

Deposition parameters:

- 1. 450 °C
- 2. 450 °C + annealing @ 450°C 3. 650 °C

Characterisation methods: 1. SQUID 2. RBS, PIXE 3. XRD

Rutherford Backscattering spectrometry

XRD: Nb₃Sn on Cu, @450°C

XRD: Nb₃Sn on Cu, @450°C+annealing

7

XRD: influence of FLA on Cu-substrate

SQUID: Nb₃Sn on Cu, @650°C

SQUID: Nb₃Sn on Cu, @650°C

XRD: Nb₃Sn on Cu, @650°C

FAST

XRD: Nb₃Sn on Cu, @650°C - Substrate

XRD: Nb₃Sn on Cu, @650°C

FLA system for 6 GHz cavity annealing

Cristian Pira - Millisecond flash lamp treatment for SRF accelerating cavities - IIF Evauation

FAST

FLA system for 6 GHz cavity annealing

Chamber is ordered but the delivery is delayed due to the problem with components. Delivery is planned on the 2nd week of May.

Conclusions:

Samples grown at 450°C are tensile strained or contain less Sn

➤The critical temperature is below 10K

> FLA improves the layer crystallinity but does not affect T_C

Samples grown at 650°C have T_c about 16.5 K
Layers are relaxed and stoichiometric
FLA improves the crystallinity of the NB3Sn and the substrate

İFAST

Thank you

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.