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Forward model for unfolding
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Particle-level Detector-level

K

Detector smearing

𝑔 𝑦 = න
𝑥∈𝑇

𝑘 𝑦, 𝑥 𝑓 𝑥 𝑑𝑥 , 𝑘 𝑦, 𝑥 = 𝑝 𝑠𝑚𝑒𝑎𝑟𝑒𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑦 𝑡𝑟𝑢𝑒 𝑒𝑣𝑒𝑛𝑡 𝑥)



Discretization

Let {𝑇𝑗}𝑗=1
𝑛  be a partition of the particle-level space 𝑇 and {𝑆𝑖}𝑖=1

𝑚  be a partition of the 
detector-level space S.

𝑓 → 𝝀, 𝑔 → 𝝁

𝝀 = න
𝑇1

 

𝑓 𝑥 𝑑𝑥, … , න
𝑇𝑛

 

𝑓 𝑥 𝑑𝑥 , 𝝁 = න
𝑆1

 

𝑔 𝑦 𝑑𝑦, … , න
𝑆𝑚

 

𝑔 𝑦 𝑑𝑦

𝝁 = 𝑲𝝀 where the elements of the response matrix 𝑲 are given by

𝐾𝑖𝑗 =
𝑦∈𝑆𝑖

 
𝑥∈𝑇𝑗

 
𝑘 𝑦, 𝑥 𝑓 𝑥 𝑑𝑥𝑑𝑦

𝑦∈𝑆𝑖
𝑓 𝑥 𝑑𝑥

= 𝑃 𝑠𝑚𝑒𝑎𝑟𝑒𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑏𝑖𝑛 𝑖 𝑡𝑟𝑢𝑒 𝑒𝑣𝑒𝑛𝑡 𝑖𝑛 𝑏𝑖𝑛 𝑗)
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Goal: Inference on the true mean 𝝀



Statistical uncertainty in the response matrix

• The response matrix 𝑲 is usually not known analytically, but instead estimated with Monte Carlo 
simulation, which introduces statistical uncertainty on 𝑲.

• Traditionally, this has been estimated by binning the true and smeared events and counting the 
propagation of events between the bins, i.e. 

𝐾𝑖𝑗 =
# 𝐸𝑣𝑒𝑛𝑡𝑠 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑡𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑏𝑖𝑛 𝑗 𝑡ℎ𝑎𝑡 ℎ𝑎𝑣𝑒 𝑏𝑒𝑒𝑛 𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑 𝑏𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 𝑖𝑛 𝑏𝑖𝑛 𝑖

# 𝐸𝑣𝑒𝑛𝑡𝑠 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑡𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑏𝑖𝑛 𝑗

• The response matrix can be noisy,  especially with a 

     small MC sample size.
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Two-step Approach

• Recall that

𝐾𝑖𝑗 =
𝑦∈𝑆𝑖

 
𝑥∈𝑇𝑗

 
𝑘 𝑦, 𝑥 𝑓 𝑥 𝑑𝑥𝑑𝑦

𝑥∈𝑇𝑗
𝑓 𝑥 𝑑𝑥

• Consider the estimator

𝐾𝑖𝑗 =
𝑦∈𝑆𝑖

 
𝑥∈𝑇𝑗

 𝑘 𝑦, 𝑥 𝑓 𝑥 𝑑𝑥𝑑𝑦

𝑥∈𝑇𝑗
𝑓 𝑥 𝑑𝑥

1. Estimate the response kernel 𝑘 on the unbinned space.

2. Plug back into the above equation.

• Potentially provide smoother estimate for 𝐾𝑖𝑗.
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Response kernel estimation

• 𝑘 𝑦, 𝑥 = 𝑝 𝑠𝑚𝑒𝑎𝑟𝑒𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑦 𝑡𝑟𝑢𝑒 𝑒𝑣𝑒𝑛𝑡 𝑥).

• Given 𝑋1, 𝑌1 , … , 𝑋𝑛, 𝑌𝑛 ∼ 𝑝𝑋,𝑌 from Monte Carlo generator, where 𝑋𝑖  denotes the particle-level data 
and 𝑌𝑖  denotes the detector-level observation, estimating 𝑘(𝑦, 𝑥) is equivalent to conditional density 
estimation of 𝑝𝑌|𝑋 𝑦 𝑥 .

• Accurate estimate of the response kernel 𝑘 should lead to accurate estimate of response matrix 𝐾.

• We will consider several nonparametric methods for conditional density estimation and make some 
comparisons. 
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Response kernel estimation

1. Kernel method

Ƹ𝑝ℎ1,ℎ2
𝑦 𝑥 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑎 

𝑖=1

𝑛

𝐾ℎ2
𝑦 − 𝑌𝑖 − 𝑎

2
𝐾ℎ1

(𝑥 − 𝑋𝑖)

              = σ𝑖=1
𝑛 𝑤𝑖 𝑥 𝐾ℎ2

(𝑦 − 𝑌𝑖)

 

where 𝑤𝑖 𝑥 =
𝐾ℎ1(𝑥−𝑋𝑖)

σ𝑗=1
𝑛 𝐾ℎ1(𝑥−𝑋𝑗)

 and 𝐾ℎ is some kernel function with bandwidth h > 0 (not the response 

kernel).

2. Local linear method

ො𝑎, 𝑏 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑎,𝑏 

𝑖=1

𝑛

𝐾ℎ2
𝑦 − 𝑌𝑖 − 𝑎 − 𝑏 𝑋𝑖 − 𝑥

2
𝐾ℎ1

𝑥 − 𝑋𝑖

Ƹ𝑝ℎ1,ℎ2
𝑦 𝑥 = ො𝑎

• Two global bandwidth parameters ℎ1, ℎ2 control the amount of smoothing along X and Y, respectively.
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Response kernel estimation

• Global bandwidth is not optimal in some cases, e.g. different amount of smearing applied to different 
regions for the response matrix.

3. Kernel method with local bandwidths

Ƹ𝑝ℎ1(𝑥),ℎ2(𝑥) 𝑦 𝑥 = 

𝑖:||𝑥−𝑋𝑖||<𝛿(𝑥)

𝑤𝑖 𝑥 𝐾ℎ2(𝑥)(𝑦 − 𝑌𝑖)

where 𝑤𝑖 𝑥 =
𝐾ℎ1(𝑥)(𝑥−𝑋𝑖)

σ𝑗:||𝑥−𝑋𝑗|| 𝐾ℎ1(𝑥)(𝑥−𝑋𝑗)
 and 𝛿(𝑥) is the window size at x.

• Local bandwidth parameters ℎ1(𝑥), ℎ2(𝑥) control the amount of smoothing along X and Y conditioning 
on each x.
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Response kernel estimation

4. Location-scale model

Suppose we assume the smeared observations are generated from the following model
𝑌 = 𝜇 𝑋 + 𝜎 𝑋 𝜖

where 𝜖 follows some distribution with mean 0 and variance 1.

• Then 𝑝 𝑦 𝑥  can be written as

𝑝 𝑦 𝑥 =
1

𝜎(𝑥)
𝑝𝜖

𝑦 − 𝜇(𝑥)

𝜎(𝑥)

and an estimator can be obtained by

Ƹ𝑝 𝑦 𝑥 =
1

ො𝜎(𝑥)
Ƹ𝑝𝜖

𝑦 − Ƹ𝜇(𝑥)

ො𝜎(𝑥)
.

• Ƹ𝜇, ො𝜎2 can be estimates by some regression method (e.g. splines) and Ƹ𝑝𝜖 by density estimation (e.g. KDE).

• Directly model the variance function 𝜎2(𝑥) and hence avoid the problem of finding local bandwidths as 
in the case of local kernel method. 9



Simulation study

• We mimic unfolding the inclusive jet 
transverse momentum spectrum by 
simulating the data using the particle-level 
function

𝑓 𝑝⊥ = 𝐿𝑁0

𝑝⊥

𝐺𝑒𝑉

−𝛼

1 −
2

𝑠
𝑝⊥

𝛽

𝑒−𝛾/𝑝⊥

• The parameters are given by

𝐿 = 5.1𝑓𝑏−1, 𝑁0 = 1017 𝑓𝑏

𝐺𝑒𝑉
, 𝛼 = 5, 𝛽 = 10, 𝛾 =

10 𝐺𝑒𝑉, 𝑠 = 7 𝑇𝑒𝑉. 

• The number of bins = 40.

10



Simulation study

• The response kernel is modeled as an additive
Gaussian noise

𝑘 𝑝⊥
′ , 𝑝⊥ = 𝑁 𝑝⊥

′ − 𝑝⊥ 0, 𝜎 𝑝⊥
2

     with heteroscedastic variance satisfying
𝜎 𝑝⊥

𝑝⊥

2

=
𝐶1

𝑝⊥

2

+
𝐶2

𝑝⊥

2

+ 𝐶3
2.

• The parameters are 𝐶1 = 1𝐺𝑒𝑉1/2, 𝐶2 =
1𝐺𝑒𝑉, 𝐶3 = 0.05.
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Comparison of the response 
matrix estimators

• The sample size (number of paired Monte 
Carlo events) for estimating the response 
matrix 𝐾 is 100000.

• The performance of the estimators is 
compared using bin-wise mean absolute 
error (MAE)

1

𝑀


𝑙=1

𝑀

𝐾𝑖𝑗
𝑙

− 𝐾𝑖𝑗  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ 𝑚 , 𝑗 ∈ [𝑛]

    with 𝑀 = 1000 Monte Carlo simulations.
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Effect of the estimated response matrix on the 
unfolded spectrum

• Does a better estimated response matrix lead to a better unfolded point estimator?

• Least-squares estimator with Tikhonov regularization.

• D’Agostini iteration (EM algorithm, Iterative Bayesian unfolding, Lucy-Richardson deconvolution).
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Tikhonov regularization

• With some 𝛿 ≥ 0, the least squares solution 
with Tikhonov regularization is

𝝀 = 𝑲⊤ 𝑲 + 𝛿𝑰
−𝟏 𝑲⊤𝒚.

• Better estimated response matrix generally 
leads to better unfolded solution.

• When there is no regularization (𝛿 = 0), the 
solution with the true response matrix 
(without noise) performs worse compared to 
estimated response matrices.

• The estimated response matrices implicitly 
perform regularization (an ill-conditioned 
matrix with some additive random noise 
becomes well-conditioned with high 
probability1).

14

𝛿 = 1𝑒 − 10

𝛿 = 0

1 T. Tao, V. Vu, The condition number of a randomly perturbed matrix,

in: Symposium on the Theory of Computing, 2007.

M
SE

M
SE

pT

pT



D’Agostini iteration

• After 𝑟 + 1 iterations, the solution is given by

መ𝜆𝑗
𝑟+1

=
መ𝜆𝑗

𝑟

σ𝑖=1
𝑚 𝐾𝑖𝑗 



𝑖=1

𝑚
𝐾𝑖𝑗𝑦𝑖

σ𝑙=1
𝑛 𝐾𝑖𝑙

መ𝜆𝑙
𝑟

𝝀(𝑟+1) = መ𝜆1
𝑟+1

, … , መ𝜆𝑛
𝑟+1

• Again, better estimated response matrix 
generally leads to better unfolded solution.

• Most estimated response matrices lead to 
similar MSE when the number of iterations is 
small.
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𝑛𝑖𝑡𝑒𝑟 = 30

𝑛𝑖𝑡𝑒𝑟 = 5000

pT

pT

M
SE

M
SE



Summary

• Estimated response matrix from a Monte Carlo simulation has statistical uncertainty.

• Traditional binning (histogram) method can be noisy in regions that have small sample sizes.

• Two-step approach can remedy this issue by first estimating response kernel using conditional density 
estimation on the unbinned space, and then constructing a plug-in estimator of response matrix based 
on the estimated response kernel.

• The estimated response matrix is a more well-conditioned matrix compared to the true response matrix 
without any noise, which implicitly regularizes the solution.

• Uncertainty quantification for the unfolded solution in the presence of uncertainty in the response 
matrix is not immediately clear. 
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Backup • Tikhonov regularization with different regularization strengths
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𝛿 = 1𝑒 − 20𝛿 = 1𝑒 − 9𝛿 = 1𝑒 − 8



Backup • MSE for Tikhonov regularization with different regularization 
strengths
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𝛿 = 1𝑒 − 20𝛿 = 1𝑒 − 9𝛿 = 1𝑒 − 8



Backup • D’Agostini solution with different number of iterations
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𝑛𝑖𝑡𝑒𝑟 = 10000𝑛𝑖𝑡𝑒𝑟 = 40𝑛𝑖𝑡𝑒𝑟 = 3



Backup • MSE for D’Agostini solution with different number of iterations

20

𝑛𝑖𝑡𝑒𝑟 = 10000𝑛𝑖𝑡𝑒𝑟 = 40𝑛𝑖𝑡𝑒𝑟 = 3
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