
France-Berkeley PHYSTAT Conference on Unfolding, June 11-13, 24

HEP Overview

Philippe Gras

June 11-13, 24

CEA/IRFU - Saclay

1 / 38



Introduction

In this talk I will depict the unfolding motivations, describe the methods commonly used, and
introduce new methods that have been emerging using machine learning techniques.
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Use of unfolding in HEP

• Unfolding is used for differential cross-section measurements, and more generally of
observable distributions

• Unfolding covers correction for all detector effects on the observed distributions: smearing,
efficiency, misidentification, acceptance, and background.

• Jets are the objects measured with the least resolution (with missing ET) and unfolding is
especially relevant for jet-dependent observables.
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Cross section measurement in practice

To measure a differential cross section we typically define a histogram and count the number of
event in each bin of the histogram.

dσ
dX

;
δkσ

δkX
=

(Ndata
k −Nbkg

k ) · Ck
δkX · L

With δkX the bins of a histogram, Ndata
k the measured event yield in the bin, Nbkg the

estimated background contribution, δkσ the cross section integrated over the bin, L the
integrated luminosity, Ck the correction for efficiency, bin-to-bin migration, and acceptance.
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Why unfolding (or not unfolding) measurement?

Why unfolding a measurement ?

• Obtain a more fundamental result that does not depend on the apparatus.

• Ease comparison with results from other experiments.

• Ease comparison with other theoretical predictions: no need to simulate the detector
response.

Why not unfolding ?

• Unfolding is an ill-posed problem and regularization that it may require can bias the result.

• Unfolding can only reduce the information contents.
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Ill-posed problem

• Because of the detector finite resolution, we cannot infer dσ/dX from the measurement
(= measurement of event yields) without regularity assumptions: cannot see variations
below the resolution.
→ Needs to add a hypothesis on the regularity of the distribution to infer: Regularization

• Nevertheless, actually measuring δσ/δX

• reduced to a ill-conditioned problem, i.e. solutions with large variance, or well-conditioned.
• If bin width, δX, ≈ resolution, then regularization is often not needed.
• The case for many analyses.
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Unfolding classical approach

Extract from the Simulation the probability that an event in a bin i before the detector
response (i.e. at generator level) ends up in the bin j after the detector response (i.e. at
reconstruction level):

• Fill a 2D histogram of reco vs gen (migration histogram)
• x-axis the generator level (gen) quantity (i.e. before the detector response).
• y-axis: the reconstruction level (reco) quantity (i.e. after detector response simulation)

• Normalize the histogram such that the sum along the reco axis is equal to one (or to the
efficiency) to obtain the probabilities.

This matrix, called Response Matrix, is then used to unfold the data. We need to solve,

Ndata = RNunfold +Nbkg

N : histograms, i.e. vectors of bin contents
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Response matrix

Plot from doi:10.48550/arXiv.2312.16669 �

P(Ei|Cj) ≈ Ni,j∑
j Ni,j

Ei event is in reco bin i (effect)

Cj event is in gen bin j (cause)

Tip: to unfold a multidimensional
distribution, map the bins to a 1-D
axis.
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Boundaries

Migration through boundaries

• Events migrating out of boundaries are
treated as inefficiencies.

• Event migrating into the boundaries are
treated as "fakes".

Steep slope
Extra bins beyond boundaries with a steep
slope are typically added to perform the
unfolding and dropped from the final result.

E.g., in PRD 108 (2023) 05204 � two extra
bins are added at low value to unfold the
distribution on the right.
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Unfolding classical methods

Three main methods

• Response matrix (pseudo-)inversion ≡ least-square method

• D’Agostini iterative method: converge to Maximum likelihood estimate (MLE)

• MLE

Least-square MLE

(Rx+ b−Ndata)
TΣ−1(Rx+ b−Ndata) −

∑
j

ln(Poiss(Ndata,j |[Rx]j + bj))

Gaussian approx. Unc. can be profiled

→ Linear algebra

x ≡ Nunf
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Least-square method

• Invert the response matrix by minimizing,

χ2
unf = (Rx+ b−Ndata)

TΣ−1(Rx+ b−Ndata) + τ2χ2
reg

with Σ the data covariance matrix and x ≡ Nunf .

• χ2
reg = (x− f ∗ x0)

TLTL(x− f ∗ x0) used to favor
regular solutions: Tikhonov regularization.

• matrix L used to select type of regularization: on the
amplitude, the derivative or curvature.

CMS t̄t, 1ℓ+jets measurement,

doi:10.1103/PhysRevD.97.112003 �

Implemented by TUnfold from S. Schmitt, JINST 7 (2012) T10003 �, included in ROOT.
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D’Agostini iterative method

doi:10.1016/0168-9002(95)00274-X �.

Also known as Lucy–Richardson deconvolution (doi:10.1364/JOSA.62.000055 �,
doi:10.1086/111605 �)

An iterative method using the Bayes theorem (→ also called D’Agostini Bayes method)

P(Ci|Ej) =
P(Ej |Ci)P(Ci)∑ngen

l=1 P(Ej |Cl)P(Cl)
(1)

N̂gen
i =

1

ϵi

∑
j

P(Ci|Ej)N
reco
j (2)

P(Ej |Ci) ≡ Rji: response matrix

ϵi =
∑
j

P(Ej |Ci): reco efficiency.
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D’Agostini iterative method

P(Ci|Ej) =
P(Ej |Ci)P(Ci)∑ngen

l=1 P(Ej |Cl)P(Cl)
(1) N̂gen

i =
1

ϵi

∑
j

P(Ci|Ej)N
reco
j (2)

1. Start with some priors P(Ci) = P0(Ci): distribution from MC, flat prior, or some other
choice;

2. Compute P̂(Ci|Ej) using eq. (1) with the priors;

3. Estimate N̂gen by injecting step-2 P̂(Ci|Ej) in eq. (2);

4. Estimate new priors P1(Ci) = N̂gen
i /

∑
k N̂

gen
k and repeat from step 2.
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D’Agostini iterative method

Properties

• Converges to the MLE, although convergence can
be slow in some cases.

• Runs fast.

• Regularization is obtained by stopping the iterations
before convergence.

• Nunf
i can be written as a linear combination of

N reco
j , Nunf = U ·N reco.
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Maximum likelihood

• Maximize a likelihood, e.g. using Minuit.

• If the measurement already uses a likelihood to extract reco-level event
yields, use a single likelihood.

• See doi:10.1007/JHEP03(2021)003 � measurement that uses this
approach.

Pros
• Simultaneous fit of signal, background and unfolding;

• Profiling of systematics;

• Poisson statistics.

Cons
• Slow compared to the other methods that use linear algebra.

• Number of bin limit due to both computation time and fit stability: ok
up to O(100). Use of ML fitting as in
doi:10.1103/PhysRevD.102.092012 � may leverage this limitation.

CMS Higgs boson diff.

cross-section in WW(→ ℓνℓν̄)

channel,

doi:10.1007/JHEP03(2021)003 �
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Regularization

Three regularization methods encountered in LHC data analyses

• Tikhonov regularization we saw before (Tikhonov, Soviet Math Dokl 4, 1035-1038). Can be used
with both χ2 and MLE methods.

• Early stopping in the D’Agostini iterative method

• SVD: smooth rejection of the smallest singular values
(doi:10.1016/0168-9002(95)01478-0 �)
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Choice of regularization strength

• To minimize bias it is important to make an objective selection of the regularization
strength.

• Many methods on the market.

• Most used methods in LHC data analyses:
• L-curve scan;
• Minimization of global correlation;
• Minimization of unfolding mean square error (MSE) using simulation;
• Minimization of error on reunfolded data.
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Regularization strength choice: L-curve

L-curve

• Applies to minimization using Tikhonov
regularization.

• Goal: find a compromise between fit residual
minimization and solution regularity. P. C. Hansen

2000, WIT Press �

Method

• Draw the curve logχ2
unf. vs log

χ2
reg.,τ

τ2 , with τ as
parameter.

• Select the τ value of the point with the maximum
curvature. from P. C. Hansen 2000

Specific to Tikhonov regularization. Implemented in TUnfold
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Regularization strength choice: Global correlation

Principle
Minimize the correlation between bins of the unfolded histogram.

Implementation

• Scan the regularization strength values and select the value that minimizes the global
correlation of the bins, ρi =

√
1− 1

(Σii∗Σ−1
ii )

• Two options: use the mean or max of ρi.

Implemented in TUnfold
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Regularization strength choice: MSE

Method recommended by the RooUnfold � manual

Principle

• Minimize the error: difference between truth and estimation, including both bias and
variance. Used the mean squared error (MSE), with average done over the bins.

• Use the simulation for which truth is known.

Implementation

• Make replicas of the simulation reco histogram using a Poisson law for the bin content.

• Unfold each replica and compute the MSE with respect to the simulation gen histogram.

• Average MSE over the replicas.

• Select the regularization strength that minimizes the averaged MSE.

• Check that the error is small enough in every bin and uncertainty coverage is sufficient.
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Regularization strength choice: MSE

Limitations

• Based on the simulation.

• If the shape of the truth distribution differs from the model used in the simulation, then
the unfolding can behave differently.

• Especially, it seems important to use a flat prior for the D’Agostini iterative method and a
flat bias for least square.

• Limitation can be alleviated by testing with different event generators, reweight the
simulation to match with the observed reco histogram(s), or by distorting the distribution
used for the test.
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Regularization strength choice: reunfold

used e.g. in doi:10.1140/epjc/s10052-018-6373-0 �

Variation of MSE using data as template.

• Draw N replicas of the unfolded distribution using a Poisson law for the bin contents;

• “Fold” each replica by applying the response matrix and resample it.

• Unfold the N folded replicas and for each of them compute T =
∑

i(N
unf
i −Ngen

i )2/Ngen
i .

• With a D’Agostini iterative unfolding, T will typically decrease with the number of
iterations (approaching to the solution) and then increases (because of the fluctuations
added by the unfolding). Select the minimum as working point.

• Check that the (Nunf
i −Ngen

i )2/Ngen
i is small enough in every bin and uncertainty

coverage is sufficient.
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Cross-checks: closure tests

Several cross-checks are usually performed to validate the unfolding.

Closure test I

• Use MC to generate pseudo-data (→ gen- and reco- level distributions) and response
matrix;

• Unfold the reco-level distribution

• Check that the unfolded distribution matches with the gen-level distribution

Closure test II: sensitivity to the MC model

• Same as test I but using a different event generator for the MC sample used to extract the
response matrix
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Cross-checks: bottom-line test

Bottom-line test

• The bottom line: unfolding should not enhance the measurement discrimination power
between two models.

• The test:
• Pick up a model for the true distribution → λgen;
• Smear the model to obtain the reconstruction level distribution → λreco = Rλgen

• Compare the p-value of the χ2-tests of backgound-subtracted data vs λreco and of unfolded
data vs λgen: the p-values must be similar and the one in the unfolded space should not be
smaller than the one in the reco space.

• Beware the test is not valid in case of large regularization because the ndof for the
unfold-space test is no more equal to the number of bins.
http://arxiv.org/pdf/1408.6500 provides a method to estimate ndof in such a case.
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Cross-checks: coverage test

coverage test
If the result is biased, then the uncertainty coverage will be too small.

coverage = Φ
(bias

σ
+ 1

)
− Φ

(bias
σ

+ 1
)

with Φ, the normal cumulative distribution function.

• Coverage can be checked using toy experiments.
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Uncertainties

• Reco-level statistical and systematics uncertainties to propagate to the unfolded
measurement.

• Unfolding statistical uncertainties

• Unfolding model uncertainties: more in next slides
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Unfolding model uncertainties

Limitations of the response matrix approach

• Sensitive to the modelling of the distribution within the bins;

• Dependency of event migration on other observables than the unfolded one(s) ignored
→ e.g. unfolding of a pT distribution sensitive to MC η distribution accuracy

Unfolding model uncertainties
Because of this limitation the result depends on the accuracy of the event generator, and we
should account for model uncertainties.
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Model uncertainties

Different methods used in LHC data analyses, based on computing alternative
response matrices from:

• Gen. parameter variations (using weights produced by generators): energy scales
(renormalization, factorization, parton showering), PDF, αS variations

More variations can be included. E.g., for analyses with top quarks, colour reconnection, top
mass, B-fragm., hdamp.

• One (or more) alternative generator(s) → used to derive an unc. or as cross check.

• Reweighted MC: variation based on the difference of data/MC reco distributions. E.g.,
• Measurements of differential cross sections for associated production of a W boson and jets in

proton-proton collisions at
√
s = 8TeV, CMS collaboration, March 2017,

doi:10.1103/PhysRevD.95.052002 �;
• A simultaneous unbinned differential cross section measurement of twenty-four Z+jets kinematic

observables with the ATLAS detector, ATLAS collaboration, submitted to PRL, arXiv:2405.20041 �.

Note: in all methods, it is important to check at reco-level that the variations cover differences
between data and simulation (by construction for the last one).
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Machine learning opens a new avenue for
unfolding our measurements



A rich literature

• OmniFold: A Method to Simultaneously Unfold All Observables�

• Unfolding with Generative Adversarial Networks�

• How to GAN away Detector Effects�

• Machine learning approach to inverse problem and unfolding procedure�

• Machine learning as an instrument for data unfolding�

• Advanced event reweighting using multivariate analysis�

• Unfolding by weighting Monte Carlo events�

• Binning-Free Unfolding Based on Monte Carlo Migration�

• Invertible Networks or Partons to Detector and Back Again�

• Neural Empirical Bayes: Source Distribution Estimation and its Applications to Simulation-Based Inference�

• Foundations of a Fast, Data-Driven, Machine-Learned Simulator�

• Comparison of Machine Learning Approach to other Unfolding Methods�

• Scaffolding Simulations with Deep Learning for High-dimensional Deconvolution�

• Preserving New Physics while Simultaneously Unfolding All Observables�

• Measurement of lepton-jet correlation in deep-inelastic scattering with the H1 detector using machine learning
for unfolding�

• Presenting Unbinned Differential Cross Section Results�

• Feed-forward neural network unfolding�

• Optimizing Observables with Machine Learning for Better Unfolding�

• Unbinned profiled unfolding�

Two approaches
• Iterative unfolding

(Omnifold)

• Generative
unfolding

List from the
HEPML Living
Review �
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Omnifold

Principle
Exploit the following properties of binary classifiers: for two probability distributions of events,
it approximates the likelihood ratio.

E.g. with a NN f(x) trained with a cross-entropy loss function,

loss(f(x)) = −
∑

i∈Cat.0

logf(xi)−
∑

i∈Cat.1

log(1− f(xi))

we have1,

f(x)

1− f(x)
≈ p0(x)

p1(x)

with pi the probability to be in Category i.
1assuming the same number of events in both categories for the training
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Ommifold

Generalizes the iterative D’Agostini method to
unbinned unfolding of the full phase space
1. Train a classifier to distinguish if an event is from data or

simulation
⇒ P(Data|xreco)/P(Simu|xreco)

2. Reweight Simulated event with P(Data|xreco)/P(Simu|xreco)

3. Train a second classifier to distinguish at gen. level if an
event is from the original or the reweighted simulation
⇒ P(Reweighted|xgen)/P(Original|xgen)

4. Reweight simulation with
P(Reweighted|xgen)/P(Original|xgen)

5. Repeat from 1
Can also be used on a limited number of
observables: called Unifold for 1 observables
and Multifold for more.

PRL 124 182001 (2020) �, PRD 104 076027 (2021) �
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Omnifold on LHC data 1/2

Disentangling quarks and gluons in CMS open data
PRD 106 (2022) 9 �, P. T. Komiske, S. Kryhin, J. Thaler

Unfolded τ2 distributions of the two jet
categories compared to Pythia8. Distributions extracted for quark and gluons
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Omnifold on LHC data 2/2

A simultaneous unbinned differential cross section measurement of twenty-four Z+jets
kinematic observables with the ATLAS detector, ATLAS Collaboration, submitted to PRL,
arXiv:2405.20041 �.

Unbinned unfolding,
although only binned
distributions publicly
released: 24 binned
distributions.

Unfolded pT(µµ) distribution.
Distribution of the ratio of

2-subjettiness to 1-subjettiness
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Omnifold on Hera data

Measurement of lepton-jet correlation in
deep-inelastic scattering with the H1 detector
using machine learning for unfolding,
doi:10.1103/PhysRevLett.128.132002 �

MultiFold of 8 observables, peT, pez, p
jet
T , ηjetT ,

φjet, qjetT /Q, ∆φjet
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Generative unfolding

• Uses a conditional invertible neural
network (cINN)

• Trained to generate a gen-level event on
the condition of a reco-level event

• Apply to data to generate the unfolded
distribution

arXiv:2006.06685 �,arXiv:1806.00433 �,arXiv:1912.00477 �,arXiv:2212.08674 �
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Iterative generative unfolding

• Mitigate MC bias using iterations

• After the generative unfolding, use a
classifier to learn ratio of unfolded to
truth-level distribution and extract weights
for the simulation

• Repeat the generative unfolding with the
reweighted simulation

arXiv:2212.08674 �
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Conclusions

• Unfolding is widely used in HEP for differential cross-section measurements.

• Unfolding comes with a model uncertainty, difficult to estimate as often the case for
systematic uncertainties.

• Machine learning allows handling of large numbers of dimensions opening a new avenue
with unbinned full phase space unfolding.
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