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Goal: Unfold Moments – Remove detector distortions
from means, variances etc. of jet observables
• Why?

• Moments known theoretically more precisely than full distributions
• E.g. Wouter J. Waalewijn 1209.3019
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• Binned Methods e.g. IBU + various corrections
• Cause artifacts when computing moments[2]

Existing methods and challenges

[2] ATLAS Collaboration 1509.05190



Existing methods and challenges

• Discriminative methods (e.g. OmniFold style methods)
• General – attempt to unfold entire distributions rather than moments
• Iterative – involves a large number of NNs and regulating by hand

• Generative methods (e.g. via normalizing flows)
• Non-perturbative – attempt to learn scratch rather than perturb simulation
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Moment Unfolding
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Novel re-weighting based GAN Like Method

Deconvolves moments w/o binning

Circumvents difficulty of computing PDF

Circumvents binning artefacts

Direct comparison with computations
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Advantages

• Pointwise reweighting based on 
matching moment by moment

• Non-iterative and perturbative

• Light, fast, precise
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Inspiration
Maxwell–Boltzmann Distribution:
Generates weights using the inverse temperature to reweight the particle 
energies to maximize entropy holding mean energy constant
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Inspiration

Moment Unfolding:
 Generates weights to reweight the events to maximize binary 

cross entropy loss while holding moments constant
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Critical points of L

Let r( x | z) be the detector response function. Then
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GAN Like Model
Generator:

Reweighter function
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Way fewer parameters 
than a traditional GAN
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Truth: N(0, 1),  Gen: N(0.5, 1), Distortions: N(0, 0.8)

Gaussian Example
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Collider examples

• Datasets (Z Jets, pT > 200 GeV)

• Detector Effects -Delphes 3.4.2

• Truth/Data – Pythia 8.243 with tune 26 + Delphes

• Generation/Simulation – Herwig 7.1.5 with the default tune + Delphes
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Substructure Variables
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The method looks for weights that will reconstruct the moments, not necessarily the densities

Jet Mass Jet Charge Jet Width



Loss Landscapes
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One dimensional slices of L(𝛽) space



Unfolded results
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Momentum dependence
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Empirically, the ratio of spectra is approximately linear so we 
parametrize βa as linear functions

𝛽 𝑝6 = 𝛽 ; 𝑝6 + 𝑝6 𝛽 < (𝑝6)
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Momentum Dependence
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Jet Mass Jet Charge Jet Width

• Substructure variables unfolded conditional on jet pT but plotted inclusively
• Note greater accuracy of unfolding 



Jet variables as a function of pT
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Comparison to other methods
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Bonus: Unfold entire distributions?
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Infinite Moment Unfolding
𝑔 𝑥 = 𝑒!,	#	!-$	#	!.$.#⋯ = 𝑒&($)

Success:
 - Analytically can be proven to converge to MLE
Problems:

- Renormalization
- Generator stabilization
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Conclusion and Outlook
Introduced novel reweighting-based GAN-like model to unfold 
moments without binning artifacts.

Successfully unfolded moments of jet substructure variables

Precisely computed momentum dependence of moments

Infinite Unfolding and Renormalization

23Krish Desai



Nachman Machine Learning Group
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Questions?
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