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Unfolding: Bridging the Gap…

Figure credit: Wouter Waalewijn (theory overview @BOOST 2020)
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1. Unfolding as a classification task


2. Optimizing reco-level observables 


with ML


3. Fast regularized neural posterior 


estimation with flows
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• Iterate to reduce prior dependence


• Can start with flat prior 


• Trained classifier applied to data  (predicted probability for truth bin  event )


• Update and obtain  for iteration 


• Re-sample the MC & re-train the classifier


• (Ensembling to get the result)

F(xg) = const .

→ qe, data
i i e

F′ n(x) =
1

Nevt, data

Nevt, data

∑
e=1

qe, data
i n
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Fig. 2 Left: comparison of the truth, reconstructed and unfolded distributions for the test
when the reconstructed xr is shifted vs truth xg as xr = xg + 0.05. Right: corresponding
response matrix with the over-flow events in reconstructed bin number placed in the last
bin.

10 truth bins are used for the unfolding which are distributed uniformly with a
bin width of 0.1. The e�ciency of the detector is assumed to be uniform in xg,
focusing the test on the bin migration e↵ects. Training and test samples with
2⇥ 106 and 20⇥ 103 random events are used, respectively. The test sample is
use as pseudo-data for unfolding. Two initial training samples are generated
following the truth-based F (xg) = sin2 5xg and flat F (xg) = const priors.

The zeroth-level check of the procedure is to ensure that the neural net-
work is su�ciently large to determine truth bin boundaries for the case without
detector smearing, i.e. when reconstructed xr = xg. Indeed, in this case the
neural network reaches > 99.9% prediction accuracy PA, determined by com-
paring the reconstructed bin with maximal probability to the truth bin, for the
validation sample after training. For the prior with non-uniform distribution,
significant amount of the training cycles is required to achieve this accuracy.
The result of the training using batch size of 1000 events and 400 epochs is
shown in Figure 1. Very sharp bin boundaries are visible for all but the bin
corresponding to the minimum of the prior distribution, but even for this bin
the accuracy is su�cient, considering typical smearing e↵ects.

This is a non-trivial result already since the network did not receive directly
any information on the bin boundaries. It can be extended to the first inter-
esting application: consider bias of the reconstructed variable xr = xg + 0.05.
It is illustrated in Figure 2. A sizable shift of the reconstructed distribution
with respect to the truth is observed in this case, making simple bin-by-bin
unfolding inapplicable. The shift introduces large o↵-diagonal elements to the
transfer matrix. The ML unfolding, trained using the flat prior with no itera-
tions performs very well, reproducing the truth within statistical uncertainties
of the test sample which estimated using bootstrap resampling method [19].
The bootstrap method uses generated events multiple (or zero) times follow-
ing Poisson probability distribution with the expectation value µ = 1. Thirty
bootstrap replica are used in the analysis presented here.
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detector smearing, i.e. when reconstructed xr = xg. Indeed, in this case the
neural network reaches > 99.9% prediction accuracy PA, determined by com-
paring the reconstructed bin with maximal probability to the truth bin, for the
validation sample after training. For the prior with non-uniform distribution,
significant amount of the training cycles is required to achieve this accuracy.
The result of the training using batch size of 1000 events and 400 epochs is
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It is illustrated in Figure 2. A sizable shift of the reconstructed distribution
with respect to the truth is observed in this case, making simple bin-by-bin
unfolding inapplicable. The shift introduces large o↵-diagonal elements to the
transfer matrix. The ML unfolding, trained using the flat prior with no itera-
tions performs very well, reproducing the truth within statistical uncertainties
of the test sample which estimated using bootstrap resampling method [19].
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bootstrap replica are used in the analysis presented here.

Performs very well even for huge off-diagonal 
response elements from a shift ( )!xr → xg + 0.05
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What to unfold?

• Usually we discuss the art of matrix inversion (i.e. How)

• Step 0:   What is the observable?


• Can we do better than simply adding variables / going to higher dimension?

• YES!


• Particle-level: from a list of 4-vectors, must be linked to theory for comparison


• Detector-level: from energy flow objects

Optimizing reco Observable ( ) with ML𝒪d 2203.16722

9

https://arxiv.org/abs/2203.16722


What to unfold?
Optimizing reco Observable ( ) with ML𝒪d 2110.05505
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Figure 5. Resolution on the reconstruction of Q2 (left), y (middle), and x (right) as a function of
the generated y for the fast simulation of ATHENA. The top (bottom) row shows the RMS (mean)
of the measured-over-generated distribution as a function of generated ygen. The RMS and mean
are calculated using events with the measured-over-generated ratio within the interval 0 to 2.

4 Demonstration using the full simulation of the H1 experiment

We apply our DNN methodology to simulated events of the H1 experiment at HERA.

The events were simulated by the H1 Collaboration using the Rapgap 3.1 [64] and Djan-

goh 1.4 [68] generators for the beam energies E0 = 27.6GeV and Ep = 920GeV. The

generators employ the Heracles routines [53–55] for QED radiation, the CTEQ6L PDF

set [73], and the Lund hadronization model [74] with parameters fitted by the ALEPH

Collaboration [75]. The simulation of the H1 experiment [62, 63] employs the Geant 3

package [61] and includes real calorimeter noise and fast shower simulations [76–81]. The

simulation includes time-dependent properties (‘run-specific’), where the detector state and

beam properties correspond altogether to the HERA-II data taking periods.

The simulated events are reconstructed just like data, in particular, an energy-flow

algorithm [82–84] is used to define objects whose sum yields the HFS four-vector, and

the scattered electron candidate are defined using the same approach as Refs. [40, 51, 85].

The simulated events also undergo the same (in-situ) calibration procedure as real data,

using the latest calibration by the H1 Collaboration [51, 85, 86]. Some technical selections

and fiducial cuts are applied as it would be done similarly to real data. In particular,

events are required to have 45 < ⌃ + ⌃e < 65GeV to suppress ISR events; a veto on

QED Compton events is imposed; and since a trigger simulation is included, our study is

limited to E & 11GeV [85]. The simulated events are processed within H1’s computing

– 11 –
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Figure 5. Resolution on the reconstruction of Q2 (left), y (middle), and x (right) as a function of
the generated y for the fast simulation of ATHENA. The top (bottom) row shows the RMS (mean)
of the measured-over-generated distribution as a function of generated ygen. The RMS and mean
are calculated using events with the measured-over-generated ratio within the interval 0 to 2.

4 Demonstration using the full simulation of the H1 experiment

We apply our DNN methodology to simulated events of the H1 experiment at HERA.

The events were simulated by the H1 Collaboration using the Rapgap 3.1 [64] and Djan-

goh 1.4 [68] generators for the beam energies E0 = 27.6GeV and Ep = 920GeV. The

generators employ the Heracles routines [53–55] for QED radiation, the CTEQ6L PDF

set [73], and the Lund hadronization model [74] with parameters fitted by the ALEPH

Collaboration [75]. The simulation of the H1 experiment [62, 63] employs the Geant 3

package [61] and includes real calorimeter noise and fast shower simulations [76–81]. The

simulation includes time-dependent properties (‘run-specific’), where the detector state and

beam properties correspond altogether to the HERA-II data taking periods.

The simulated events are reconstructed just like data, in particular, an energy-flow

algorithm [82–84] is used to define objects whose sum yields the HFS four-vector, and

the scattered electron candidate are defined using the same approach as Refs. [40, 51, 85].

The simulated events also undergo the same (in-situ) calibration procedure as real data,

using the latest calibration by the H1 Collaboration [51, 85, 86]. Some technical selections

and fiducial cuts are applied as it would be done similarly to real data. In particular,

events are required to have 45 < ⌃ + ⌃e < 65GeV to suppress ISR events; a veto on

QED Compton events is imposed; and since a trigger simulation is included, our study is

limited to E & 11GeV [85]. The simulated events are processed within H1’s computing

– 11 –

2203.16722

10

https://arxiv.org/abs/2110.05505
https://arxiv.org/abs/2203.16722


What to unfold?

• ML-assisted reconstruction goals

• Reduce bias

• Improve resolution

• QED-regression DNN for a Deep 
Inelastic Scattering (DIS) example:  
learns  from distorted 
inputs

Q2, x, y

Optimizing reco Observable ( ) with ML𝒪d 2110.05505

ATHENA fast simulation (Rapgap+Delphes)

0 0.2 0.4 0.6 0.8
Gen y

0

0.1

0.2

0.3

0.4

0.5

ge
n

2
 / 

Q
2

R
M

S,
 Q

All events
DNN
electron
DA
hadron
ISigma

0 0.2 0.4 0.6 0.8
Gen y

0

0.1

0.2

0.3

0.4

0.5

ge
n

R
M

S,
 y

 / 
y

All events
DNN
electron
DA
hadron
ISigma

0 0.2 0.4 0.6 0.8
Gen y

0

0.1

0.2

0.3

0.4

0.5

ge
n

R
M

S,
 x

 / 
x

All events
DNN
electron
DA
hadron
ISigma

0 0.2 0.4 0.6 0.8
Gen y

0.8

0.9

1

1.1

1.2

ge
n

2
 / 

Q
2

M
ea

n,
 Q

All events DNN
electron
DA
hadron
ISigma

0 0.2 0.4 0.6 0.8
Gen y

0.8

0.9

1

1.1

1.2

ge
n

M
ea

n,
 y

 / 
y

All events DNN
electron
DA
hadron
ISigma

0 0.2 0.4 0.6 0.8
Gen y

0.8

0.9

1

1.1

1.2

ge
n

M
ea

n,
 x

 / 
x

All events DNN
electron
DA
hadron
ISigma

Figure 5. Resolution on the reconstruction of Q2 (left), y (middle), and x (right) as a function of
the generated y for the fast simulation of ATHENA. The top (bottom) row shows the RMS (mean)
of the measured-over-generated distribution as a function of generated ygen. The RMS and mean
are calculated using events with the measured-over-generated ratio within the interval 0 to 2.
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Figure 5. Resolution on the reconstruction of Q2 (left), y (middle), and x (right) as a function of
the generated y for the fast simulation of ATHENA. The top (bottom) row shows the RMS (mean)
of the measured-over-generated distribution as a function of generated ygen. The RMS and mean
are calculated using events with the measured-over-generated ratio within the interval 0 to 2.

4 Demonstration using the full simulation of the H1 experiment

We apply our DNN methodology to simulated events of the H1 experiment at HERA.

The events were simulated by the H1 Collaboration using the Rapgap 3.1 [64] and Djan-

goh 1.4 [68] generators for the beam energies E0 = 27.6GeV and Ep = 920GeV. The

generators employ the Heracles routines [53–55] for QED radiation, the CTEQ6L PDF

set [73], and the Lund hadronization model [74] with parameters fitted by the ALEPH

Collaboration [75]. The simulation of the H1 experiment [62, 63] employs the Geant 3

package [61] and includes real calorimeter noise and fast shower simulations [76–81]. The

simulation includes time-dependent properties (‘run-specific’), where the detector state and

beam properties correspond altogether to the HERA-II data taking periods.

The simulated events are reconstructed just like data, in particular, an energy-flow

algorithm [82–84] is used to define objects whose sum yields the HFS four-vector, and

the scattered electron candidate are defined using the same approach as Refs. [40, 51, 85].

The simulated events also undergo the same (in-situ) calibration procedure as real data,

using the latest calibration by the H1 Collaboration [51, 85, 86]. Some technical selections

and fiducial cuts are applied as it would be done similarly to real data. In particular,

events are required to have 45 < ⌃ + ⌃e < 65GeV to suppress ISR events; a veto on

QED Compton events is imposed; and since a trigger simulation is included, our study is

limited to E & 11GeV [85]. The simulated events are processed within H1’s computing

– 11 –
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QED-regression DNN gives the 
finest resolution & corrects for 

acceptance effects
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Figure 2. Examples of unfolding log10(x) for samples of 105 events. The response matrix (left),
unfolded and gen distributions (middle), and unfolding correlation matrix (right) are shown for the
electron (top), Sigma (middle), and DNN (bottom) methods.

and Sigma methods show significant correlations beyond neighboring bins in areas where

the resolution is poor, and even some correlations between distant bins are observed. In

contrast, the DNN method has the most diagonal matrix, where the non-zero o↵-diagonal

elements are mostly small correlations between neighboring bins, and no correlations be-

tween far apart bins is observed. The average global correlation coe�cients ⇢avg [69] of

these matrices are presented in Table 1, and a clear reduction is observed when using the

DNN method. In summary, the DNN method directly improves the resolution, which is

seen from reduced correlations, and improves mis-reconstruction (e.g. in the presence of

QED radiation), which is seen from the absence of distant correlations.

Figure 4 examines the statistical errors and the global correlation coe�cients [69] of

– 6 –
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Figure 2. Examples of unfolding log10(x) for samples of 105 events. The response matrix (left),
unfolded and gen distributions (middle), and unfolding correlation matrix (right) are shown for the
electron (top), Sigma (middle), and DNN (bottom) methods.

and Sigma methods show significant correlations beyond neighboring bins in areas where

the resolution is poor, and even some correlations between distant bins are observed. In

contrast, the DNN method has the most diagonal matrix, where the non-zero o↵-diagonal

elements are mostly small correlations between neighboring bins, and no correlations be-

tween far apart bins is observed. The average global correlation coe�cients ⇢avg [69] of

these matrices are presented in Table 1, and a clear reduction is observed when using the

DNN method. In summary, the DNN method directly improves the resolution, which is

seen from reduced correlations, and improves mis-reconstruction (e.g. in the presence of

QED radiation), which is seen from the absence of distant correlations.

Figure 4 examines the statistical errors and the global correlation coe�cients [69] of
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Figure 2. Examples of unfolding log10(x) for samples of 105 events. The response matrix (left),
unfolded and gen distributions (middle), and unfolding correlation matrix (right) are shown for the
electron (top), Sigma (middle), and DNN (bottom) methods.

and Sigma methods show significant correlations beyond neighboring bins in areas where

the resolution is poor, and even some correlations between distant bins are observed. In

contrast, the DNN method has the most diagonal matrix, where the non-zero o↵-diagonal

elements are mostly small correlations between neighboring bins, and no correlations be-

tween far apart bins is observed. The average global correlation coe�cients ⇢avg [69] of

these matrices are presented in Table 1, and a clear reduction is observed when using the

DNN method. In summary, the DNN method directly improves the resolution, which is

seen from reduced correlations, and improves mis-reconstruction (e.g. in the presence of

QED radiation), which is seen from the absence of distant correlations.

Figure 4 examines the statistical errors and the global correlation coe�cients [69] of
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reco-level observables has the 
most diagonal fractions 
throughout phase space

• Loss function = (particle-level 
target) + (particle-level - 
detector-level)2
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1. Unfolding as a classification task


2. Optimizing reco-level observables 


with ML


3. Fast regularized neural posterior 


estimation with normalizing flows


4. (Bonus) Enabling profiling with ML

Outline
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Neural Posterior Unfolding
Fast regularized neural posterior estimation with NFs

• Motivations


• Bayesian:  access to full posterior


• Circumvent MCMC for sampling to fit parameters via amortized ML: directly 
learn  from prior pairs that are passed through 


• Normalizing Flows (NFs) as the density estimator is inherently regularized 
through model selection (i.e. the validation loss)


• Still sensible in phase space poorly constrained by data (i.e. response matrix 
with degeneracy)

Pr(tj |mi) R

Fully Bayesian Unfolding: 

1201.4612
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https://www.arxiv.org/pdf/1201.4612
https://arxiv.org/abs/1712.01814


Neural Posterior Unfolding
Fast regularized neural posterior estimation with NFs

Correlation coefficient = 1 
Small migration

Correlation coefficient = 0 
Response degenerate 
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Neural Posterior Unfolding
Fast regularized neural posterior estimation with NFs
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Neural Posterior Unfolding
Fast regularized neural posterior estimation with NFs

IBU result 
overlaid in blue
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Neural Posterior Unfolding
Fast regularized neural posterior estimation with NFs

IBU result 
overlaid in blue

10-dim Gaussian 
example works well !
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Neural Posterior Unfolding
Fast regularized neural posterior estimation with NFs

IBU result 
overlaid in blue
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Neural Posterior Unfolding
Fast regularized neural posterior estimation with NFs

IBU result 
overlaid in blue

Also good for jet 
substructure observables!
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Thanks!
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