# Unfolding in the context of the muon g - 2

Laurent Lellouch

CPT Marseille CNRS & Aix-Marseille U.

for the BMW and DHMZ collaborations

PRD 109(7) (2024) 076019 → BMWc-DHMZ'23 DHMZ, EPJC 80(3) (2020) 241 → DHMZ'19 BMW, Nature 593 (2021) 51 → BMW'20 Aoyama et al., PR 887 (2020) 1 → WP'20 PRL 131 (2023) → Fermilab'23



### Introduction and motivation

Muon behaves like a tiny magnet with a magnetic dipole moment



$$ec{\mu}_{\mu}=-oldsymbol{g}_{\mu}rac{oldsymbol{e}}{2m_{\mu}}ec{S}$$

Leading order SM :  $g_{\mu}=2$ 



• Quantity of interest is the anomalous contribution

$$a_{\mu}=rac{g_{\mu}-2}{2}$$

- $\rightarrow$  given by quantum corrections (loops)
- $a_{\mu}$  can be measured very precisely
- $a_{\mu}$  can be computed "equally" precisely in the SM



### Introduction and motivation

#### Big question:

 $a_{\mu}^{\exp}=a_{\mu}^{\mathrm{SM}}$ ?

- YES  $\rightarrow$  another success for the SM (at given level of precision)
- NO  $\rightarrow$  new fundamental physics must be contributing to  $a_{\mu}^{exp}$ , e.g.



- Complementarity w/ direct searches (e.g. LHC): may be sensitive to dofs that are too massive or too weakly coupled to be produced or measured directly
- Complementarity w/ other indirect searches (FCNCs (e.g. in s and b decays), EDMs, ...)
  - $\rightarrow a_{\mu}$  is flavor & CP conserving and chirality flipping ( $L \leftrightarrow R$ )
  - $\Rightarrow$  probes mass generating mechanism of the theory

# Summary of contributions to $a_{\mu}^{\text{LO-HVP}}$ [BMW'23]



Corresponds to a 0.78% total uncertainty

## Experiment vs BMWc and WP



Has new fundamental physics really been uncovered?

### Motivation

Significant tensions between lattice and data-driven (DD) results for HVP

- $[\Delta a_{\mu}^{ ext{LO-HVP}}]_{ ext{lat-DD}}\sim 2.1\sigma$  [BMW'20, WP'21]
- Simpler  $[\Delta a_{\mu,{
  m win}}^{
  m LO-HVP}]_{
  m lat-DD}\gtrsim 4\sigma$  [Observable proposed in RBC/UKQCD'18]





- → origin of tensions?
- $\rightarrow$  comparison not trivial

#### Primary observables

Lattice: compute with QCD simulations (spacelike)

$$\mathcal{C}(t) = rac{a^3}{3e^2}\sum_{i=1}^3\sum_{ec{x}}\left\langle J_i(ec{x},t)J_i(0)
ight
angle$$



 $W/\frac{J_{\mu}}{e} = \frac{2}{3}\bar{u}\gamma_{\mu}u - \frac{1}{3}\bar{d}\gamma_{\mu}d - \frac{1}{3}\bar{s}\gamma_{\mu}s + \frac{2}{3}\bar{c}\gamma_{\mu}c - \frac{1}{3}\bar{b}\gamma_{\mu}b + \frac{2}{3}\bar{t}\gamma_{\mu}t$ 

 $a_{\mu(\text{win})}^{\text{LO-HVP}}, \hat{\Pi}(Q^2), \dots$  are weigthed sums of C(t) over imaginary time t





#### Lattice $\leftrightarrow$ R-ratio

$$C(t) = \frac{1}{24\pi^2} \int_0^\infty ds \sqrt{s} R(s) e^{-|t|\sqrt{s}}$$

[Bernecker et al '11]

- R-ratio —> lattice: "straightforward"
  - → integrate R-ratio
- Lattice → R-ratio: inverse Laplace transform
  - $\rightarrow$  ill-posed unfolding problem



# Requirements for comparison methodology

- Very few HVP quantities computed on lattice w/:
  - all contributions to C(t): flavors, quark Wick contractions, QED and SIB corrections
  - all limits taken:  $a \to 0, L \to \infty, M_{\pi} \to M_{\pi}^{\phi}, \ldots$
- One w/ correlations among lattice observables (quantitative comparisons)
- None w/ uncertainties on these correlations (checking stability of inverse problem)
- $\rightarrow$  Want approach that:
  - provides useful information w/ limited lattice input
  - can be systematically improved w/ more lattice input
  - can incorporate theoretical constraints (e.g. Colangelo et al '20)
  - includes measure of agreement of lattice & data-driven results w/ comparison hypothesis
  - accounts for all correlations in lattice and data-driven observables ...
  - ... including uncertainties on these

• Here use BMW'20:  $a_{\mu}^{\text{LO-HVP}}$ ,  $a_{\mu,\text{win}}^{\text{LO-HVP}}$  &  $\delta(\Delta_{\text{had}}^{(5)}\alpha) \equiv \Delta_{\text{had}}^{(5)}\alpha(-1 \rightarrow -10 \text{ GeV}^2)$  (preliminary)

#### Lattice covariances: method

- Uncertainties and correlations critical for quantitative comparisons
- Use extension of BMW error method with stat resampling and syst histogramming w/ flat and AIC weights [BMW '08, '15, '20, see also Neil et al '23, Pinto et al '23]

 $\rightarrow$  for  $N_{\mathcal{O}}$  observables  $\{a_j\} = \{a_{\mu}^{\text{LO-HVP}}, a_{\mu,\text{win}}^{\text{LO-HVP}}, \delta(\Delta_{\text{had}}^{(5)}\alpha), \cdots \}$ 

$$\begin{split} \mathcal{H}(\{a_{j}\}) &= \sum_{\psi^{\text{corr}}, \{\psi_{j}^{\text{aic}}, \psi_{j}^{\text{flat}}\}} \quad \mathcal{N}_{\mathcal{N}_{\mathcal{O}}}[\{a_{j}\}, \{\overline{a_{j}}(\psi^{\text{corr}}, \psi_{j}^{\text{aic}}, \psi_{j}^{\text{flat}})\}, C^{\text{stat}}(\psi^{\text{corr}}, \{\psi_{j}^{\text{flat}}, \psi_{j}^{\text{aic}}\})] \\ &\times \Pi_{j} \omega_{j}(\psi^{\text{corr}}, \psi_{j}^{\text{aic}}, \psi_{j}^{\text{flat}}) \\ \omega_{j}(\psi^{\text{corr}}, \psi_{j}^{\text{aic}}, \psi_{j}^{\text{flat}}) &= \frac{\operatorname{aic}(\psi^{\text{corr}}, \psi_{j}^{\text{aic}}, \psi_{j}^{\text{flat}})}{\sum_{\psi_{i}^{\text{aic}}, \psi_{j}^{\text{flat}}} \operatorname{aic}(\psi^{\text{corr}}, \psi_{j}^{\text{aic}}, \psi_{j}^{\text{flat}})} \end{split}$$

- Build matrix from 1D distributions for  $\{a_{\mu}^{\text{LO-HVP}}, a_{\mu,\text{win}}^{\text{LO-HVP}}, a_{\mu}^{\text{LO-HVP}} + a_{\mu,\text{win}}^{\text{LO-HVP}}\}$
- Separate stat & syst by solving ( $\lambda = 2$ )

$$C = C^{\text{stat}} + C^{\text{syst}}$$
$$C_{\lambda} = \lambda C^{\text{stat}} + C^{\text{syst}}$$

### Lattice covariances: results

- $\delta(\Delta_{had}^{(5)}\alpha)$  largely uncorrelated w/ other two observables
- Uncertainties and correlations of  $a_{\mu}^{\text{LO-HVP}} \& a_{\mu,\text{win}}^{\text{LO-HVP}}$  contributions (units of 10<sup>-10</sup>)



• Double peak  $\rightarrow$  consider 1 $\sigma$  & 2 $\sigma$  intervals

## Uncertainties on lattice covariances

- Uncertainties on covariance matrix can compromise the inverse problem
- Stat error estimated from bootstrap on only 48 reconstructed samples (sufficient for this study)
- Syst from:
  - For: ud, s, QED, SIB connected, and disconnected
    - ightarrow get uncertainties from 1 or  $2\sigma$  quantiles
    - $\rightarrow$  0 or 100% correlations in  $a \rightarrow$  0 uncertainties of  $T = a_{\mu}^{\text{LO-HVP}}$  and  $W = a_{\mu,\text{win}}^{\text{LO-HVP}}$ , w/ C = T W

$$C_{TW} = C_{TW}^{\text{other}} + \begin{bmatrix} (dW)^2 + (dC)^2 & \{0,1\} \times (dW)^2 \\ \{0,1\} \times (dW)^2 & (dW)^2 \end{bmatrix}_{\text{con}}$$

• Similarly for c

 $\Rightarrow$  in units of 10<sup>-20</sup>:

$$C_{\text{lat}}^{1\sigma,0\%} = \begin{bmatrix} 30.13(4.88) & -0.05(0.03) \\ -0.05(0.03) & 1.95(0.47) \end{bmatrix} \qquad C_{\text{lat}}^{2\sigma,0\%} = \begin{bmatrix} 34.04(16.80) & 0.32(0.05) \\ 0.32(0.05) & 1.12(0.07) \end{bmatrix}$$
$$C_{\text{lat}}^{1\sigma,100\%} = \begin{bmatrix} 30.13(4.88) & 1.56(0.03) \\ 1.56(0.03) & 1.95(0.47) \end{bmatrix} \qquad C_{\text{lat}}^{2\sigma,100\%} = \begin{bmatrix} 34.04(16.80) & 1.94(0.05) \\ 1.94(0.05) & 1.12(0.07) \end{bmatrix}$$

#### • 1-by-1 comparisons

| Observable                                     | lattice [BMW '20] | data-driven | diff.      | % diff.  | σ   | p-value [%] |
|------------------------------------------------|-------------------|-------------|------------|----------|-----|-------------|
| $a_{\mu}^{\text{LO-HVP}} \times 10^{10}$       | 707.5(5.5)        | 694.0(4.0)  | 13.5(6.8)  | 1.9(1.0) | 2.0 | 4.7         |
| $a_{\mu,{ m win}}^{ m LO-HVP}	imes 10^{10}$    | 236.7(1.4)        | 229.2(1.4)  | 7.5(2.0)   | 3.2(0.8) | 3.8 | 0.01        |
| $\delta(\Delta_{\sf had}^{(5)}lpha)	imes 10^4$ | 48.67(0.32)       | 48.02(0.32) | 0.65(0.45) | 1.3(0.9) | 1.4 | 15          |

 $\Rightarrow$  excess in  $C = a_{\mu}^{ ext{LO-HVP}} - a_{\mu, ext{win}}^{ ext{LO-HVP}}$ : [ $\Delta C$ ]<sub>lat-DD</sub>  $\sim 6.0(7.9) imes 10^{-10}$ 

• Simultaneous comparisons w/ correlations

$$\chi^{2}(a_{j}) = \sum_{j,k} \left[ a_{j}^{\mathsf{lat}} - a_{j} \right] \left[ C_{\mathsf{lat}}^{-1} \right]_{jk} \left[ a_{k}^{\mathsf{lat}} - a_{k} \right] + \sum_{j,k} \left[ a_{j}^{\mathsf{R}} - a_{j} \right] \left[ C_{\mathsf{R}}^{-1} \right]_{jk} \left[ a_{k}^{\mathsf{R}} - a_{k} \right]$$

| # observ. | $\chi^2/dof$    | p-value [%]  |  |  |
|-----------|-----------------|--------------|--|--|
| 2         | 14.4/2 - 18.8/2 | 0.008 - 0.07 |  |  |
| 3         | 14.4/3 - 18.8/3 | 0.03 - 0.23  |  |  |

Some dilution compared to a<sup>LO-HVP</sup><sub>µ,win</sub> alone, but still significant tensions

# Consequences for lattice C(t)



 $\Rightarrow$  SD:ID:LD windows: [using KNT'18  $e^+e^- \rightarrow$  hadrons compilation]

- 10%:33%:57% for  $a_{\mu}^{\text{LO-HVP}}$
- 70%:29%:1% for δ(Δ<sup>(5)</sup><sub>had</sub>α)

+ tensions and agreements above

- $\Rightarrow$  excess in C(t) for  $t \sim [0.4, 1.5]$  fm
- $\Rightarrow$  probably for  $t \gtrsim 1.5 \, \text{fm}$
- $\Rightarrow$  possible suppression for  $t \leq 0.4$  fm (mainly based on preliminary  $\delta(\Delta_{had}^{(5)}\alpha)$ )

# Testing R-ratio: methodology

• Chop  $a_i^{\mathsf{R}}$  into contributions  $a_{ib}^{\mathsf{R}}$  from same  $\sqrt{s}$ -intervals  $I_b$  for all j

$$a_j^{\mathsf{R}} = \sum_b a_{jb}^{\mathsf{R}}$$

To accommodate lattice results a<sup>lat</sup><sub>j</sub>, allow common rescaling of a<sup>R</sup><sub>jb</sub>, for all j, in certain I<sub>b</sub>

$$a_{j}^{\text{lat}} = \sum_{b} \gamma_{b} a_{jb}^{\text{R}} = \sum_{b} (1 + \delta_{b}) a_{jb}^{\text{R}}$$
(1)

- $\rightarrow$  can take some  $\gamma_b = 1$
- $\rightarrow$  simplest interpretation: R-ratio rescaled by  $\gamma_b$  in  $I_b$
- $\rightarrow$  however, constrains shape of R-ratio modification in limited way
- $\rightarrow \Phi$  deformation may be allowed
- If  $N_j \ge N_{\gamma}$ , system (over-)constrained
- Here single γ<sub>1</sub> in *I*<sub>1</sub> w/ a<sub>1</sub> = a<sup>LO-HVP</sup><sub>μ</sub> & a<sub>2</sub> = a<sup>LO-HVP</sup><sub>μ,win</sub> (2 observables) or w/ additional a<sub>3</sub> = δ(Δ<sup>(5)</sup><sub>had</sub>α) (3 observables)

# Testing R-ratio: methodology

• Solve 2 or 3 eqs in (1) for  $\gamma_1$ 

$$ilde{\gamma}_j \equiv rac{a_{j1}^{ ext{lat}}-a_{jar{1}}^{ ext{R}}}{a_{j1}^{ ext{R}}}$$

w/j = 1, 2(, 3)

•  $\gamma_1$  weighted average from minimization of

$$\chi^{2}(\gamma_{1}) = \sum_{j,k} \left[ \gamma_{1} - \tilde{\gamma}_{j} \right] \left[ \left( C_{\text{lat}}^{\tilde{\gamma}} + C_{\text{R}}^{\tilde{\gamma}} \right)^{-1} \right]_{jk} \left[ \gamma_{1} - \tilde{\gamma}_{k} \right]$$

- Minimization w/ diagonal covariance to avoid possible biases
- $\delta \gamma_1$  and  $\chi^2 (\gamma_1)_{\min}$  w/ full covariance
- Alternative approach via

 $\chi^{2}(a_{jb},\gamma_{b}) = \sum_{j,k} \left[ a_{j}^{\text{lat}} - \sum_{b} \gamma_{b} a_{jb} \right] \left[ C_{\text{lat}}^{-1} \right]_{jk} \left[ a_{k}^{\text{lat}} - \sum_{c} \gamma_{c} a_{kc} \right] + \sum_{(jb)(kc)} \left[ a_{jb}^{\text{R}} - a_{jb} \right] \left[ C_{\text{R}}^{-1} \right]_{(jb)(kc)} \left[ a_{kc}^{\text{R}} - a_{kc} \right]$   $\rightarrow \text{ compatible results}$ 

Solve for 1000 stat bootstrap samples and 4 syst variations of C<sub>lat</sub>

# Statistical distributions for rescaling in $\sqrt{s_{th}}$ , 0.96 GeV

From 1000 stat bootstrap variations of lattice  $C_0 \ll a_{\mu}^{\text{LO-HVP}}$  and  $a_{\mu}^{\text{LO-HVP}}$  constraints



France-Berkelev PHYSTAT Conference @ LPNHE, June 12, 2024

## Testing R-ratio: results



 Stat and syst uncertainties on lattice covariance matrices do not change overall picture

## Situation evolving fast

- February 2023: new measurement of  $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$  [CMD-3, 2302.08834] gives data-driven  $a_{\mu}^{\text{LO-HVP}}$ :
  - $\sim 3\sigma$  larger than WA data-driven  $a_{\mu}^{\text{LO-HVP}}$  !
  - compatible w/ BMWc'20 lattice a<sup>LO-HVP</sup> !
  - many questions were asked, but no significant problem found
- December 2023: taking data-driven approach apart [Davier et al, 2312.02053]



Problems w/ NLO QED effects in KLOE (& BES III) not covered by systematic uncertainties ? [BaBar '23]

#### Conclusions

- Presented flexible method for comparing lattice QCD and data-driven HVP results
- Find that discrepancies/agreements between lattice and data-driven results for  $a_{\mu}^{\text{LO-HVP}}$ ,  $a_{\mu,\text{win}}^{\text{LO-HVP}}$  and  $\delta(\Delta_{\text{had}}^{(5)}\alpha)$ :

On lattice side, result, from:

- a *C*(*t*) that is enhanced in *t* ~ [0.4, 1.5] fm
- also probably for  $t \ge 1.5 \, \text{fm}$
- w/ possible suppression for  $t \leq 0.4$  fm (mainly based on preliminary  $\delta(\Delta_{had}^{(5)}\alpha)$ )

On data-driven side, could be explained by:

- enhancing measured R-ratio around ρ-peak
- or in any larger interval including ρ-peak
- Lattice and measured R-ratio correlations critical for drawing such conclusions
- Conclusions limited by uncertainties and correlations on lattice and data-driven results

- Important to check that uncertainties on uncertainties and correlations do not spoil picture, especially for inverse problem
  - $\rightarrow$  checked here for lattice stat and syst uncertainties
  - $\rightarrow$  must do so for measured R-ratio uncertainties
- Also important not to share results between 2 approaches before they are final (mutual blinding)
- However, limit on independent HVP observables in data-driven and lattice approaches (not shown)
- Same methods can be used to combine determinations of lattice and data-driven results for HVP observables, once differences are understood
- No problems w/ EWPO fits in case of 3-observable comparisons (not shown)

## Some references to related work on HVP

- Windows proprosed in RBC/UKQCD arXiv:1801.07224 ...
- ... discussed in context of future detailed comparisons in Colangelo et al arXiv:2205.12963
- Consequences of rescaling of measured R-ratio studied in Crivellin et al arXiv:2003.04886, Keshavarzi et al arXiv:2006.12666, de Rafael arXiv:2006.13880, Malaescu et al arXiv:2008.08107
- Consequences of lattice a<sup>LO-HVP</sup><sub>μ</sub> on π<sup>+</sup>π<sup>-</sup> contributions to R-ratio w/ Φ constraints in Colangelo et al arXiv:2010.07943
- Use of Backus-Gilbert method for reconstructing smeared R-ratio from lattice *C*(*t*) in Hansen et al arXiv:1903.06476, Alexandrou et al arXiv:2212.08467
- Proposal for comparing measured R-ratio and lattice C(t) via spectral-width sumrules in Boito et al arXiv:2210.13677
- ... (many other references for reconstructing spectral functions from lattice correlators)