ym minour opuoor

France-Berkeley P Unfolding Wo

	Convolution	Max-Pool
Jet Image		

Benjamin Nachman

Lawrence Berkeley National Laboratory

bpnachman.com bpnachman@lbl.gov

ws for an image-

June 2024

Methods!

	TUnfold, SVD, IBU, QUnfold, NPU, .	Pick-your-favorite profile	OmniFold, cINN, VLD, cDDPM,		
	TUnfold	Combine			
Method	Least square minimisation	Maximum likelihood			
Speed	Linear algebra –> very fast	Numerical minimisation with Minuit and complex fit with nuisance parameters -> much slower	Not fast		
Number of unfolded bins	Up to very large numbers	Complexity of the fit increases with the number of bins	Unbinned!		
Regularisation	Possible Possible				
Background	Simple subtraction	Can do simultaneous binwise signal + background fit	Choose your own adventure Repeat		
Systematic uncertainties	Vary externally and repeat unfolding	Simultaneous fit of nuisance parameters and profiling them			
Ideal application	High statistics, low background, precision analyses, e.g., inclusive jets, ttbar production	Anything, except cases with very large numbers of unfolded events			

2

Credits: O. Behnke, P. Gras, G. Kasieczka

lzürich

Alessandro Tarabini

+innovations still incoming (like moment unfolding, response matrix smoothing, posterior response, ...) (see papers on new unfolding methods just this year!)

Try them out!

3

STXS bins

60 120 200

ĒĒ

ž ž

Analysis categories

See them in action!

DESY 21-130, ISSN 0418-9833

2023

May

 ∞

[hep-ex]

arXiv:2303.13620v2

Measurement of lepton-jet correlation in deep-inelastic scattering with the H1 detector using machine learning for unfolding

2022

Apr

_

[hep-ex]

arXiv:2108.12376v2

V. Andreev, ²³ M. Arratia, ³⁵ A. Baghdasaryan, ⁴⁶ A. Baty, ¹⁶ K. Begzsuren, ³⁹ A. Belousov, ²³, ^{*} A. Bolz, ¹⁴ V. Boudry, ³¹ G. Brandt, ¹³ D. Britzger, ²⁶ A. Buniatyan, ⁶ L. Bystritskaya, ²² A.J. Campbell, ¹⁴ K.B. Cantun Avila, ⁴⁷ K. Cerny,²⁸ V. Chekelian,²⁶ Z. Chen,³⁷ J.G. Contreras,⁴⁷ L. Cunqueiro Mendez,²⁷ J. Cvach,³³ J.B. Dainton,¹⁵ K. Daum,⁴⁵ A. Deshpande,³⁸ C. Diaconu,²¹ G. Eckerlin,¹⁴ S. Egli,⁴³ E. Elsen,¹⁴ L. Favart,⁴ A. Fedotov,²² J. Feltesser,¹² M. Fleischer,¹⁴ A. Formenko,²³ C. Gal,³⁸ J. Gayler,¹⁴ L. Goerlich,¹⁷ N. Gogitidze,²³ M. Gouzevitch,⁴² C. Grab,⁴⁹ T. Greenshaw,¹⁹ G. Grindhammer,³⁶ D. Haidt,¹⁴ R.C.W. Henderson,¹⁸ J. Hessler,²⁶ J. Hladký,³³ D. Hoffmann,²¹ R. Horisberger,⁴³ T. Hreus,⁵⁰ F. Huber,¹⁵ P.M. Jacobs,⁵ M. Jacquet,²⁹ T. Janssen,⁴ A.W. Jung,⁴⁴ H. Jung,¹⁴ M. Kapichine,¹⁰ J. Katzy,¹⁴ C. Kiesling,²⁶ M. Klein,¹⁹ C. Kleinvort,¹⁴ H.T. Klest,³⁸ R. Kogler,¹⁴ P. Kostka,¹⁹ J. Kretzschmar,¹⁹ D. Krücker,¹⁴ K. Krüger,¹⁴ M.P.J. Landon,²⁰ W. Lange,⁴⁸ P. Laycock,⁴¹ S.H. Lee,³ S. Levonian,¹⁴ W. Li,¹⁶ J. Lin,¹⁶ K. Lipka,¹⁴ B. List,¹⁴ J. List,¹⁴ B. Lobodzinski,²⁶ E. Malinovski,²³ H.-U. Martyn,¹ S.J. Maxfield,¹⁹ A. Mehta,¹⁹ A.B. Meyer,¹⁴ J. Meyer,¹⁴ S. Mikocki,¹⁷ M.M. Mondal,³⁸ A. Morozov,¹⁰ K. Müller,⁵⁰ B. Nachman,⁵ Th. Naumann,⁴⁸ P.R. Newman,⁶ C. Niebuhr,¹⁴ G. Nowak,¹⁷ J.E. Olsson,¹⁴ D. Ozerov, ⁴³ S. Park, ³⁸ C. Pascaud, ²⁹ G.D. Patel, ¹⁹ E. Perez, ¹¹ A. Petrukhin, ⁴² I. Picuric, ³² D. Pitzl, ¹⁴ R. Polifka, ³⁴ S. Preins, ³⁵ V. Radescu, ³⁰ N. Raicevic, ³² T. Ravdandorj, ³⁹ P. Reimer, ³³ E. Rizvi, ²⁰ P. Robmann, ⁵⁰ R. Pointsa, * S. Preins, ** V. Radescu, ** N. Raucevic, ** I. Ravdanoof, ** P. Reimer, ** E. Ruzvi, ** P. Rooman, * R. Roosen, ⁴ A. Rostovtsev, ²⁵ M. Rotaru, ⁷ D.P.C. Sankey, ⁶ M. Sauter, ¹⁶ E. Sauvan, ^{21,2} S. Schmitt, ¹⁴ B.A. Schmookler, ³⁸ L. Schoeffel, ¹² A. Schöning, ¹⁵ F. Sefkow, ¹⁴ S. Shushkevich, ²⁴ Y. Soloviev, ²³ P. Sopick, ¹⁷ D. South, ¹⁴ V. Spaskov, ¹⁰ A. Specka, ³¹ M. Steder, ¹⁴ B. Stella, ³⁶ U. Straumann, ⁵⁰ C. Sun, ³⁷ T. Sykora, ³⁴ P.D. Thompson, ⁶ D. Traynor, ²⁰ B. Tseepeldorj, ³⁰ A. Z. Tu, ⁴¹ A. Valkárová, ³⁴ C. Valké, ²¹ P. Van Mechelen, ⁴ D. Wegener, ⁹ E. Wünsch, ¹⁴ J. Žáček, ³⁴ J. Zhang, ³⁷ Z. Zhang, ²⁹ R. Žlebčík, ³⁴ H. Zohrabyan, ⁴⁶ and F. Zomer²⁹ (The H1 Collaboration) ¹I. Physikalisches Institut der RWTH, Aachen, Germany ² LAPP, Université de Savoie, CNRS/IN2P3, Annecy-le-Vieux, France ³ Universitý of Michigan, Ann Arbor, MI 48109, USA^{f1} EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN) 7 Horia Hulub CERN-EP-2022-161 LHCD LHCb-PAPER-2022-013 August 25, 2022 Multidifferential study of identified 2022 charged hadron distributions in ^{24}Lo Z-tagged jets in proton-proton 24 Aug collisions at $\sqrt{s} = 13$ TeV -ex] [hep-Abstract arXiv:2208.11691v1 Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a Zboson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum $20 < p_{\rm T} < 100$ GeV and in the pseudorapidity range $2.5 < \eta < 4$. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb⁻¹. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse mo entum, and iet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light Submitted to Phys. Rev. D Letter © 2022 CERN for the benefit of the LHCb collaboration. CC BY 4.0 licence

+CMS open data study

Unbinned Deep Learning Jet Substructure Measurement in High $Q^2 ep$ collisions at HERA

 V. Andreev⁴⁴, M. Arratia²⁹, A. Baghdasaryan⁴⁰, A. Baty¹⁶, K. Begzsuren³⁴, A. Bolz¹⁴, V. Boudry²⁵, G. Brandt¹³,
D. Britzger²², A. Buniatyan⁷, L. Bystritskaya⁴⁴, A.J. Campbell¹⁴, K.B. Cantun Avila⁴¹, K. Cerny²³, V. Chekelian²²
Z. Chen³¹, J.G. Contreras⁴¹, J. Cvach²⁷, J.B. Dainton¹⁹, K. Daum³⁹, A. Deshpande^{33,36}, C. Diaconu²¹, A. Drees³³ Chen^{4,1}, J.G. Contreras^{4,4}, J. Kvach^{4,1}, J.B. Danton^{4,7}, K. Daum^{4,7}, A. Deshpande^{4,5,4}, C. DiaCouv^{4,4}, A. Drees^{4,7}, G. Eckerlin^{14,4}, S. Eglis⁷, E. Elsen¹⁴, L. Favari⁴, A. Fonenko⁴⁴, C. Gal³³, J. Gayler¹⁴, L. Goerlich¹⁷, N. Gogitidze^{14,4}, M. Gouzevitch⁴⁴, C. Grab⁵², T. Greenshaw¹⁹, G. Grindhammer²², D. Haidt¹⁴, R.C.W. Henderson¹⁸, J. Hessler²³, J. Hadsk⁵⁷, D. Hoffmann¹¹, R. Horisberger^{7,7}, T. Hreus⁶, F. Huber¹⁵, PM. Jacobs⁵, M. Jacque⁴⁴, T. Janssen⁴, A. W. Jung⁸³, N. Katzy¹⁴, C. Kiesling²⁷, M. Klein¹⁵, C. Kleinvort¹⁴, H.T. Klest³³, R. Kogler¹⁴, P. Kostka¹⁹, J. Kretzschmar¹⁵, D. Krücker¹⁴, K. Krüger¹⁴, M.P.J. Landon³⁰, W. Lange¹⁴, M. Kutz¹⁴, C. Kleinvort¹⁴, M. P.J. Landon³⁰, W. Lange¹⁴, K. Krüst¹⁴, K. Krüger¹⁴, M.P.J. Landon³⁰, W. Lange¹⁴, K. Krüst¹⁴, K. P. Laycock⁵⁰, S.H. Lee², S. Levonian¹⁴, W. Li¹⁶, J. Lin¹⁶, K. Lipka¹⁴, B. Lis¹⁴, J. List¹⁴, B. Lobodzinsk²⁷, O.R. Long²⁹, E. Malinovski⁴⁴, H.-U. Martyn¹, S.J. Maxfield¹⁹, A. Mehta¹⁹, A.B. Meyer¹⁴, J. Meyer¹⁴, S. Mikocki¹⁷ V.M. Mikuni⁵, M.M. Mondal³³, K. Müller⁴³, B. Nachman⁵, Th. Naumann¹⁴, P.R. Newman⁷, C. Niebuhr¹⁴, G. Nowak¹⁷, J.E. Olsson¹⁴, D. Ozerov⁴⁴, S. Park³³, C. Pascaud²⁴, G.D. Patel¹⁹, E. Perez¹¹, A. Petrukhin³² I. Picuric²⁶, D. Pitzl¹⁴, R. Polifka²⁸, S. Preins²⁹, V. Radescu¹⁵, N. Raicevic²⁶, T. Ravdandorj³⁴, P. Reimer² Picuric", D. Pitzl", K. Politka", S. Preins", V. Radescu", N. Raicevic", I. Ravdandor", P. Keimer",
E. Rizvi"0, P. Robman"3, R. Roseri, A. Rostovitsev⁴, M. Rotaru", D. P.C. Sankey⁶, M. Sauter¹⁵, E. Sauvan^{11,3},
S. Schmitt¹⁴, B.A. Schmookler³³, G. Schnell⁶, L. Schoeffel¹², A. Schöning¹⁵, F. Sefkow¹⁴, S. Shushkevich²²,
Y. Soloviev⁴⁴, P. Sopicki¹⁷, D. South¹⁴, A. Specka²³, M. Steder¹⁴, B. Stella³⁰, U. Stramanan⁴⁰, C. Suus³¹, T. Sykora²³
P. Thompson⁷, F. Torales Acosta², D. Traynor²⁰, B. Steepeldorj^{14,33}, Z. Tu¹⁶, G. Tustin³¹, A. Valkárová²³,
C. Vallée²¹, P. Van Mechelen⁴, D. Wegenet¹⁰, E. Wünsch¹⁴, J. Záček²⁸, J. Zhang²¹, Z. Zhang²⁴, R. Žlebčík²⁸, H. Zohrabyan40, F. Zomer24 ¹I. Physikalisches Institut der RWTH, Aachen, Germany ²University of Michigan, Ann Arbor, MI 48109, USA ⁴ ⁴LaPP, Université de Swoic, CNRS/DP2, Annen-Ce-Vesta, France ⁴Inter-University Institute for High Exergise ULB-VUB, Brassels and Universitiet Antwerpen, Antwerp, Belgium ^b ⁵Lawrence Berkeley National Laboratory, Berkeley, C. CA 94720, USA ⁴ ⁶Department of Physics, University of the Bacque Country UPV/EHU, 48080 Bibloo, Spain ⁷School Of Physics and Antonomy, University of Birningham, United Kingdom⁴ ⁸Horta Hulabel National Institute for R60 in Physics and Nuclear Engineering (IFN-HII), Bucharest, Romania ^d ⁹Horta Hulabel National Aneliota Laborators, Didot, Octabilite, United Kingdom⁴ Measurement of CollinearDrop jet mass and its correla SoftDrop groomed jet substructure observables in \sqrt{s} = collisions by STAR 2023 Jul YOUQI SONG (WRIGHT LABORATORY, YALE UNIVERSITY) 100 on behalf of the STAR Collaboration -ex] [nuc] .Iet substructure variables aim to reveal details of the parton fragm adronization processes that create a jet. By removing collinear radiation wh ing the soft radiation components, one can construct CollinearDrop jet observe have enhanced sensitivity to the soft phase space within jets. We present a Co arXiv:2307.07718v2 jet measurement, corrected for detector effects with a machine learning me Fold, and its correlation with groomed jet observables, in pp collisions at $\sqrt{3}$ at STAR. We demonstrate that the population of jets with a large noncontribution can be significantly enhanced by selecting on higher CollinearD fractions. In addition, we observe an anti-correlation between the amount and the angular scale of the first hard splitting of the jet.

PRESENTED AT

DIS2023: XXX International Workshop on Deep-Inelastic Scattering and Related Subjects, Michigan State University, USA, 27-31 March 2023

New last week!

		EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)					
	AT Subr	RIMENT nitted to: Phys.	Rev. Lett.		CERN	LEP-2024-132 May 31, 2024	
	30 May 2024	A simultaneous unbinned differential cross section measurement of twenty-four Z+jets kinematic observables with the ATLAS detector					
	ep-ex]		The AT	LAS Collaborati	on	- 1	
	[h	Z boson events to a diverse ran	at the Large Hadron Col age of OCD phenomena	llider can be selected v . As a result, these ev	with high purity and are vents are often used to p	sensitive probe the	
July 10, 2022		nature of Standa	Available on the CER	N CDS information	server	CMS PAS SMP-23-	008
tion with		cross s OMNIF using 1 Unlike unbinn	CMS	Physics	Analysis	Summary	
200 GeV pp							
		(Contact: cms-pag-con	veners-smp@cern.c	ch	2024/06/	/03
			New	last	wee	ek!	
			Measureme	ent of event s	shapes in mir	nimum bias events	
	© 202	24 CERN		from pp c	ollisions at 13	3 TeV	
	Repro	oduction					
				The CN	AS Collaboration	n	
Intation and ile maintain- vables, which ollinearDrop thod, Multi- s = 200 GeV	r	1			Abstract		
perturbative rop jet mass of grooming	L	L	This note preser of low-pileup in a centre-of-mass $64 \ \mu b^{-1}$. A numl ticles in the colli: Inclusive event-s particle multiplik one HERWIG7 tur data. Moreover, amongst all gene than any of the s	this a measurement elastic proton-prot energy of 13 TeV, per of observables r sions is corrected fr hape distributions, ity, are studied. N he, and several PYT there are significan rator setups studied imulations. Multid	of event-shape var con collisions collect , corresponding to a related to the overall or detector effects an as well as event shap ione of the models in HIA8 tunes, are able at trends in this misd d, particularly showin imensional unfoldec	iables using a data sample ed by the CMS detector at n integrated luminosity of distribution of charged par- d compared to simulations. see as a function of charged- netwestigated, including EPOS, to satisfactorily describe the lescription that are common ng data being more isotropic d distributions are provided,	
ering and			along with their	correlations.		-	

Challenges!

Which method(s)?

How to pick regularization?

6

What/how uncertainties?

How to present results?

The conversation continues...

Unfolding is an active field !

Interesting progress in both binned and unbinned approaches.

More R&D is required, but in parallel, new tools/ideas are already starting to **deliver science results**!

Thank you for the great discussions!

8

Thank you !!

9

Let's see how the future unfolds, for unfolding ...

(not my pun!)

Dall E 2's take on "RooUnfold"

