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Why variable dimensions?

• Most unfolding at the LHC 
targets particle-level 

• Phase space is inherently 

variable dimensional

• No existing generative method 

for unfolding variable 
dimensions


• Necessary for full-event 
unfolding at particle level
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Latest generative model: diffusion
Diffusion model: a class of generative model which samples from a high-
variance “base” distribution, and iteratively de-noises the sample
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Credit: Binxu Wang

https://scholar.harvard.edu/binxuw/classes/machine-learning-scratch/materials/foundation-diffusion-generative-models


Elements of latent variational diffusion
Latent diffusion model (2112.10752): perform the diffusion process in the latent 
space of a pre-trained variational autoencoder (VAE)
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Variational diffusion model (2107.00630): interpretation of the diffusion model as an 
(infinitely deep) chain of VAEs

2208.11970

https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2107.00630
https://arxiv.org/abs/2208.11970


On a parton level (fixed dimension) problem
• Base model tested on parton-level  unfolding: fixed dimensions

• Results included in comparison paper 2404.18807

tt̄
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Results are shown without mass parametrization!

https://arxiv.org/abs/2404.18807


From partons to particles

• Targets are particle-level objects:

• Can be light quark jets, b tagged 

jets, electrons, or muons

• Also interested in , 


• Do not always have 5 objects!
Emiss

T , ϕmiss ην
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Particle-level unfolding: 
invert only the detector response



Variable length generative models
Autoregressive approach: 
• Treat event as a sequence of objects, repeatedly run inference on model to 

generate sample object by object

• Output a special stop token to finish generating

• Approach used by ChatGPT, see 2305.10475 for a HEP example


Multiplicity predictor approach: 
• Standard in HEP applications of point-cloud generative models (see backup)

• Use auxiliary network to predict particle multiplicity

• Generation is conditioned on the output of this model

• We take N̂ = [N]; N ∼ Γ(MLPk(y), MLPθ(y))
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https://arxiv.org/pdf/2305.10475


Training variable length VLD (VL-VLD)
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Training variable length VLD (VL-VLD)
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1. Encode particle-level and detector-level 
events into learned representations



Training variable length VLD (VL-VLD)
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2.Train denoising network to remove 
noise  from 
the encoded particle level event

ϵ ∼ 𝒩(0, 𝕀); ϵ ∈ ℝℕ



Training variable length VLD (VL-VLD)
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3. Train particle decoder and predictor MLPs 
to reconstruct the particle level event



Training variable length VLD (VL-VLD)
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4. Train multiplicity predictor to predict shape 
and width parameters of  distributionΓ



VL-VLD loss function
All networks are trained simultaneously to minimize a unified loss function:
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Transformer architectures ensure that network predictions are position equivariant



VL-VLD loss function
All networks are trained at once to minimize a unified loss function:
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Transformer architectures ensure that network predictions are position equivariant
Except there’s a problem with the denoising loss



Ambiguous loss function
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At high level of noise, the distinction between two objects can become ambiguous, making object-wise MSE loss undefined:

?

Solution: Impose ordering of objects by true particle-level  when training denoising networkpT



Particle-level  unfolding datasettt̄
• Semi-leptonic decay mode: expect 2 light quark jets, 2 b jets, 1 lepton, MET

• Detector response simulated with Delphes

• Identical detector and particle-level phase space requirements:

• Leptons and jets required to have  GeV, 

• Require 1 lepton and at least 4 jets (at least 2 b-tagged)


• Targets are object kinematics vectors: 

• Also object type, encoded as one-hot vector


• Event-level targets: 

pT > 25 |η | < 2.5

Pi = (px, py, pz, log(E + 1), log(M + 1))

Emiss
T , ϕmiss, pν

x , pν
y , pν

z , Eν
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Inclusive kinematic distributions for jets
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• Kinematics of the particle level objects close well: these are directly optimized

• Struggle in edges of phase space where we lack training examples of events 

migrating across phase space boundaries



Event-level distributions
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• Event-level features also close well

• Neutrino  is not constrained at detector-level, expect excess at 0 to result from 

model returning mean
η



Particle-level top quark distributions
Assumes pseudotop jet/parton assignment (see backup)
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• Top kinematics: not directly optimized

• Sharply peaked distributions difficult to 

model without direct optimization

• Why not optimize?

• Requires assumption of a 

reconstruction algorithm in training

• Further algorithm must be 

differentiable to optimize top 
kinematics calculated from particle-
level objects
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EFT operator prior shift
• Generative models can suffer from prior-dependence

• Test by evaluating model over dataset generated with non-zero EFT operator

• ctg = 25
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Clearly not just 
reproducing the SM 

distributions! 
 

However iteration 
likely necessary in 

practice



Background subtraction
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Before Unfolding During Unfolding After Unfolding

Train generative model with 
negative weights for 

background events, then run 
inference on data

Perform un-binned subtraction 
of background, then run 

inference on generative model 
trained with only signal

Train to unfold S+B together, 
then run inference on data and 

perform binned subtraction 
after unfolding



Acceptance effects
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Fakes: 
Train generative model on large phase space region 

then place cuts on particle-level phase space after evaluation

Inefficiencies:  
Challenging, since have no event to condition generation. 

Engineer particle-level phase space to avoid inefficiencies?

v v



Conclusions
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• First attempt at full event particle-level unfolding with a generative model

• Method also applies to unfolding all particles, but this is an order of 

magnitude higher dimensional problem

• Directly optimized quantities close well

• Derived quantities, like reconstructed top quark kinematics, are difficult

• Can we improve?
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Backup
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Variational Latent Diffusion (VLD)
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Par t on Encoder

Par t on D ecoder

D enoising M odel

D et ect or  Encoder

Combine these ideas in an end-to-end model:

Latent space of VAE optimized for diffusion process. 
Can even be higher dimensional than the data distribution

Learned noise schedule as in variational diffusion



Other point-cloud conditional generative models
• The primary use case is fast generation / calorimeter simulation

• Set conditional set generation of jets: slot attention, graph diffusion

• Generate reconstructed jet based on particle-level constituents

• Note this is learning the detector simulation forward operator


• JetNet/JetClass datasets: mpgan, pc-jedi/droid, fpcd, mean-field gan, epic-
gan, epic-jedi, deeptree gan, epic-fm

• Fixed length conditions (jet , mass, constituent multiplicity, particle type)


• ILD calorimeter simulation dataset: caloclouds, calopointflow

• Fixed length conditions (energy, number of shower points)


• I am likely missing more than a few!

• Conditioning is very different for fast generation / calorimeter simulation

pT
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https://arxiv.org/abs/2211.06406
https://arxiv.org/abs/2405.10106
https://arxiv.org/abs/2106.11535
https://arxiv.org/abs/2303.05376
https://arxiv.org/abs/2307.06836
https://arxiv.org/abs/2304.01266
https://arxiv.org/abs/2305.15254
https://arxiv.org/abs/2301.08128
https://arxiv.org/abs/2301.08128
https://arxiv.org/abs/2301.08128
https://arxiv.org/abs/2301.08128
https://arxiv.org/abs/2310.00049
https://arxiv.org/abs/2311.12616
https://arxiv.org/abs/2312.00123
https://arxiv.org/abs/2305.04847
https://arxiv.org/abs/2403.15782


Diffusion loss ambiguity in the literature
• CaloClouds: denoising network acts only pointwise, so the MSE loss is 

always well defined. This is not an option in unfolding, as producing proper 
correlations between generated objects is essential.

• They note that introducing point interactions did not help performance


• Set conditional set generation: use sinusoidal positional encoding
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Inference with VL-VLD
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1. Encode detector-level event
2. Predict object multiplicity N̂

3. Sample  standard normal vectorsN̂

4. Solve reverse diffusion process 
using an ODE solver

6. Predict particle-level event 

5. Decoder latent 
vectors xi(0)



Inclusive kinematic distributions (leptons)

29

1.0

2.0

3.0

4.0

D
en

si
ty

£10°1

Unfolded
SM Truth
SM Detector

°2 0 2

h lep

-0.5

0.0

0.5

Lo
g

R
at

io

0.5

1.0

1.5

2.0

D
en

si
ty

£10°1

Unfolded
SM Truth
SM Detector

°2 0 2

f lep

-0.1

0.0

0.1

Lo
g

R
at

io

1.0

2.0

3.0

D
en

si
ty

£10°2

Unfolded
SM Truth
SM Detector

0 50 100 150 200

plep
T [GeV]

-0.5

0.0

0.5

Lo
g

R
at

io

• Error bands estimated by sampling each particle-level configuration 128 times

• Kinematics of the directly optimized objects close well.

• Can struggle in edges of phase space where we lack training examples of events migrating across phase 

space boundaries from detector to particle-level 



Pseudotop algorithm
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By Raeky - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=7806841

Combine lepton with  and solve for  
assuming the  mass to get 

Emiss
T pν

z
W Wlep

Combine two highest  non b-tagged jets 
to get 

pT
Whad

Combine closest b-jet with  to 
get 

Wlep

tlep

Combine remaining b-jet to get thad

https://commons.wikimedia.org/w/index.php?curid=7806841
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Hadronic top kinematics
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Assumes pseudo-top jet/parton assignment
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Leptonic top kinematics
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Assumes pseudo-top jet/parton assignment
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 system kinematicstt̄
Assumes pseudo-top jet/parton assignment
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• These distributions are not directly optimized, but are less peaked than hadronic top mass

• Predictions are decent in high  and mass events, but struggle in the low kinematic range pT


