

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

# Task 9.3 Progress @ UNFN

Liquid Tin Diffusion system progress 3<sup>rd</sup> iFAST annual meeting – Paris, 16 April 2024

Giovanni Marconato – INFN Legnaro National Laboratories



# Nb<sub>3</sub>Sn Cylindrical target production by liquid tin diffusion (dipping)

**Problem:** Nb chamber oxidation with resistive heating in air

**Solution:** New custom vacuum chamber system that contains the Nb chamber and new inductive heating system

#### **New features:**

- Integral chamber cooling;
- 2 viewports for monitoring;
- Isolated vacuum systems (external chamber + internal Nb chamber) for better control
- 3 kW total power
- Process entirely automated and remotely controlled
- More reliable system and more accurate temperature control





# **CUSTOM INDUCTORS TESTED**

#### **Previous meeting:**





# All instruments arrived at LNL



#### New developments:





Custom insulating flanges already tested

### System completed



3<sup>rd</sup> iFAST annual meeting – Paris, 16<sup>th</sup> April 2024 – TASK 9.3 Progress @ INFN giovanni.marconato@Inl.infn.it

# NEW SYSTEM ASSEMBLED

(External vessel and control part assembled, missing the Nb chamber)

- $\checkmark$  System assembled and leak checked
- Inductors manufactured and tested
- ✓ Custom control system
- Custom vacuum feedthrough for inductors
- Custom insulating flanges for inductors manufactured
- Inductors final testing
- Inductors refinement

FAST

- □ First process within next month
- New master student currently training and will begin working on this project shortly
- In June we reasonably expect the production of the first targets for 6GHz cavity





3<sup>rd</sup> iFAST annual meeting – Paris, 16<sup>th</sup> April 2024 – TASK 9.3 Progress @ INFN giovanni.marconato@Inl.infn.it

# DIPPING PROCESS PREVIEW







This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

# Task 9.3 Progress @ UNFN

## NbTiN/Cu 6GHz cavity RF test

3<sup>rd</sup> iFAST annual meeting – Paris, 16 April 2024

Giovanni Marconato – INFN Legnaro National Laboratories

### İFAST

## 6 GHz RF tests

## 2 cavity from STFC to measure

🗸 Nb on Cu

## NbTiN on Cu (sputtered on top of a previous coating)

- HPR passed successfully
- Leak on a flange  $\rightarrow$  Flange machining necessary
- RF test done @4.2 K, planned @1.8 K within a few weeks



# 6 GHz RF tests



on the flange surface.





Critical

temperature

magnetic flux

measured

expulsion

through

3<sup>rd</sup> iFAST annual meeting – Paris, 16<sup>th</sup> April 2024 – TASK 9.3 Progress @ INFN giovanni.marconato@Inl.infn.it



FAST

### Quality factor vs. $E_{acc}$ (4.2 K) $5 \cdot 10^6$

Delamination of the film on the cutoff observed



Problems during 1,8 K cooldown due to pumping and thermometers failure

- Cavity still mounted to avoid contamination
- Measure rescheduled within the end of April
- Internal inspection after measure

### IFAST



davide.ford@Inl.infn.it

# Thanks for your attention



This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.