HTE - UKO

INTRODUCTION: PARTICLE PHYSICS

Gökhan Ünel / UC Irvine Feb. 2024

Physics

Particle Physics

- elementary fermions:
 quarks and leptons.
 <u>can't have same</u>
 quantum numbers
- These form all the known matter
 - ⇒p≈uud, n≈udd
 - ➡ Hydrogen=p+e

interactions via bosons

ve, νμ, ντ

e, μ, τ

d, s, b

Bosons: <u>can have</u> same quantum numbers

4

g gluon

γ

foton

Z⁰ Z bozonu

W[±]

W bozonu

u, c, t

Particles & Interactions

Bosons: <u>can have</u> same quantum numbers

• Interactions = particle exchange

Feynman Diagrams

- her parçacığın kendisine zıt kuantum mekaniksel özellikler taşıyan bir kardeşi var.
 - buna karşı-parçacık denir
 - parçacık + karşı-parçacık = enerji = yeni parçacık
- Örnekler:
 - elektron(-) & pozitron(+) en basiti:
 yük ters olmuş (e- e+)
 - * u (2/3) & \overline{u} (-2/3) benzer şekilde
 - * $\nu_e \& \overline{\nu_e}$: lepton numarası ters olmuş
 - * r & \overline{r} : renk yükü ters olmuş

• Interactions = particle exchange

Relativity

Einstein: "Speed of light is always fixed, c." what is the corrolary? <u>Lo</u> Length Contraction $\Delta t' = \gamma \Delta t$ Time dilation Generalization by Lorentz $ct' = \gamma(ct - x\beta)$ Called a Lorentz Transformation (v=const) $x' = \gamma(x - vt)$ • $\mathbf{M}(t, x, y, z)$ y' = yz' = zct $\begin{vmatrix} -\beta\gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \end{vmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ t', x', y', z' $\begin{vmatrix} x' \\ y' \end{vmatrix} =$ t, x, y, z

What quantities are invariant under Lorentz Transformations? What are the details? --> **See Appendix**

LT in matrix form

Thanks to relativity: Muon Lifetime measurement, Muon Accelerator, LLP experiments, Channeling radiation, FEL....

Decays & Scatterings

magnitude of LV is invarant

Frequently used Lorentz Vectors

Coordinates :	$X^{\mu}=(ct,x,y,z)=(ct,\vec{x})$
Velocities :	$U^{\mu} = rac{dX^{\mu}}{d au} = \gamma(c, \vec{x}) = \gamma(c, \vec{u})$
Momenta :	$P^{\mu}=mU^{\mu}=m\gamma(c,\vec{u})=\gamma(mc,\vec{p})$
Force :	$F^{\mu} = \frac{dP^{\mu}}{d\tau} = \gamma \frac{d}{d\tau} (mc, \vec{p})$
Wave propagation vector :	$K^{\mu}=(rac{\omega}{c},ec{k})$
Also the <u>Gradient :</u>	$\partial^{\mu} = \left(\frac{1}{c}\frac{\partial}{\partial t}, -\vec{\nabla}\right) = \left(\frac{1}{c}\frac{\partial}{\partial t}, -\frac{\partial}{\partial x}, -\frac{\partial}{\partial y}, -\frac{\partial}{\partial z}\right)$
	$\partial_{\mu} = \left(\frac{1}{c}\frac{\partial}{\partial t}, \vec{\nabla}\right) = \left(\frac{1}{c}\frac{\partial}{\partial t}, +\frac{\partial}{\partial x}, +\frac{\partial}{\partial y}, +\frac{\partial}{\partial z}\right)^{T}$

Example: a collider experiment

- A particle of energy E_A, of mass m_A & of momentum p_A, hits the particle B of E_B, mass m_B and momentum p_B arriving in opposite direction. (c=1)
- Lets call the total energy of the system \sqrt{s}
- $s=(\mathbf{P}_{A}+\mathbf{P}_{B})^{2} = \mathbf{P}_{A}^{2}+\mathbf{P}_{B}^{2}+2\mathbf{P}_{A}$. $\mathbf{P}_{B}=m_{A}^{2}+m_{B}^{2}+2(E_{A}E_{B}-p_{A}.p_{B})$
- $s=m_A^2 + m_B^2 + 2(E_A E_B Ip_A IIp_B I \cos \theta)$
 - * if $m_A \sim m_B \sim 0$ compared to particle kinetic energy, and
 - if the particle are head-to-head colliding

$$E_{CM} = \sqrt{4E_A E_B}$$

Standard Model

Electroweak theory

 Photon & two cousins W, Z particles (discovered at CERN).

QCD theory

 Protons & neutrons are held together by gluon exchange in the nuclei

Higgs theory

 To explain how fermions and EW bosons acquire mass

• Results:

- A single theory can explain all the "electroweak and strong" interactions.
- All atomic and sub atomic experiments
 & observations can be explained.
- SM & General Relativity can almost explain the universe we observe.

Crookes's tube

cathode

10

anode

> 1869: cathode rays discovered

> 1895: X rays discovered

01 Nobel

1897: electron discovered, & m/q ratio measured by JJ Thompson **6 06 Nobel**

5

early 1900s

> 1911 Rutherford discovers the nucleus

> 1913 Greinacher invents multiplier circuit

32 Nobel

> 1932 Cockroft Walton machine

> 1932 Atom (nucleus) is divided @400kV p + Li → He + He

08 Nobel

nest Rutherford (centre) encouraged Ernest Walton (left) and John Cockcroft (right) to build a high-voltage accelerator to split

'50s - '60s

- * 1954 CERN is founded
- * 1955 Bevatron p @6.2 GeV 🕇 Nobel: antiproton is discovered
- * 1959 CERN PS: first strong focusing accelerator 28GeV
- * 1960 BNL AGS p@33 GeV $3 \overset{\vee}{\sim} \overset{\vee}{\circ} \overset{\vee}{\circ}$ Nobel: $\nu_{\mu} J/\psi c \mathcal{CP}$
- * 1961 AdA first collider
- * 1966 electron cooling

hte-uko

a fly in the soup

but

- If simple is beautiful, SM is simpler with massless particles
- But we observe mass:
 Why different fermion masses?
 mt >>> me why?????
 Why different boson masses?
 - Z \sim γ but mZ=90 m γ =0, why?????
- What is mass anyway?
 Newton: m=F/a and m=Fr²/MG
 - ⇒Einstein: m=E/c²
 - Caution! mp≈940MeV m(u+u+d)≈9.4MeV
 - ⇒99% proton mass= binding energy=QCD

LHC EXPERIMENTS

14.3 Km

hte-uko

Colliders @CERN

hte-uko

why collide protons

- Higher energy reveals more and more details inside the proton
- proton machines are discovery tools

Higgs decays in 10-22 s to...

Higgs decays products are calculable in terms of the Higgs mass.

"golden channel"

H

We need to find & measure the decay products!

Around 120 GeV H —>γγ 0.1% & H —>ZZ 3% 17

 ℓ'^-

 ℓ^+

 Z^0

 Z^{0*}

 ℓ'^+

the art of detection

• how do we "see" the final state particles?

Identification

- ionisation: tracking
 - charged particle
 - under B field,
 - charge
 - momentum
- EM Calorimetry
 - e+, e-, Y
- HAD Calorimetry
 - mesons + hadrons

Muons

• Trigger

- under B field,
 - charge
 - momentum

∆p=0
neutrinos


```
HTE-UKO
```


ATLAS

hte-uko

Find the hays from Higgs field in the haystack

www.jolyon.co.uk

finding Higgs took 48 years = 1 514 764 800 s!

- need to find an efficient way of selecting "Higgs" events
 - ⇒Quick & efficient
 - ⇒without biasing the data
- Blind analysis
 - do not look at final distributions during the analysis
- 5σ significance needed for discovery

⇒ P(statistical fluctuation)= 5.7×10⁻⁷

Units in PP

• Energy = Mass except a coefficient

1 eV = 1.6 x 10⁻¹⁹ J

- Energy is measured in eV, the energy picked up by a particle of charge e, while going through a potential V. *Naturally we have keV, MeV, GeV...*
- For any particle: $E^2 = p^2c^2 + m^2c^4$
 - [p] = MeV/c [m] = GeV/c² this can be simplified with 'c=1' approach
 - [E] = [p] = [m] => k/M/G/T eV
- $E = m_0 + T$ (T: Kinetic energy) = γ m
 - where γ is Lorentz Factor
- Remember: m(e)=0.511MeV , m(p) = 938 MeV

"natural" units

- Energy: GeV
- Time: (GeV/ħ)-1
- Momentum: GeV/c

- Length: (GeV/ħc)-1
- Mass: GeV/c²
- Area: (GeV/ħc)-2

- ħ=c=1 would simplify alot!!
- All physical quantities would be expresses as powers of GeV.
- ħ and c coefficients are used s appropriatelt to convert back to S.I.

$$\ell_{\rm P} = \sqrt{\frac{\hbar G}{c^3}} \approx 1.616\ 199(97) \times 10^{-35}\ {\rm m}$$

$$t_{\rm P} \equiv \sqrt{\frac{\hbar G}{c^5}} \approx 5.391\ 16(13) \times 10^{-44}\ {\rm s}$$

$$m_{\rm P} = \sqrt{\frac{\hbar c}{G}} \approx 1.2209 \times 10^{19}\ {\rm GeV/c^2} = 2.176\ 51(13) \times 10^{-8}\ {\rm kg}$$

$$E_{\rm P} = \sqrt{\frac{\hbar c^5}{G}} \approx 1.956 \times 10^9\ {\rm J} \approx 1.22 \times 10^{28}\ {\rm eV}$$

outlook

- Need more data to answer questions in PP:
 - ⇒LHC data taking re-starts in March 2024
 - We are limited by the current LHC tunnel & superconductor (cooling) technology and PDFs
- New machines in the horizon
 - ➡Future Circular Collider (if no new tech.)
 - ▶ **BIG** pp machine √=100TeV, 100km circumference
 - Dedicated Linear Higgs machine
 - ► ILC?
 - Compton back-scattering, γ-γ collider
 - We need new accelerator paradigm: 100GeV/m
 - wake field acceleration??

most economical solution

- 60's & minis: mini-cooper, mini-skirts, mini-computers
 - <u>Brout & Englert;</u> Guralnik, Hagen & Kibble; <u>Higgs's papers</u> offered a <u>minimalistic & elegant</u> solution.
 - There are other theories solving the mass problem, B-E-H is the simplest model.
- Higgs theory kills <u>two birds</u> with a <u>single stone</u>:
 - fermion masses can be explained $\mathcal{L}_{ ext{Yukawa}}(\phi,\psi)=-gar{\psi}\phi\psi$
 - W & Z boson masses & their relationship explained (SSB)
- BUT
 - <u>Higgs theory doesn't predict Higgs boson mass</u>, says mH < 1TeV
 - It has to be found experimentally, by observing its decay products.
 - Higgs decay products depend on its mass. So:
 - One needs to search for the Higgs boson in all the mass range.

HTE-UKO

for the connaisseurs

- 1) Prequel field theory
 - a. particles represented by fields ψ : fermion ϕ : scalar
 - b. Lagrangian (density) formalism
- 2) simplest fermion Lagrangian

Energy

$$\mathscr{L} = i\bar{\psi}\gamma_{\mu}\partial^{\mu}\psi - \bar{\psi}\bar{\psi}\psi$$

28

BEH!

 $-m\psi\phi\psi$

 $\psi o U\psi \quad ar{\psi}' o ar{\psi} U^{-1}$ This is not a good mass term, it is not gauge invariant.

3) Consider a scalar field $\boldsymbol{\varphi}$ with this particular potential

$$\mathscr{L}_{s} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi + \frac{1}{2} \mu^{2} \phi^{2} - \frac{1}{4} \lambda^{2} \phi^{4} \qquad V = \frac{1}{4} \lambda^{2} \phi^{4} - \frac{1}{2} \mu^{2} \phi^{2}$$
$$\lambda^{2} \phi^{3} - \mu^{2} \phi = 0 \qquad \phi(\lambda^{2} \phi^{2} - \mu^{2}) = 0 \qquad \text{not a mass term} \qquad \frac{\partial V}{\partial \phi} = 0$$

Spontaneous Symmetry Breaking

 $\phi \to \phi \pm \frac{\mu}{\lambda}$

$$\begin{aligned} \mathscr{L}_{s}^{new} &= \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi + \frac{1}{2} \mu^{2} (\phi \pm \frac{\mu}{\lambda})^{2} - \frac{1}{4} \lambda^{2} (\phi \pm \frac{\mu}{\lambda})^{4} & \phi \text{ mass term} \\ \mathscr{L}_{s}^{new} &= \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi + \frac{1}{2} \mu^{2} (\phi^{2} + \frac{\mu^{2}}{\lambda^{2}} \pm 2\phi \frac{\mu}{\lambda}) - \frac{1}{4} \lambda^{2} (\phi^{4} \pm 4\phi^{2} + \phi \phi^{2} \frac{\mu^{2}}{\lambda^{2}} \pm \phi \frac{\mu^{3}}{\lambda^{3}} + \frac{\mu^{4}}{\lambda^{4}} \\ \mathscr{L}_{s}^{new} &= \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi + \frac{1}{2} \mu^{2} \phi^{2} + \frac{1}{2} \frac{\mu^{4}}{\lambda^{2}} \pm \phi \frac{\mu^{3}}{\lambda} + \frac{1}{4} \lambda^{2} \phi^{4} \mp \phi^{3} \mu \lambda - \frac{6}{4} \phi^{2} \mu^{2} \mp \phi \frac{\mu^{3}}{\lambda} - \frac{\mu^{4}}{4\lambda^{2}} \\ \mathscr{L}_{s}^{new} &= \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi + \frac{2-6}{4} \mu^{2} \phi^{2} - \frac{1}{4} \lambda^{2} \phi^{4} \mp \phi^{3} \mu \lambda + \frac{\mu^{4}}{\lambda^{2}} \end{aligned}$$

HTE-UKO

for the connaisseurs

4) Consider a simple universe: a gauge field A (like EM), a complex scalar field φ and a fermion field ψ. (~ Z boson, Higgs, Electron)

 $\phi = \frac{1}{\sqrt{2}}(\phi_1 + i\phi_2)$ $\phi_{min} = \pm \frac{\mu}{\lambda} \equiv \frac{v}{\sqrt{2}}$ $\phi_1^2 + \phi_2^2 = v^2$

complex scalar field has a degeneracy in the (φ_1 , φ_2) plane. We arbitrarily choose (v, 0) as the minima.

for the connaisseurs

What just happened?

A boson (ϕ_2) vanished to give mass to a vector boson (A): total number of degrees of freedom **is** preserved.

- 5) Consider a realistically complex universe: a U(1) gauge field X, a SU(2) gauge field W, a complex scalar field doublet ϕ and a chiral fermion field doublet ψ_L , and a singlet ψ_R .
 - 1) φ now has 4 fields, massless X has 1 field, and massless W has 3 fields.
 - 2) SSB as before, makes 3 scalar fields disappear.
 - 3) BEH as before, makes 3 vector bosons massive.
 - W⁺, W⁻, W⁰
 - 4) SU(2) neutral boson and X neutral boson mix, by Weinberg angle θ_w .
 - we get one massive boson (Z) and one massless boson (γ).

This is exactly what happens in the electroweak sector of the Standard Model

- 5) electron-neutrino scattering allows measurement of θ_w . Its value, combined with fermi constant, allows prediction of W and Z boson masses.
 - SPPS finds Z and W exactly at predicted masses @ 1983.

Our Precious Higgs

- One has to produce it to search for
 heavier Higgs —> more Energy needed
 - build an accelerator and a collider "ring"
- Many have tried and failed to find it.
 ⇒ SppS: 1981 1984, √s= 630GeV
 ⇒ LEP I,II: 1989 2000, √s= 90, 209GeV
 ⇒ Tevatron: 1987 2011, √s= 980GeV
- It was LHC's turn...
 ⇒ pp again
 ⇒ √s= 7000 & 8000 GeV

EM field vs Higgs field

if EM field amount is zero, the minimum potential is also zero.

$C \approx 300000 \text{ KM/S}$

Einstein: "Speed of light is always fixed, c."

✤ what is the corrolary?

TIME DILATION

 $\beta \equiv \frac{v}{c}$ $\gamma \equiv \frac{1}{\sqrt{1-\beta^2}}$

The moving object's own time

- β=0..1
- γ=1..∞

The same object's observed time in a stationary lab

a coefficient that depends the speed of the the moving object

Muon's real lifetime is 2.2 μs but we see in cosmic rays and in the experiments a much longer lifetime

*this is the idea behind the muon collider!

MEASUREMENTS

The length of an object

Same event written in frame F': OM = OO' + O'M.

 $OM = x/\gamma$ $x' = \gamma(x - vt)$ $x/\gamma = vt' + x'$ OO' = vt' $x/\gamma = vt' + \gamma x - \gamma vt$ O'M = x' $x/\gamma - \gamma x + \gamma vt = vt'$ $t' = \gamma [t - xv/c^2] \ge$ $\gamma [x/\gamma^2 - x + vt] = vt'$ $ct' = \gamma [ct - x\beta]$ $\gamma \left[\frac{x}{\gamma^2 - x} + t \right] = t'$ $x' = \gamma(x - vt)$ $t' = \gamma [t - x(1 - 1/\gamma^2)/v]$ y' = y $t' = \gamma [t - x(\gamma^2 - 1)/v\gamma^2]$ z' = z $t' = \gamma [t - xv/c^2]$ Lorentz transformation

Is there a quantity invariant under Lorentz transformations?

yes: distance in 4D: $s^2=ct^2 - x^2 - y^2 - z^2$

beware: when we calculate 4D quantities the time-like and space-like components contribute with opposite signs: + - - - OR - + + + -. This is called a <u>metric</u> and it is related to the strucuture of spacetime. Simplest form = <u>Minkowski</u> space = flat space

 $M^2 = E^2 - P^2 = Lorentz invariant - 4-Momenta$

4-density (charge density, current density)4-EMPot (scalar potential, vector potential)