon Europe proposal submitted in March
 - 4 year program startup planned 2025
 - 10MEUR
- Over 30 EU labs and organisations, GANIL, CERN, ESS, DESY, RTU, ...
- 7 work packages
 - WP6: AI Algorithms and Methods
 - Task on anomalies detection identified (Task 6.3)
 - Significant experience in data formatting, handling & standardization
- Independent of funding success, a consortium in being established and collaboration is commencing

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.