

ELBE* – Center for High-Power Radiation Sources

Defects and Hydrogen in Nb films

***E**lectron **L**inear accelerator with high **B**rilliance and low **E**mittance

Andreas Wagner Dept. Head Nuclear Physics Division Dept. Head Radiation Source ELBE

Helmholtz-Zentrum Dresden – Rossendorf, Germany

Helmholtz Center Dresden – Rossendorf

Matter

Health

HZDR outposts Freiberg **Resource** technologies Görlitz (CASUS) Complex systems Grenoble (ESRF) ROBL beamline Hamburg (European XFEL) HiBEF Leipzig **Radioisotopes**

Energy Key Technologies

Earth & Env.

Space & Transport

Rostock High energy density physics

Hermann von Helmholtz 1821 - 1894

HELMHOLTZ

HZDR - large scale research infrastructures

ELBE. SC electron CW-LINAC

Laser particle acceleration

IBC. Ion beam center

Tech transfer and industry services

HLD.

> 90 T magnets

250 MeV protons

HELMHOLTZ

User facilities and science cases

γ - rays $0 - 20$ MeV

Superradiant THz

0.1 – 2.5 THz, 300 kV/cm 120 µm – 3 mm, 10-250 kHz

IR-FELs

 $5 - 250$ µm, 2 µJ 1.2 – 60 THz, 13 MHz

Neutrons

 $0.1 - 10$ MeV 10⁴ n/(s cm²), 100 kHz

Positrons $0.5 - 20$ keV. 5.10⁶ e⁺/s

Direct electrons $10 - 40$ MeV

- **Nuclear physics – e-m strength in heavy nuclei**
- **Nuclear astrophysics – synthesis of elements**
- **In-sample positron generation**
- **Ultra-fast dynamics at fs – time scales**
- **Non-linear dynamics, spin-wave coupling**
- **Materials for high-bandwidth data transmission**
- **Near-field microscopy**
- **Semiconductor spectroscopy, quantum dots**
- **Small bandwidth**
- **Materials for fusion reactors**
- **Nuclear transmutation**
- **Neutron time-of-flight**
- **Solid state physics – spectroscopy of defects**
- **Thin film semiconductors**
- **Porosimetry**
- **Rad. biology – high local dose rates**
- **Technological developments**
- **Isotope production**

ELBE Center for High-Power radiation Sources

ELBE Center for High-Power radiation Sources

Superconducting Accelerator

SC resonant cavities developed by TESLA Technology Collaboration. Employed in CEBAF, FLASH, **ELBE**, EU-XFEL, LCLS-II, Lighthouse,…

7.5 MV / m 250 pC (1 nC WIP) SRF gun in routine operation for high-charge modes since 2016 Mainly serves cTHz and photo-neutron source at 10 – 250 kHz

The e⁺ probes…

- **local electron density and** electron momentum
- **defect sizes and types** by annihilation lifetime
- **defect concentrations** by component's intensity
- **Example 2 Iarge volumes** due to large diffusion lengths

HELMHOLTZ

MePS – The Mono-energetic Positron Source @ ELBE

Positron Annihilation: basics

- **Decomposing positron annihilation lifetime distribution**
	- **Lifetime correlates with size of cluster vacancies**

$$
f(t) = \sum_{j=1}^{k_0} (a_j * R)(t) + B
$$

$$
a_j(t) = \begin{cases} A_j \exp(-t/\tau_j), & t > 0\\ 0, & t < 0 \end{cases}
$$

J. Čižek et al., Phys Rev B79, 054108 (2009) J. Čižek et al., Phys. Rev. B69, 224106 (2004)

HELMHOLTZ

Vacancy kinetics during in-situ low-T baking

*v***+nH** complex dynamics in surface near region

- T ≥ 390 K: shows most significant changes (already after short times)
	- *v+nH* **concentration (I²) decreases**
	- **•** hydrogen release from the complexes $(\tau_2$ increases)
	- defect type and surface states start to change (τ_3 increases)

M. Wenskat, et al. "Vacancy-Hydrogen interaction in **niobium** during Low-temperature Baking." *Scientific reports 10.1 (2020) 8300*

M. Wenskat, et al. "Vacancy dynamics in **niobium** and its native oxides and their potential implications for quantum computing and superconducting accelerators"

Phys. Rev. B 106 (2022) 094516

L. Chiari, et al. "Formation and time dynamics of hydrogen-induced vacancies in **nickel**" *Acta Materialia 219 (2021) 117264*

Positron Science Cases

Pulsed beams: **annihilation lifetime spectroscopy** for thin films, bulk materials, fluids, gases and (coincidence) **Doppler broadening spectroscopy**

porous glasses, membranes, metal-organic

frameworks

low-k dielectrics for CMOS devices

O Propylene Carbonate . Na⁺ magneto-ionics

magnetic phase transitions through ion irradiation

Hydrogen-induced vacancies in Ni

semiconductors

for optoelectronics

Niobium-hydrides & superconductivity **Fe**

micro-solid oxide fuel cells

Positrons in matter – fundamentals to materials research

- **porosimetry on the nm-scale**
	- \blacksquare low-k SiO₂ for CMOS devices (DFG)
	- **E** gas-separation membranes
- **single⁺-vacancy defect analysis**
	- superconductors (H in Nb for SRF, YBCO)
	- **EXECT, ODS, HEA for fission/fusion**
	- **Semiconductors (ZnO, CIGS, Ge, Ga₂O₃,)**
	- **E** defect-induced magnetism (FeRh)
	- \blacksquare magneto-ionics (O₂ or N₂-mediated)
- **chemical environment of defects**
	- **E** decoration, alloying, segregation
- **positronium chemistry (medicine)**

HELMHOLTZ

Accelerator-driven positron sources

Accelerator-driven positron sources

Positron User Facilities

Mono-energetic Positron Source

- 35 MeV, 200 µA, 1.625 MHz electron beam drives
- \blacksquare 0.5 16 keV e⁺ beam for PALS 300 K – 550 K sample temperature typically **250 kcps event rate** (120 kcps at 511 keV)
- 10 Mevts PALS spectrum in 80 s, fully digital data taking and online processing *A.Wagner, et al., AIP Conf. Proc. 1970, 040003 (2018)*

SPONSOR

▪ 22 Na-based (2 GBq) e ⁺ beam 30 eV – 30 keV for CDBS coupled to

AIDA

- 35K -1300 K
- MBE, ion irradiation
- sheet resistance

W. Anwand, et al., Def & Diff. Forum 331 (2012) 25

Gamma-ray induced Positron **Source**

- 16 MeV, 700 µA electron beam generates bremsstrahlung
- **•** e⁺ formed inside sample
- Suitable for radioactive samples, gases, fluids

M. Butterling, et al., Nucl. Instr. Meth. B 269, 2623 (2011)

Hydrogen and defects in Niobium – SC cavities

up to nC e⁻ bunch ELBE SRF Gun II - New High Gradient SRF Gun $Q_0 = 10^{10}$, $E_{acc} = 19.5$ MV/m hook HOM loads + coaxial main coupler Cathode: Cu, Cs₂Te, GaAs electron beam MeV, mA, kW SC elliptical Nb cavity few watt UV laser *f⁰ … rf frequency* $Q_0 = 2\pi f_0 \frac{\text{stored energy}}{\text{dissinated now}}$ $\frac{\text{stored energy}}{\text{dissipated power}} = \frac{G}{R_s}$ *G … geometry-dependent constant R^s … surface resistivity* $R_{\rm S}$

TESLA-type SRF cavities are used at CEBAF@JLAB, FLASH & XFEL (Hamburg), **ELBE@HZDR Dresden**, MESA (Mainz)

Cu: R_s = 10 mΩ, Q₀ = 10³ ... 10⁴, max gradient 1 MV/m Nb: R_s = few nΩ, Q₀ = 10¹⁰ ... 10¹¹, max gradient 50 MV/m, operated at 2…4 K

A. Arnold et al., Proc LINAC2014, Geneva, Switzerland

Thermal cavity treatment

- **Q disease**
- increase of the surface losses at cryogenic temperatures
- sets in even at low values of the applied accelerating field

significant losses for slow cooling huge effect of temperature cycle

Curing Q disease

- rapid cool down inhibits the hydride formation
	- can cause damages due to thermal stress
- typical procedure^{1,2} to increase Q and keep the H concentration below 10 ppm
	- chemical polishing (remove up to 100 μm), but incorporates H
	- baking at 1050 K for 3 h in vacuum (< 10^{-5} mbar) to remove H
		- several hundreds ppm of H remain in the lattice in the near-surface layer
	- chemical polishing (remove up to 100 μm), again incorporates H
	- **mild bake:** at 390 K for 48 h (< 10⁻⁶ mbar) to avoid high-field Q slope (accidentally found!)
	- \blacksquare low-T bake³: only 350 K for first 2 h
		- \rightarrow Q losses reduced by factor 2
		- \rightarrow increased achievable accelerating field by $>10\%$ [1] P. Kneisel et al., AIP Con Proc 927, 84 (2007) JLAB

[2] G. Ciovati et al., Phys Rev Acc & Beams 13.2, 022002 (2010), JLAB [3] A. Grassellino et al., arXiv 1806.09824 (2018)

Vacancy kinetics

- **E** In-situ baking at MePS **Example 20 Term of Article 10 Mono-energetic Positron Source MePS at HZDR:**
	- **depth-resolved PALS up to 10 keV (in 2019)**
	- \blacksquare high intensity: 10 δ counts in 2 minutes
	- well-suited for study of dynamic effects

In-situ measurements

- **.** in-situ baking at different temperatures for 4 hours and measuring at different energies all the time
- **depth profile at 340 K after each** annealing step

Vacancy dynamics

V+nH show complex dynamics near surface

Collaboration: Hamburg U, DESY, HZ Berlin, U Wuppertal, U Siegen, U Kaiserslautern, U Bremen, CU Prague, CTU Prague

- \blacksquare T = 390 K: shows most significant changes (already after short times)
- \blacksquare T > 390 K: hydrogen released from complexes (τ_2 increases) v+nH concentration (I₂) decreases

Wenskat, M. et al. *Phys. Rev. B 106(2022), 094516* Wenskat, M. et al. *Scientific Reports 10(2020), 8300*

Effect of oven temperature on baking*

Secondary beams: THz radiation – from electronics to photonics

1 THz \triangleq 300 µm \triangleq 33 cm⁻¹ \triangleq 4.1 meV

in various units:

In some ranges no good laboratory (table-top) sources are available: **THz, UV, X-ray**

Secondary beams: Free-Electron Lasers

FEL – 1971 (Stanford), 2005 UV & 2017 X-ray (FLASH, DESY Hamburg)

Undulator parameter $K = \theta \cdot \gamma = \frac{e}{2\pi m c} \sim 1$ (θ) is the maximum electron deflection angle, $1/\gamma$ is also the width of the emitted radiation cone) wavelength of undulator radiation

THz pulses as pump for nonlinear dynamics

- Coherent **selective excitation** of relevant modes, avoiding parasitic electronic excitation
- How and on what timescales do degrees of freedom interact?
- Strong modifications of macroscopic properties possible \rightarrow phase transitions, metastable states, tailored functionality, quasiparticle excitations

THz science cases

Control of **Materials** *with THz light*

- Electronic or structural phase transitions
- THz nonlinear optics
- **Superconductivity**
- Spin dynamics
- Exotic quantum properties

 \rightarrow Materials and processes for information and energy technology

- Trigger for reactions
- Steering reaction pathway
- Temperature jumps

 \rightarrow Catalytic materials and processes, fundamentals of water chemistry

- Hydration shell dynamics
- Potential-driven processes in aqueous solutions

 \rightarrow Elementary cellular mechanisms

Vacancy kinetics during in-situ low-T baking

▪ **In-situ Positron Annihilation Lifetime Spectroscopy at pELBE**

In-situ measurements

- **E** in-situ baking at different temperatures for 4 hours and measuring at different energies all the time
- depth profile at 340 K after each annealing step

- focus on the vacancy dynamics: measurement during temperature treatment
- **E** study two different material depths: 20 nm and 80 nm (RF layer \sim 100 nm)