Unfolded Measurements With H1 using MultiFold

Fernando Torales Acosta Benjamin Nachman

on behalf of the H1 Collaboration

1

Fernando TA

H1 at HERA

- H1 Detector at the positron-proton collider, HERA. Hosted in Hamburg Germany
- Major goal was to study internal structure of the proton through deep inelastic scattering

$$e(k) + q(p_1) \to e'(k_\ell) + jet(k_J) + X$$

Quick Overview

- Lots of discussion on unfolding multidifferential cross sections
 - A bit more!
- Let's also look at a previously inaccessible observable
 - Moments requiring Un-binned unfolding

H1 Data

- Same data / selection / unfolding as arXiv:2108.12376
 - "Measurement of lepton-jet correlation in deep-inelastic scattering with the H1 detector using machine learning for unfolding"

Fernando TA

OmniFold

2 step iterative approach

- 1. Events from detector level sim. are reweighted to match the data
- 2. Create a "new simulation"by transforming weights to a proper function of the generated events

Classifiers used to approximate **2** likelihood functions:

- 1. reco MC to Data reweighting
- 2. **Previous** and **new Gen** reweighting

Uncertainties

Systematic uncertainties

- HFS energy scale: +- 1%
- HFS azimuthal angle: +- 20 mrad
- Lepton energy: +- 0.5% (mainly affects Q²)
- Lepton azimuthal angle: +- 1 mrad (mainly affects Q²)
- Model uncertainty: differences in unfolded results between Djangoh and Rapgap
- **QED uncertainty**: Use the variation of measured quantities when radiation is turned off in the simulation

Statistical Uncertainty

- Bootstrapping
- Each event is given an new initial weight
- ~100 bootstraps
- Repeat entire unfolding process

H1 Differential Cross sections

٦

C

) of $p_{\mathrm{T}}^{\mathrm{jet}}$, η^{jet} ,

ables: t/Q

7

Lepton Jet Asymmetry

- Total transverse momentum of the outgoing system $\vec{q}_{\perp} = \vec{k}_{\ell \perp} + \vec{k}_{J \perp}$, is typically *small* but *nonzero*
- Imbalance can come from perturbative initial and final state radiation
 - e.g. Emission of soft gluon with momentum $k_{\perp g}$
 - unrelated to TMDs or intrinsic transverse momentum of target gluons
- Depending on kinematics, soft gluon radiation can dominate
 - Radiative corrections enhanced approximately as $(\alpha_s \ln^2 P_{\perp}^2/q_{\perp}^2)^n$

 $e(k) + q(p_1) \rightarrow e'(k_\ell) + jet(k_J) + X$

Lepton Jet Asymmetry

Key Ingredients:

• q_{\perp} = *Total* transverse momentum

$$\vec{q}_{\perp} = \vec{k}_{\ell \perp} + \vec{k}_{J \perp}$$

$$\overrightarrow{P_{\perp}} = (\vec{k}_{\ell \perp} - \vec{k}_{J \perp}) \; / \; 2$$

• P_{\perp} = Transverse momentum d*ifference*

$$\phi = \operatorname{acos}[(\vec{q}_{\perp} \cdot \overrightarrow{P_{\perp}}) / \vec{q}_{\perp} \quad \overrightarrow{P_{\perp}}]$$

• ϕ = Angle between q_{\perp} and P_{\perp}

Final Observable: $\langle \cos(n\phi) \rangle$ for n = 1, 2, 3

Multifold used to unfold: $p_x^e, p_y^e, p_z^e, p_T^{jet}, \eta^{jet}, \phi^{jet}, \Delta \phi^{jet}, q_T^{jet}/Q$

Momentum conservation:

 $ec{q}_{\perp} = -\sum_{i}^{soft}ec{k}_{i\perp}$

Motivation

- 1. Probes soft gluon radiation S(g)
 - Soft gluon radiation can be the primary contribution to asymmetry
 - <u>10.1103/PhysRevD.104.054037</u>
- 2. Asymmetry is perturbative
 - Opportunity to compare to unfolded H1 data
- 3. May represent a vital reference for other signals, in particular TMD PDF measurements
 - Factorize contributions TMD PDFs and Soft gluon radiation
- 4. Observable is sensitive to gluon saturation phenomena, possibly measurable at the EIC
 - <u>10.1103/PhysRevLett.130.151902</u>

Putting it Together

$$\phi = \operatorname{acos}[(\vec{q}_{\perp} \cdot \overrightarrow{P_{\perp}}) / \vec{q}_{\perp} \quad \overrightarrow{P_{\perp}}]$$

- 1. Obtain the azimuthal asymmetry angle, ϕ , in each event
- 2. Obtain unfolding event weight from MultiFold Step 2, ω_i , for each event, i

Calculate $\langle \cos(n\phi) \rangle$ for n = 1, 2, 3

Report in bins of
$$\;ec{q_{ot}}\;$$
 GeV/c

$$\frac{\sum_{i} \omega_{i} \cos(n\phi_{i})}{\sum_{i} \omega_{i}} \text{ for } n = 1, 2, 3$$

EIC Calculation @ HERA kinematics

Plots above are for R = 0.4. Calculation done for this measurement w/ R = 1.0, Very good example of observable from 'legacy' dataset influencing future colliders Harmonics of saturation with the inputs <u>GBW</u> model and a TMD calculation CT18A PDF

```
Fernando TA
```

Moments of Asymmetry Results

- Three harmonics of the azimuthal angular asymmetry between the lepton and leading jet as a function of q_{\perp} .
- Predictions from multiple simulations as well as a pQCD calculation are shown for comparison.
- Measurement indicates calculation may break down near $q_\perp \approx 3~{\rm GeV}$

Conclusions

- Promising measurement to probe soft gluon radiation
 - Important reference for lepton-jet DIS measurements!
 - Comparisons with pQCD calculations, and 3 generators
 - Theory has qualitatively similar shape, but *underestimates contribution*
 - May point to larger non-perturbative contributions to this observable
- MultiFold
 - This work presents a measurement of *moments*, requiring the *un-binned unfolding!*

• H1is a great example of exciting measurements using legacy datasets

- First multidimensional un-binned unfolding using OmniFold
- Novel observable with important implication for EIC
- Simultaneous unfolding for Jet Substructure

https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.128.132002 https://doi.org/10.1016/j.physletb.2023.138101

END

Backup

Jet Angularities

Use jet observables to study different properties of QCD physics:

- Infrared and collinear (IRC) safe λ_{a}^{1} , a = [0,0.5,1] and unsafe $\mathbf{p}_{T}\mathbf{D}$ angularities
- Charge dependent observables:
 Q_i and N_c
- Study the evolution of the observables with energy scale
 Q² = -q²

$$\lambda_{\beta}^{\kappa} = \sum_{i \in \text{jet}} z_{i}^{\kappa} \left(\frac{R_{i}}{R_{0}}\right)^{\beta}$$

e'

Multi-Differential H1 Jet Substructure

• Q^2 distribution simultaneously unfolds, displaying the energy scale dependence of observables, and yielding 30 unfolded distributions!

Fernando TA

Moments of jet substructure

- Mean value of distributions also unfolded for free!
- Better agreement w/ generators at higher Q^2

Fernando TA

H1 Unfolded Data + MC

- Leading moment is $\langle \cos(\phi) \rangle$, expected in lepton-jet events
- All harmonics approach 0.0 at higher q_{\perp} , may compromise $P_{\perp} \gg q_{\perp}$
- Rapgap and Django, tuned to HERA II, good agreement
- Breakdown of systemics next slide

Investigation of Model Bias vs. q_{\perp} [GeV]

- Leading uncertainty is model bias in the unfolding for $\cos(2\phi)$ and $\cos(3\phi)$
- Difference in the result when unfolding using RAPGAP and DJANGO
- Reporting Abs. Errors; central values are very close to 0.0
- The Total Uncertainty is quite stable between harmonics

Systematic Uncertainties

- Model Dependance:
 - The bias of the unfolding procedure is determined by taking the difference in the result when unfolding using RAPGAP and DJANGO
 - The two generators have different underlying physics, thus providing a realistic evaluation of the procedure bias
- QED Radiation Corrections
 - Difference of correction between RAPGAP and DJANGO
 - Take RAPGAP with and without QED corrections
 - Take DJANGO with and without QED corrections
- Systematic uncertainties are determined by varying an aspect of the simulation and repeating the unfolding
 - These values detail the magnitude of variation:
 - HFS-object energy scale: $\pm 1~\%$
 - HFS-object azimuthal angle: ± 20 mrad
 - Scattered lepton azimuthal: ±1 mrad
 - Scattered lepton energy: $\pm 0.5 1.0\,\%$

Further Background

- Machine learning (OmniFold) is used to perform an 8-dimensional, unbinned unfolding. Present four, binned results:
- Use the 8-dimensional result to explore the Q^2 dependence and any other observables that can be computed from the electron-jet kinematics

Extracted from the same phase-space as Yao's analysis, but reporting a different observable

Lornando	

OmniFold

1.
$$\omega_n(m) = \nu_{n-1}^{\text{push}}(m) L[(1, \text{Data}), (\nu_{n-1}^{\text{push}}, \text{Sim.})](m)$$

 $\omega_n^{\text{pull}}(t) = \omega_n(m)$

- Detector level simulation is weighted to match the data
- $L[(1, \text{Data}), (\nu_{n-1}^{\text{push}}, \text{Sim.})](m)$ approximated by classifier trained to distinguish the *Data* and *Sim*.

2.
$$\nu_n(t) = \nu_0(t) L[(\omega_n^{\text{pull}}, \text{Gen.}), (\nu_0, \text{Gen.})](t)$$

- Transform weights to a proper function of the generated events to create a new simulation
- $L[(\omega_n^{\text{pull}}, \text{Gen.}), (\nu_{n-1}, \text{Gen.})](t)$ approximated by classifier trained to distinguish Gen. with *pulled* weights from Gen. using weights_{old} / weights_{new}

Each iteration of step 2 learns the correction from the original ν_0 weights Advantage: Easier implementation, no need to store previous ν_n model Disadvantage: Learning correction from ν_0 is more computationally expensive

IBU Generalization

 $t_{j}^{(n)} = \sum_{i} \Pr_{n-1}(\text{truth is } j | \text{measure } i) \Pr(\text{measure } i)$ $= \sum_{i} \frac{R_{ij} t_{j}^{(n-1)}}{\sum_{k} R_{ik} t_{k}^{(n-1)}} \times m_{i},$

$$L[(w,X),(w',X')](x) = \frac{p_{(w,X)}(x)}{p_{(w',X')}(x)},$$

Differential Cross Section

Back-to-back electron-jet production from ep collision,

$$e(l) + p(P) \rightarrow e(l') + J_q(p_J) + X$$

Note: slightly different angle definition, but background still applies]

Credit: Fanyi Zhao

Fernando TA