LESSONS LEARNED AND PERSPECTIVES FOR A MORE EFFECTIVE EXPLOITATION OF THE INDUSTRIAL POTENITAL IN ACCELERATOR MAGNET PROJECTS

Wolfgang Walter 3rd I.FAST Annual Meeting, April 17th 2024

01

INTRODUCTION

Accelerator Magnets @ Bilfinger Nuclear & Energy Transition

2 Bilfinger companies merged to operate under the same name

- \rightarrow Offer more services from one source
- Relationships will be continued as usual by existing contacts under the umrella of the new company:
 - Meet the same people
 - Contact us with same coordinates (email, phone)
 - Find us at the same site.

			👰 BILFINGER
BILFINGER CORE	Engineering	Vacuum technology	Cryogenics
COMPETENCES	Multi-physics approach towards complex engineering tasks for custom design solutions	Extensive experience in the design and manufacture of complex UHV components and vacuum vessels	Highly efficient design of both helium and conduction-cooled systems down to 2 K
Series production	Testing capabilities	Magnet technology	Specialized hardware
Optimization of complex manufacturing processes from small-scale to series production	Trained personnel and specialized equipment for cryogenic and vacuum testing in-house	Wide range of experience in superconducting (LTS and HTS) as well as resistive and permanent magnets	Special tooling and equipment including winding and cabling machines and furnaces for impregnation

SERIES production at BILFINGER A history of performance

Series Production Example: Main Dipole Magnets for the LHC

Development Phase (Paid learning)

- 1990: 10 m Prototype Cold Masses
- 1995: 10 m All Kapton Collared Coil
- 1999: Preparation for Series Production

Series Production

- 1999: 30 Cold Masses
- 2002 2006: 386 Cold Masses

16 years from first R&D contract until completion of series

Next Generation Nb3Sn Dipoles

2014 - 2017: Onsite industrial development @ CERN

Series Production Example: FAIR SIS 100 Dipoles

2004 – 07: EU-FP6 Task:

GSI with partners from institutes and industries

2007 – 08: First straight prototype

- 2012 13: First of series FOS
- Industrial manufacturing of the SC cable
- Qualification for the industrial series production

2016 – 20: Series production

Cable production & Manufacturing of 110 dipoles
16 years from first contract until completion of series

Series Production Example: FAIR SIS 100 Quadrupole Dublett Modules

Integration of QDM Modules:

- **2018:** Start of project
- **2019:** Delivery of First of series FOS
- **2020:** Start of series production
 - 13 QDM manufactured until Stop of Unit deliveries
- **2023:** Production on hold due to Ukraine crisis
- **2024:** Re-start of series production of remaining 70 QDM this summer, new units expected
- **2027:** Completion of series production planned

02

MAGNETS FOR BIG SCIENCE PROJECTS

Interaction: Labs – Industry in Stages Requirements from Industry Lessons Learned

General setup of successful large scale magnet projects always similar:

e.g. LHC Dipoles, FAIR SIS100 Dipols + QDM but also e.g. W7-X coils ...

Collaboration between research labs and industry over many years and multiple contracts

essential.

Development & Design Phase

Main work-load at Labs

Industrial input valuable:

- Industrial feedback from previous projects
- Input to cost, risk, industrial feasibility
- Early industrial input to the design

Typical industrial contributions:

- Analysis of cost, production schedule, industrial feasibility
- Participation in design process:
 - validate manufacturing concept incl. tooling concept
 - Introduce proven and robust industrial solutions based on manufacturing experience

- Industrial analysis of production process
- Heat treatment of cavities identified as expensive bottleneck in the production
- Following DESY R&D work eliminated the bottleneck

FAIR SIS100:

- Collaboration of lab and industry on magnet design in FP6 project
- Industry identified Aluminumoxide structure as cost driver and manufacturing risk
- GSI eliminated the component from the design

Prototyping and Industrialization

Shared work between labs and industry

Prototyping \rightarrow important step towards hardware!

Importance of industrial prototyping:

- Transfer of know-how and experience from labs to industry preferably at industry workshop
- Input from industry on robust manufacturing concepts and processes based on series experience
- Input from industry on tooling concepts for efficient series production with consistent quality
- Mutual design optimization to
 - Improve consistent magnet quality
 - Make production process robust and repeatable
- Develop quality criteria for series (specify only what's needed and not more, give margin to work with)

Prototyping Phase - Examples

LHC Main Dipoles:

 Development of tooling & qualification with industustrial prototypes (e.g winding machine)

XFEL Undulators:

 Manufacturing of industrial prototypes with 316LN and Aluminum beams to qualify both technologies

FAIR SIS100:

- Industrial prototype to qualify e.g. Kapton as cable insulation (instead of Prepreg) and the use of machined G11 structures to position the windings
- Robust series production: store-able cable and consistent coil geometry

Series Production

Work load highest at industry.

Important factors for a successful series production

- Design freeze prior to series manufacturing
- Robust and realistic planning incl. risk mitigation measures by industry, labs and probably sub-contractors including contingencies (schedule, supplies)
- Problem solving mechanisms and awareness that small problems can have big effects in a series
- Open collaboration and trust

LHC:

- Largest series production of high field accelerator magnets
- Very good and consistant quality produced by industry
- Huge bubble project business managed by companies
- Industry had freedom to produce at their site with their tooling concepts
- Labs assured consistency with test procedures, equipment and monitoring test results.

For Industry:

- Spin-off for other industry products is limited
- Business itself is interesting project business
- Projects are important as experience and reference for other large scale research projects

FAIR SIS100 Dipoles: Experience of GSI and Bilfinger

- 2004-2007: Development with Industry cable insulation, coil structure
- 2007-2008: Prototype Dipole 2-layer straight magnet

- ← Early involvement of industry -> more robust design
- ← Industrial prototype -> verification in industry
- ← 4-years gap: people left, 1 company out of business...

- 2012-2013: First of Series (FoS) Dipole 1-layer curved magnet
- 2013-2016: Cold test and yoke modification
- I1/2016: Start of SIS100 Dipole series production
- 09/2017: First series dipole has been delivered
- 12/2020: Last series dipole delivered

- ← Major design change at late stage
- \leftarrow Lead to additional development and qualification

Successful series production in good collaboration between GSI and Bilfinger Noell results in high quality magnets

18 Das ist eine Fußzeile

Basic condition: industry must earn money and must not go bankrupt fullfilling is obligations.

- \rightarrow Fair sharing of risks and chances is essential! Make risks manageable for companies:
- Limit contractual risks to acceptable values
- Split technical risks into foreseeable portions using appropriate contractual concepts:
 - Split contract into stages where only first stage is binding
 - Cost + fee concept makes sense when quantitative risk is high
- Talk and negotiate risks with industry. Use negotiated procedures not submission for calls for tender
- Utilize existing EU concepts for collaboration e.g. "innovation partnership"

Support Industry

EU: industrial suppliers can manage large scale high-tech magnet projects. Know-how, experience and infrastructure available at the companies.

 \rightarrow This asset should be fostered by EU labs with:

Continuous basic work load for industry to keep and extend industrial know-how.

 \rightarrow This requires a long term strategy and roadmap incl. collaboration of research and industry.

- Existing involvement of industry in planning and strategy for big science projects is very welcome by industry.
- Perspectives on the future projects (scope, timeline, in-kind situation) are necessary to promote projects in industrial landscape.

 \rightarrow Continuous information of and collaboration with industry enables industry to be ready for the next big series production of superconducting magnets

03

PRODUCTS

TR-Level: Labs & Industry Requirements from Industry Lessons Learned

Types of Collaboration by TRL Level

22 Das ist eine Fußzeile

Types of Collaboration by Examples

Big Science Component

FAIR SIS100 Dipoles

Flywheel Storage

Spin-Off Product

PINE Cloud Chamber

23 Das ist eine Fußzeile

Spin-Off Product – PINE Cloud Chamber

- KIT's Institute of Meteorology and Climate Research Atmospheric Aerosol Research developed and validated a working protoype
- Bilfinger industrialzed the design (thermal, etc.)
- KIT has active interest in wide spread use of PINE to do research
- Bilfinger is selling the device successfully
- Partners actively working on continuation and development of PINE

Lessons Learned:

- Win-win match between partners with clear interfaces (validated prototype), but match happened by coincidence
- Short time-to-market and calculable risks \rightarrow attractive for industry
- World-wide spread of KIT technology standard and industrial third party funds → attractive for laboratory

Industry Initiaded Product – Flywheel Energy Storage

Power Quality

- Development of 2 flywheels with superconducting bearing for
 - UPS (250 kVA, 2.5 kWh, high availability): in-house
 - Power Quality (500 kVA, 5 kWh, high cycle life): 2 BMWi projects with Uni and DLR Braunschweig and with KIT and NHF
- Feasibility demonstrated. Effort to bring novel product to market still high.
- Project stopped due to degraded market expectations.

Lessons Learned:

- Development of target market over years \rightarrow high commercial risk
- Expertise & infrastructure of laboratories → help mitigate technological risk
- Continuous financial and technical project review important

Industry Product – Superconducting Insertion Device

- Kicked off as a supply contract for a SCU, developed into a cooperation agreement KIT with Bilfinger.
- KIT active on further development of insertion devices and equipment to meassure and test the devices
- Bilfinger is selling superconducting insertion devices as product platform for undulators and wigglers worldwide

Lessons Learned:

- Win-win match between partners with clear interfaces, but project not identified as high risk multiple year product development by both partners from the start
- In retrospective: development program in steps with overseeable, shared risks more appropriate

04

SUMMARY & CONCLUSIONS

Conclusions & Lessons Learned – Big Science Projects

High field accelerator magnets are a bubble project business with potentially high risk also for industry.

- Fair sharing of risks is important:
 - Be transparent on risks, negotiate: negotiated procedure
 - Limit contractual risks (liability ≤ 100%, total penalties ≤ 10%)
 - Split risks (staged contract, cost + fee)
- European industry is an asset that should be fostered:
 - Provide continuous workload by involving industry at all project stages
 - Industry provides special know-how and experience also at early stage and should be compensated for that
 - Reliable and clear project planning helps (schedule, basic technical solutions, in-kind situation)

Conclusions & Lessons Learned – Science vs. Products

Clear distinction between different cases is important:

- Science initiated development e.g. for Big Science Projects
- Spin-off product from Lab development
- Supply contract (no significant development character)
- Industry initiated product development

Each case has different boundary conditions and requires different tools for collaboration

Thank you for your attention.

