IFAST – 3rd annual meeting 1.3 GHz Cavity Deposition facility progress at UKRI

S Simon, J W Bradley, R Valizadeh

16th - 19th April 2024

Science and Technology Facilities Council

Overview

- Coating activities
 - Modified 1.3 GHz cavity JEFF
 - Preparation for 1.3 GHz cavity DIVERS
 - Disk samples JEFF
- Investigation of NbN using HiPIMS and bipolar HiPIMS
 - Mass and energy analysis of the plasma phase
 - Optical emission spectroscopy

Coating activities - Modified 1.3 GHz cavity

- Deposition of Nb using bipolar HiPIMS on a modified 1.3GHz cavity.
- Initial parameters
 - Chamber filled with Kr at 6x10⁻³ mbar
 - Bipolar HiPIMS
 - + $\rm U_{neg}$ 380 V / 800 mA / 10 A / 300 W
 - neg PW 100 us / Freq 1000Hz
 - U_{pos} 50 V / pos PW 200 us / pos delay 1.5 us
 - Deposition for 6h

Facilities Counci

Coating activities – Modified 1.3 GHz cavity

- Mass analysis of the positive ions in bipolar HiPIMS
 - Main ions: Nb⁺ (93 amu), Kr⁺ (84 amu), Nb²⁺ (46 amu), Kr²⁺ (42 amu), NbO⁺(109 amu)
 - Formation of NbO⁺ due by recombination with residual H₂O
 - In bipolar mode, Kr intensity increases where Nb intensity decreases. Double charged ions remain stable.

Coating activities – Modified 1.3 GHz cavity

- Energy analysis of Nb⁺ positive ions
 - A first peak is observed (~ 5 eV), which decrease gradually in intensity as U_{pos} increases. The ion population is influenced by U_{pos} but not enough to be significantly accelerated by it
 - With U_{pos} =25V, a new peak appears at an energy slightly above eU_{pos} . Similar tail is observed as the HiPIMS case only but up-shifted in energy by eU_{pos}

Coating activities – Modified 1.3 GHz cavity

• Energy analysis of Kr⁺ positive ions

 Similar to Nb⁺ - Up-shift to the right with an increase of intensity, slightly above eU_{pos} and followed by a drastic decrease. One assumption could be that the Kr⁺ ions are accelerated but do not gain the full energy eU_{pos}

Coating activities – Modified 1.3 GHz cavity (reminder)

- Influence of bipolar HiPIMS on the film structure
 - Bipolar HiPIMS produces a denser film
 - Simiar Tc (~9.2K)

Bipolar HiPIMS – 100W

6

- DIVERS' Rig
 - Modification of the magnetron (between JEFF and DIVERS)
 - Chamber filled with 15 sccm of Kr, base pressure of 2x10⁻³ mbar
 - Deposition done for 6 hours in HiPIMS (480V / 830 mA / 400W / 9A / 1000Hz / 100us)

• DIVERS' Rig

- Upgrade of the holder (top part), allows the cavity to go further down during deposition
- New deposition for 4 hours
- 15 sccm Kr, 2x10⁻³ mbar
- 480V / 830 mA / 400W / 9A / 1000Hz / 100us

10

Coating activities – Disk samples in JEFF

- Study for IPAC'24
 - Samples coated using HiPIMS at 300W for 4 hours at a pressure of 6x10⁻³ mbar
 - Parameters: 370V / 805mA / 300W / 11A / 1000Hz / 100us

Coating activities – Disk samples in JEFF

Tc respectively 9.0 and 9.1K

Investigation of NbN: influence of HiPIMS power

- Mass analysis and energy analysis in HiPIMS
 - Chamber filled with a 20 sccm flow rate of Kr and 2 sccm of N₂. Base pressure of 3.7×10^{-3} mbar
 - HiPIMS parameters:
 neg PW 100us / Freq 1000Hz
 100W: 721V / 139mA / 12A
 200W: 730V / 275mA / 12A
 300W: 567V / 530mA / 11A
- High reactivity with multiple recombinations

Investigation of NbN: OES for different power conditions

- Overlap of Nb⁺, Nb⁰, Kr⁺, N_2^+ and N_2^0 lines
- Increase of power lead to an increase of line intensity which benefits mainly Nb⁺, Nb⁰, Kr⁺, N₂⁺ and N₂⁰

Investigation of NbN: IEDF of Nb⁺ and Kr⁺

Investigation of NbN: IEDF of Nb²⁺ and Kr²⁺

Investigation of NbN: IEDF N₂⁺ and N⁺

Investigation of NbN: evolution of NbN⁺

- 100W and 200W case are roughly similar.
 300W seems to increase the intensity of NbO but not NbN.
- System not baked before measurements, oxygen comes mainly from residual water present in the chamber.
- Mass at 56 amu ?

Investigation of NbN: comparison HiPIMS and bipolar HiPIMS

- Comparison between unipolar and bipolar HiPIMS
- For positive kick, pulse width of 200us and $\rm U_{pos}$ set to 25V
- 56 amu drastically reduced, likely to be a contaminant outgassing during the run

Investigation of NbN: power influence between HiPIMS and bipolar HiPIMS

Investigation of NbN: IEDF of Nb⁺ and Kr⁺

Investigation of NbN: IEDF of Nb²⁺ and Kr²⁺

Investigation of NbN: IEDF of N_2^+ and N^+

Investigation of NbN: IEDF of NbN⁺

- As seen in previous results, initial peak intensity is reduced for the same in put power. Increasing the power balance the peak drop
- Shift according to eU_{pos}
- N₂ follows a similar trend as Kr

Investigation of NbN: flow rate influence in HiPIMS

- Influence of N₂ flow rate
 - Flow rate: 1, 2, 5, 7 sccm
 - HiPIMS parameters (100us / 1000Hz)
 1 sccm: 595V / 168mA / 10A
 2 sccm: 721V / 139mA / 12A
 5 sccm: 766V / 127mA / 13A
 7 sccm: 806V / 124mA / 13A

Pressure stabilized at 4x10⁻³ mbar

Investigation of NbN: OES at different flow rate

- Overlap of Nb⁺, Nb⁰, Kr⁺, N₂⁺ and N₂⁰ lines
- Increase of flow rate promote $N_2^{\,+}$ and $N_2^{\,0}$
- Impact on Nb⁺ and Nb⁰ lines intensity also observed by mass spectrometry

Science and

Technology Facilities Council

26

Investigation of NbN: IEDF of Nb⁺ and Kr⁺

Investigation of NbN: IEDF of Nb²⁺ and Kr²⁺

Investigation of NbN: summary

- N₂ flow rate plays a crucial role for the formation of NbN
- Similar studies using Ar or Kr reported that low flow rate was favoured for the production of NbN thin films
- Increase of N₂, reduces ion intensity and peak energy
- Correlation between flow rate and power

Future work

- Deposition of NbN on Cu samples using results obtained. Focus mainly on HiPIMS and bipolar HiPIMS
- Investigation of NbTiN using similar parameters as NbN
- Investigation on other HiPIMS properties to improve film quality
- Complementary investigation using Langmuir probe to get plasma properties

Acknowledgements

- UKRI STFC ASTeC group
 R Valizadeh, O Malyshev, A Vick, L Smith,
 J Conlon, N Leicester
- University of Liverpool J W Bradley
- Lancaster University D Seal, G Burt

Science and Technology Facilities Council