Unfolded Measurements With H1 using MultiFold

Fernando Torales Acosta Benjamin Nachman

on behalf of the H1 Collaboration

1

Fernando TA Fernando TA 6/13/24 6/13/24

H1 at HERA

- **• H1 Detector at the positron-proton collider, HERA. Hosted in Hamburg Germany**
- **• Major goal was to study internal structure of the proton through deep inelastic scattering**

$$
e(k) + q(p_1) \rightarrow e'(k_{\ell}) + jet(k_J) + X
$$

Quick Overview

- Lots of discussion on unfolding multidifferential cross sections
	- A bit more!
- Let's also look at a previously inaccessible observable
	- Moments requiring Un-binned unfolding

H1 Data

- Same data / selection / unfolding as [arXiv:2108.12376](https://arxiv.org/abs/2108.12376)
F "Measurement of lepton-jet correlation in deep-inelastic scattering with the H1
	- detector using machine learning for unfolding"

OmniFold

2 step iterative approach

- 1. Events from detector level sim. are reweighted to match the data
- 2. Create a "new simulation" by transforming weights to a proper function of the generated events

Classifiers used to approximate **2** likelihood functions:

- 1. reco MC to Data reweighting
- 2. **Previous** and **new Gen** reweighting

Uncertainties

Systematic uncertainties

- **HFS energy scale:** $+-1\%$
- **• HFS azimuthal angle:** +- 20 mrad
- Lepton energy: $+-0.5%$ (mainly affects Q²)
- Lepton azimuthal angle: +- 1 mrad (mainly affects Q²)
- **• Model uncertainty:** differences in unfolded results between Djangoh and Rapgap
- **QED uncertainty**: Use the variation of measured quantities when radiation is turned off in the simulation

Statistical Uncertainty

- **• Bootstrapping**
- **•** Each event is given an new initial weight
- ~100 bootstraps
- **•** Repeat entire unfolding process

6

H1 Differential Cross sections ATIAL Cross sections

Fernando TA Fernando TA 6/13/24 6/13/24

and jet momentum balance

^y , *p^e*

 m (lepton-jet azimuthal and Δ

angle correlation (Δ jet) (lower right). Predictions obtained with Δ

the PQCD (corrected by hadronization effects, "NP") are shown

momentum (top left) and jet pseudorapidity (top right), lepton-jet pseudorapidity (top right), lepton-jet pseudorapidity (top right), lepton-jet pseudorapidity (top right), lepton-jet pseudorapidity (top right), lepton-jet

e simultaneous unforces under the ables: $\frac{t}{Q}$ $\overline{10}$

Lepton Jet Asymmetry

- Total transverse momentum of the outgoing system $\vec{q}_{\perp} = \vec{k}_{\ell \perp} + \vec{k}_{J \perp}$, is typically *small* but *nonzero* ⃗
- Imbalance can come from perturbative initial and final state radiation
	- **−** e.g. Emission of soft gluon with momentum $k_{\perp g}$
	- unrelated to TMDs or intrinsic transverse momentum of target gluons
- Depending on kinematics, soft gluon radiation can dominate
	- Radiative corrections enhanced approximately as $(\alpha_s \ln^2 P_{\perp}^2/q_{\perp}^2)^n$

 $e(k) + q(p_1) \rightarrow e'(k_{\ell}) + jet(k_{J}) + X$

Lepton Jet Asymmetry

Key Ingredients:

• ⁼ *Total* **transverse** *q*⊥ **momentum**

$$
\vec{q}_{\perp} = \vec{k}_{e\perp} + \vec{k}_{J\perp}
$$

$$
\overrightarrow{P_{\perp}} = (\vec{k}_{\ell\perp} - \vec{k}_{J\perp}) / 2
$$

• ⁼ Transverse *P*⊥ **momentum d***ifference*

$$
\phi = \text{acos}[(\vec{q}_{\perp} \cdot \overrightarrow{P_{\perp}}) / \vec{q}_{\perp} \overrightarrow{P_{\perp}}]
$$

•
$$
\phi
$$
 = Angle between q_{\perp} and P_{\perp}

Final Observable: $\langle \cos(n\phi) \rangle$ for n = 1, 2, 3

 p_x^e , p_y^e , p_z^e , p_T^jet , η^jet , ϕ^jet , $\Delta\phi^\text{jet}$, q_T^jet / Q p_2, p_3, p_4, p_5, p_7

Momentum conservation:
 $\vec{q}_{\perp} = -\sum_{i}^{soft} \vec{k}_{i\perp}$

Motivation

- 1. Probes soft gluon radiation *S*(*g*)
	- Soft gluon radiation can be the primary contribution to asymmetry
	- [10.1103/PhysRevD.104.054037](https://doi.org/10.1103/PhysRevD.104.05403)
- 2. Asymmetry is perturbative
	- Opportunity to compare to unfolded H1 data
- 3. May represent a vital reference for other signals, in particular TMD PDF measurements
	- Factorize contributions TMD PDFs and Soft gluon radiation
- 4. Observable is sensitive to gluon saturation phenomena, possibly measurable at the EIC
	- [10.1103/PhysRevLett.130.151902](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.151902)

Putting it Together

$$
\phi = \text{acos}[(\vec{q}_{\perp} \cdot \overrightarrow{P_{\perp}}) / \vec{q}_{\perp} \overrightarrow{P_{\perp}}]
$$

- 1. Obtain the azimuthal asymmetry angle, $\boldsymbol{\phi}$, in each event
- 2. Obtain unfolding event weight from MultiFold Step 2, ω_i , for each event, *i*

Calculate $\langle \cos(n\phi) \rangle$ for n = 1, 2, 3

Report in bins of
$$
\overrightarrow{q}_{\perp}
$$
 GeV/c

$$
\frac{\sum_{i} \omega_i \cos(n\phi_i)}{\sum_{i} \omega_i}
$$
 for $n = 1, 2, 3$

EIC Calculation @ HERA kinematics

Harmonics of saturation with the inputs [GBW](https://arxiv.org/pdf/hep-ph/9807513.pdf) model and a TMD calculation CT18A PDF Plots above are for R = 0.4. Calculation done for this measurement w/ R = 1.0, Very good example of observable from 'legacy' dataset influencing future colliders

Moments of Asymmetry Results

- **• Three harmonics of the azimuthal angular asymmetry between the lepton** and leading jet as a function of q_\perp .
- **• Predictions from multiple simulations as well as ^a pQCD calculation are shown for comparison.**
- **• Measurement indicates calculation may break down near GeV** *q*[⊥] ≈ 3

Conclusions

- Promising measurement to probe soft gluon radiation
	- Important reference for lepton-jet DIS measurements!
	- Comparisons with pQCD calculations, and 3 generators
	- Theory has qualitatively similar shape, but *underestimates contribution*
	- May point to larger non-perturbative contributions to this observable
- MultiFold
	- This work presents a measurement of *moments*, requiring the *un-binned unfolding!*

• H1is a great example of exciting measurements using legacy datasets

- First multidimensional un-binned unfolding using OmniFold
- Novel observable with important implication for EIC
- Simultaneous unfolding for Jet Substructure

<https://doi.org/10.1016/j.physletb.2023.138101> https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.128.132002

END

Backup

Jet Angularities

Use jet observables to study different properties of QCD physics:

- Infrared and collinear (IRC) safe $\lambda^1_{a'}$ a = [0,0.5,1] and unsafe $\bm{p_T}\bm{D}$ angularities
- Charge dependent observables: $\mathbf{Q}_{\mathbf{j}}$ and $\mathbf{N}_{\mathbf{c}}$
- Study the evolution of the observables with energy scale $Q^2 = -q^2$

$$
\lambda_{\beta}^{\kappa}=\sum_{i\in\text{jet}}z_{i}^{\kappa}\left(\frac{R_{i}}{R_{0}}\right)^{\beta}
$$

 e^{\prime}

Multi-Differential H1 Jet Substructure

• Q^2 distribution simultaneously unfolds, displaying the energy scale dependance of observables, and yielding 30 unfolded distributions!

Fernando TA Fernando TA 6/13/24 6/13/24

Moments of jet substructure Mean value of all distributions also unfolded for free

- Mean value of distributions also unfolded for free!
- Better agreement w/ generators at higher *Q*²

H1 Unfolded Data + MC

- Leading moment is $\langle \; \cos(\phi) \; \rangle$, expected in lepton-jet events
- All harmonics approach 0.0 at higher q_\perp , *may* compromise $P_\perp \gg q_\perp$
- Rapgap and Django, tuned to HERA II, good agreement
- Breakdown of systemics next slide

Investigation of Model Bias vs. *q*[⊥] [GeV]

- Leading uncertainty is model bias in the unfolding for $\cos(2\phi)$ and $\cos(3\phi)$
- Difference in the result when unfolding using RAPGAP and DJANGO
- Reporting Abs. Errors; central values are very close to 0.0
- The Total Uncertainty is quite stable between harmonics

Systematic Uncertainties

- Model Dependance:
	- The bias of the unfolding procedure is determined by taking the difference in the result when unfolding using RAPGAP and DJANGO
	- The two generators have different underlying physics, thus providing a realistic evaluation of the procedure bias
- QED Radiation Corrections
	- Difference of correction between RAPGAP and DJANGO
	- Take RAPGAP with and without QED corrections
	- Take DJANGO with and without QED corrections
- Systematic uncertainties are determined by varying an aspect of the simulation and repeating the unfolding
	- These values detail the magnitude of variation:
	- HFS-object energy scale: ± 1 $\%$
	- HFS-object azimuthal angle: ± 20 mrad
	- Scattered lepton azimuthal: ± 1 mrad
	- Scattered lepton energy: $\pm 0.5 1.0\,\%$

Further Background

- Machine learning (OmniFold) is used to perform an 8-dimensional, unbinned unfolding. Present four, binned results:
- Use the 8-dimensional result to explore the Q^2 dependence and any other observables that can be computed from the electron-jet kinematics

Extracted from the same phase-space as Yao's analysis, but reporting a different observable

OmniFold

1.
$$
\omega_n(m) = \nu_{n-1}^{\text{push}}(m) L[(1, \text{Data}), (\nu_{n-1}^{\text{push}}, \text{Sim.})](m)
$$

$$
\omega_n^{\text{pull}}(t) = \omega_n(m)
$$

- Detector level simulation is weighted to match the data
- $L[(1,Data), (\nu_{n-1}^{push}, Sim.)](m)$ approximated by classifier trained to distinguish the *Data* and *Sim*.

2.
$$
\nu_n(t) = \nu_0(t)L[(\omega_n^{\text{pull}}, \text{Gen.}), (\nu_0, \text{Gen.})](t)
$$

- Transform weights to a proper function of the generated events to create a new simulation
- $L[(\omega_n^{\text{pull}}, \text{Gen.}), (\nu_{n-1}, \text{Gen.})](t)$ approximated by classifier trained to distinguish Gen. with *pulled* weights from Gen. using weights $_{old}$ / weights_{new}

Each iteration of step 2 learns the correction from the original ν_0 weights Advantage: Easier implementation, no need to store previous ν_n model **Disadvantage: Learning correction from** ν_0 is more computationally expensive

IBU Generalization

$$
t_j^{(n)} = \sum_i \Pr_{n-1}(\text{truth is } j | \text{measure } i) \Pr(\text{measure } i)
$$

$$
= \sum_i \frac{R_{ij} t_j^{(n-1)}}{\sum_k R_{ik} t_k^{(n-1)}} \times m_i,
$$

$$
L[(w, X), (w', X')] (x) = \frac{p_{(w, X)}(x)}{p_{(w', X')}(x)},
$$

Differential Cross Section

• Back-to-back electron-jet production from ep collision,

$$
e(l) + p(P) \rightarrow e(l') + J_q(p_J) + X
$$

$$
\frac{d\sigma}{d^2 p_T dy_J d\phi_J d^2 q_T} = \frac{d\sigma}{2\pi d^2 p_T dy_J q_T dq_T} \left[1 + 2 \sum_{n=1}^{\infty} v_n (p_T, y_T) \cos(n(\phi_q - \phi_J)) \right]
$$
\n
$$
q_T
$$
: transverse momentum imbalance\n
$$
q_T = l'_T + p_{JT}
$$
\n
$$
p_T
$$
: jet transverse momentum\n
$$
y_J
$$
: jet rapidity

Note: slightly different angle definition, but background still applies]

Credit: Fanyi Zhao

 q_T :

Fernando TA Fernando TA 6/13/24 6/13/24