

Surface engineering by Atomic Layer Deposition for SRF cavities WP 9.4

IFAST

Team

- Yasmine Kalboussi: Research Staff Atomic Layer Deposition (Qubits and cavities)
- Ivana Curci: Ph.D. Student CEA-USA Tunneling spectroscopy for Qubits and cavities.
- Mathieu Benko: Engineer Student Atomic Layer Deposition (Qubits and cavities-Y. Kalboussi).
- Fabien Eozenou: Chemist (EP, ninja cathode, Nb, Cu, Al...)
- Gregoire Jullien: Chemistry, clean room assembly etc...
- ✤ M. Baudrier, J. L. Maurice: RF tests
- P. Sahuquet, Q. Bertrand, B. Baudouy : Cryogeny
- ✤ F. Miserque: XPS
- ✤ M. Walls, N. Brun: TEM (Paris-Saclay University LPS)
- Claire Antoine : Research director magnetometry
- Thomas Proslier : Research staff ALD and Tunnel spectroscopy

The lab – Deposition Lab

- Two ALD deposition systems:
- Research scale: small samples ($\Phi = 5 \text{ cm}$, L = 40 cm) New chemistries
- Development scale: Macroscopic objects (Φ = 49 cm , L = 110 cm). 1.3, 0.7 GHz cavities

Future:

- HIPIMS deposition system for A15 on 1.3 GHz cavities and large coupons.
- Thématiques:
- Superconductors (cavities, QuBits), multipacting, Corrosion, Filtration...

The Lab - Characterization

- Tunneling spectroscopy (Superconducting properties: gap, local Tc, Mapping 1,5 K 1x1 cm²)
- Transport measurements (Tc, RRR)
- Projects:
- Collaboration USA (thesis, measurements)
- Collaboration with CERN (Nb₃Sn/Cu...)
- Research area:
- Qubits, cavities, ALD…

Part I

Reducing losses due the native oxide layer.

SRF cavities as detectors/Qubits

To replace niobium native oxides with ALD-deposited protective layer [1]

- 1) Deposit ~ 10 nm oxide layer by ALD ($AI_2O_3 \dots$) onto Niobium.
- 2) Perfom a subsequent thermal treatement to dissolve niobium native oxide underneath (vacuum levels 10⁻⁶ mbar)

SRF cavities as detectors/Qubits

The 10 nm Al₂O₃ film + annealing significantly improves the quality factors of the Nb cavity iFAST in the low field regime.

Electronic microscopy analysis

Removal of Nb_2O_5 -> increase of Q at low fields.

- Method to explore TLS losses with other materials, thicknesses and thermal treatments.
- Patent pending and publication Appl. Phys. Lett. 124, 134001 (2024).
- More tests with FNAL and CEA

Tunneling spectroscopy analysis Al₂O₃/Nb

- > High quality superconducting Junctions with high Δ and low Γ/Δ values.
- Responsible for increased Q_{QP}

Part II

Doping Niobium cavities.

Doping

Doping levels comparable to observed at Fermilab without electropolishing.

Doping

- The cavity was coated with 5 nm of NbN + annealing at 900°C-3 hours.
- No electro-polishing have been preformed.

Thermal treatment and RF testing by Fermilab

The second test shows improvement over the baseline performances.
Collaboration with FNAL. More tests to come

FAST

Part III

ALD-depositied multilayer to improve the superconducting performances of SRF cavities

- A theoretical approach proposed by A. Gurevich (2006) to improve RF cavities through depositing a superconducting multilayer to screen the magnetic field.
- The thickness of the superconductor must be lower than its penetration depth.
- The superconducting layer must have higher T_c than Nb.

FAST

To enhance the superconducting performances of NbTiN films, several thermal treatments have been tested. The best results on Nb coated samples were obtained with:

- > A first ramp of 6 °C/ minute up to 800°C
- A second ramp of 18°C/minute up to 900°C

NbTiN (45 nm) – AIN (10 nm) – Niobium

FAST

> The Niobium ellipsoid was coated and annealed with the optimized NbTiN-AIN bilayer recipe.

Demagnetisation factor N=0.13

$$H_{equator} = \frac{H_{applied}}{1-N}$$

After

Before

The Niobium cavity was coated with the optimized AIN- NbTiN bilayer recipe.

- Coating had a bright golden and uniform color after ALD deposition.
- The cavity was annealed @ 900°C.
- Vacuum degradation during the annealing step on the first test.
- (P>10⁻⁵ mbar)
- Observed delamination in the beam tubes after annealing.

> A degassing step is necessary.

Part IV

Thermo-current mitigation: ALD on Cu for deposition Nb

ALD Al₂O₃ on Cu samples C. Pereira, S. Leith, G. Rosaz, S. Pfeiffer

Baseline coating recipe 1.2kW avg 100Hz, 200us HiPIMS pulses -75V bias voltage 150C 2.5.10⁻³ mbar Kr

1.0 1.5 2.0 2.5 3.0 3.5 4.0 Nb/Cu and Nb/Al₂O₃/Cu do not show any difference from a defect content point of view. The lower dislocation density can be explained by the thicker layer.

4.5 5.0 5.5 6.0 6.5 7.0

Thickness (um)

Part V

Tunneling spectroscopy Nb₃Sn - Cu

Nb₃Sn by Tunneling spectroscopy

Nb3Sn-Ta-Cu (CERN)

- Large distribution of superconducting gap values
 - -> indicates different Sn concentration to be confirmed.
- Future measurements for INFN Nb₃Sn/sapphire

1.0

0.8

FAST

30

25

20

Lount Count

10 -

5

0.0

bυ

50

40

- 00 Count

20

10 -

0.0

0.2

0.4

Gamma/Gap

0.6

0.5

1.5

Gap value [meV]

1.0

2.0

2.5

3.0

Part VI

Conclusion

- Multilayers: 1/ Find optimal NbTiN thickness. 2/ Future 1.3 GHz cavity coating (avoid delamination).
- Qubits: Engineering the surface oxide and decrease the TLS losses Vary thicknesses and alloys.
- Doping: Repeat same deposition and vary the post annealing treatment.
- Thermo-current: ALD for thick superconducting films deposition: Nb HIPIMS/Al₂O₃...scale up to cavity (CERN).
- <u>Tunneling Spectroscopy</u>: Nb3Sn on Sapp/Cu, Nb surface treatments for cavities and Qubits.

Thank You for your attention !

Any questions ?