Moment Unfolding with Deep Learning

Krish Desai

University of California, Berkeley/Lawrence Berkeley National Laboratory

in collaboration with Benjamin Nachman (LBNL) and Jesse Thaler (MIT)

France-Berkeley PHYSTAT Conference on Unfolding

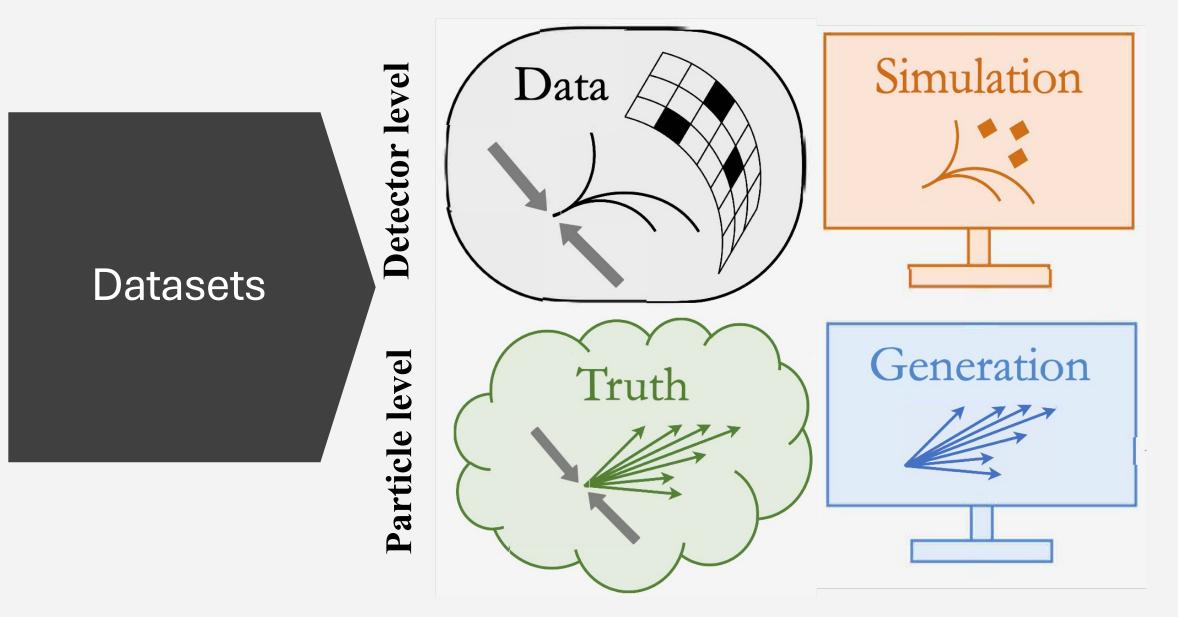
Goal: Unfold Moments – Remove detector distortions from means, variances etc. of jet observables

- Why?
- Moments known theoretically more precisely than full distributions
 - E.g. Wouter J. Waalewijn 1209.3019

$$n^{th}moment = \langle x^n \rangle = \sum_i p_i x_i^n$$

Nature

MC



Existing methods and challenges

- Binned Methods e.g. IBU + various corrections
 - Cause artifacts when computing moments^[2]

Average Jet Charge	Jet $p_{\rm T}$ Range [100 GeV]									
Systematic Uncertainty [%]	[0.5, 1]	[1,2]	[2,3]	$[3,\!4]$	[4,5]	[5, 6]	[6,8]	[8,10]	[10, 12]	[12, 15]
Total Jet Energy Scale	$^{+39}_{-52}$	$^{+13}_{-3}$	$^{+2.2}_{-2.9}$	$^{+3.4}_{-0.9}$	$^{+0.4}_{-1.3}$	$^{+0.9}_{-2.4}$	$^{+1.0}_{-0.8}$	$^{+0.8}_{-1.1}$	$^{+0.2}_{-0.6}$	$^{+1.0}_{-1.3}$
Jet Energy Resolution	-52 + 54.4 - 54.4	+4.4 -4.4	$^{-2.9}_{+1.6}_{-1.6}$	$+0.9 \\ -0.9$	$+0.1 \\ -0.1$	$^{-2.4}_{+0.6}_{-0.6}$	$^{-0.8}_{+0.2}$ $^{-0.2}$	$^{-1.1}_{+0.1}_{-0.1}$	$+0.0 \\ -0.0$	$^{-1.3}_{+0.1}_{-0.1}$
Charged Energy Loss	$^{+0.0}_{-0.0}$	$+0.0 \\ -0.0$	$+0.0 \\ -0.0$	$+0.0 \\ -0.0$	$+1.5 \\ -0.0$	$+1.2 \\ -0.0$	$^{+1.4}_{-0.0}$	$+1.1 \\ -0.0$	$+1.2 \\ -0.0$	$+2.2 \\ -0.0$
Other Tracking	$+5.2 \\ -2.8$	$+2.7 \\ -0.4$	$+0.4 \\ -0.4$	$+0.8 \\ -0.4$	$^{+1.1}_{-0.3}$	$^{+0.5}_{-0.5}$	$+0.7 \\ -0.7$	$+0.9 \\ -1.2$	$+1.1 \\ -1.8$	$+0.9 \\ -2.0$
Track Multiplicity	$+\bar{0}.\bar{0}$ -1.1	$+0.5 \\ -0.0$	+0.0 -0.1	+0.0 -0.8	$+0.0 \\ -0.4$	+0.0 -0.8	$+0.0 \\ -1.5$	+0.0 -2.3	+0.0 -3.3	$+\bar{0}.\bar{0}$ -4.6
Correction Factors	$+51 \\ -51$	$+11 \\ -11$	$+1.3 \\ -1.3$	$+0.7 \\ -0.7$	$+1.1 \\ -1.1$	$+0.8 \\ -0.8$	$+0.2 \\ -0.2$	$+0.3 \\ -0.3$	$+0.1 \\ -0.1$	$+0.0 \\ -0.0$
Unfolding Procedure	$^{+22.3}_{-22.3}$	$^{+1.7}_{-1.7}$	$^{+1.0}_{-1.0}$	$^{+0.3}_{-0.3}$	$^{+0.1}_{-0.1}$	$^{+1.3}_{-1.3}$	$^{+1.6}_{-1.6}$	$^{+1.9}_{-1.9}$	$^{+0.0}_{-0.0}$	$+3.3 \\ -3.3$
Total Systematic	$^{+87}_{-94}$	$^{+18}_{-12}$	$^{+3.1}_{-3.7}$	$+3.7 \\ -1.8$	$^{+2.2}_{-1.8}$	$^{+2.3}_{-3.0}$	$^{+2.5}_{-2.4}$	$^{+2.5}_{-3.4}$	$^{+1.6}_{-3.8}$	$+4.2 \\ -6.1$
Data Statistics	170	26	2.9	1.4	0.7	0.9	1.2	2.6	5.7	7.3
Total Uncertainty	$^{+191}_{-194}$	$^{+32}_{-29}$	$^{+4.3}_{-4.7}$	$^{+3.9}_{-2.2}$	$^{+2.3}_{-1.9}$	+2.4 -3.2	$^{+2.7}_{-2.7}$	$^{+3.6}_{-4.3}$	$^{+6.0}_{-6.8}$	+8.4 -9.5
Measured Value [e]	0.005	0.011	0.029	0.042	0.054	0.065	0.080	0.101	0.110	0.143

[2] ATLAS Collaboration 1509.05190

Existing methods and challenges

- Discriminative methods (e.g. OmniFold style methods)
 - General attempt to unfold entire distributions rather than moments
 - Iterative involves a large number of NNs and regulating by hand

- Generative methods (e.g. via normalizing flows)
 - Non-perturbative attempt to learn scratch rather than perturb simulation

Moment Unfolding

Novel re-weighting based GAN Like Method

Deconvolves moments w/o binning

Circumvents difficulty of computing PDF

Circumvents binning artefacts

Direct comparison with computations

• Pointwise reweighting based on matching moment by moment

Advantages

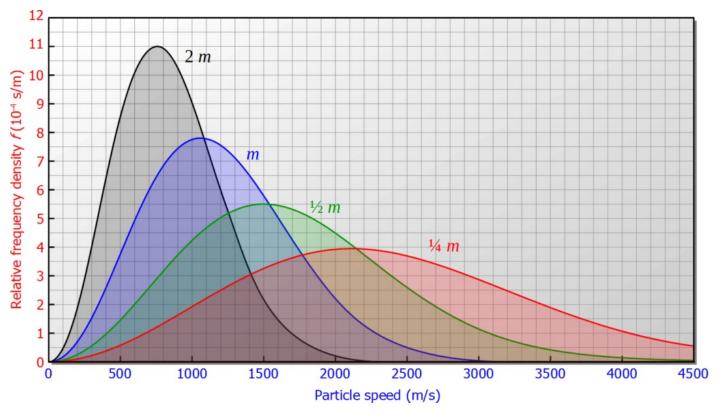
Non-iterative and perturbative

• Light, fast, precise

Inspiration

Maxwell–Boltzmann Distribution:

Generates weights using the inverse temperature to reweight the particle energies to maximize entropy holding mean energy constant



$$p_i = \frac{e^{-\beta E_i}}{\sum_i e^{-\beta E_i}}$$

Inspiration

Moment Unfolding:

Generates weights to reweight the events to maximize binary cross entropy loss while holding moments constant

$$g(z;\vec{\beta}) = \frac{e^{-\sum_{a=1}^{n}\beta_{a}z^{a}}}{\sum_{z\in\text{Gen}}e^{-\sum_{a=1}^{n}\beta_{a}z^{a}}}$$
$$\mathcal{L}[d,g] = -\sum_{x\in\text{Data}}\log d(x) - \sum_{(z,x)\in\text{Gen}\times\text{Sim}}g(z;\vec{\beta})\log(1-d(x))$$

Critical points of L

Let r(x | z) be the detector response function. Then

$$\frac{\delta L}{\delta d} = 0 \implies d(x) = \frac{p_{\text{Data}}(x)}{p_{\text{Data}}(x) + \int g(z) q_{\text{Gen.}}(z) r(x \mid z) dz}$$

and

$$\frac{\delta L}{\delta g} = 0 \implies \forall k \in \{1, \dots, n\} \mathbb{E}_{\text{Truth}}[Z^k] = \mathbb{E}_{\text{Gen.}}[g(Z)Z^k] + \mathcal{O}(\text{Std}(r))$$

Model

Particle Level

Generation

g

Target

Estimate

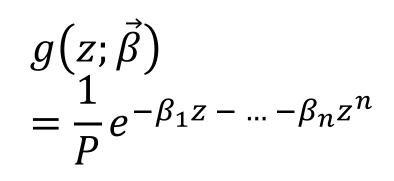
Re-weighted

Generation

Truth

GAN Like Model Generator:

Reweighter function



Way fewer parameters than a traditional GAN

Detector Level

Data

d

Re-weighted

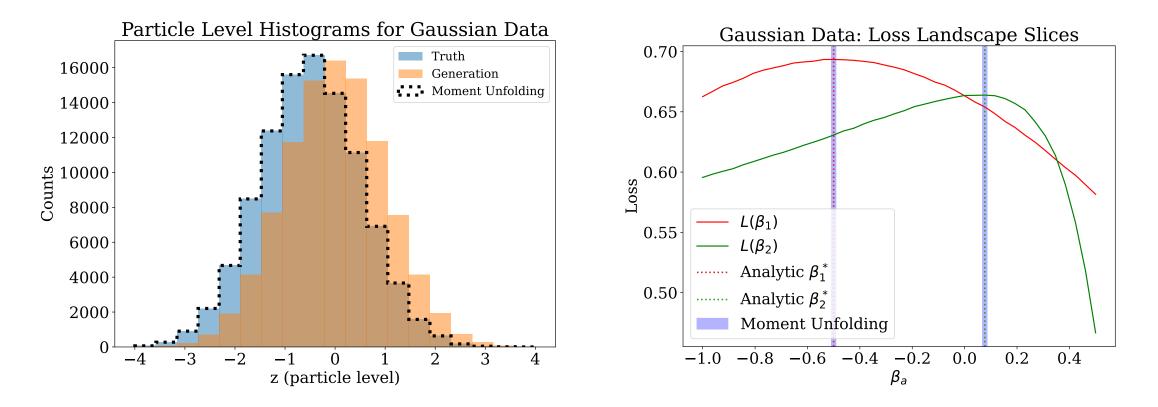
Simulation

detector

emulated

detector

Gaussian Example



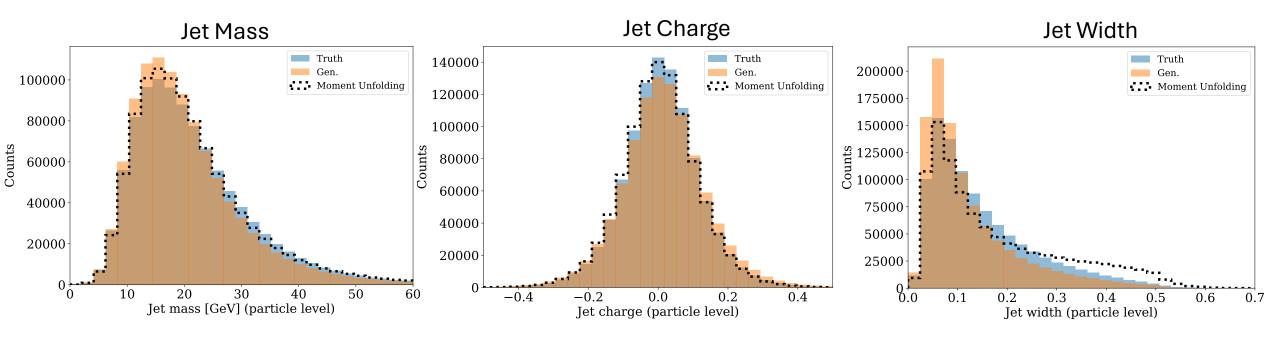
Truth: N(0, 1), Gen: N(0.5, 1), Distortions: N(0, 0.8)

Krish Desai

Collider examples

- Datasets (Z Jets, p_T > 200 GeV)
 - Detector Effects Delphes 3.4.2
 - Truth/Data Pythia 8.243 with tune 26 + Delphes
 - Generation/Simulation Herwig 7.1.5 with the default tune + Delphes

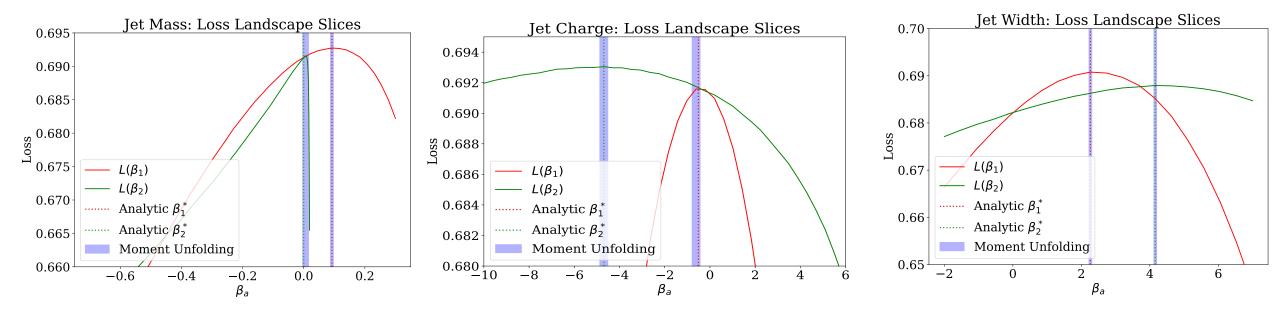
Substructure Variables



The method looks for weights that will reconstruct the moments, not necessarily the densities

Loss Landscapes

One dimensional slices of $L(\vec{\beta})$ space



Unfolded results

Observable	Truth	Generation	Moment Unfolding
$\langle M \rangle$	$(2.182 \pm 0.030) \times 10^{1}$	$(2.064 \pm 0.043) \times 10^{1}$	$(2.173 \pm 0.047) \times 10^{1}$
$\langle M^2 \rangle$	$(6.049\pm 0.222)\times 10^2$	$(5.360\pm 0.350)\times 10^2$	$(6.115\pm 0.364)\times 10^2$
$\langle Q \rangle$	$(1.006 \pm 0.037) \times 10^{-2}$	$(1.582 \pm 0.038) \times 10^{-2}$	$(1.090 \pm 0.040) \times 10^{-2}$
$\left\langle Q^{2} ight angle$	$(1.216\pm 0.082)\times 10^{-2}$	$(1.508 \pm 0.074) \times 10^{-2}$	$(1.207 \pm 0.074) \times 10^{-2}$
$\langle W \rangle$	$(1.498 \pm 0.025) \times 10^{-1}$	$(1.231\pm 0.029)\times 10^{-1}$	$(1.499 \pm 0.029) \times 10^{-1}$
$\langle W^2 \rangle$	$(3.370 \pm 0.113) \times 10^{-2}$	$(2.421 \pm 0.128) \times 10^{-2}$	$(3.374 \pm 0.128) \times 10^{-2}$

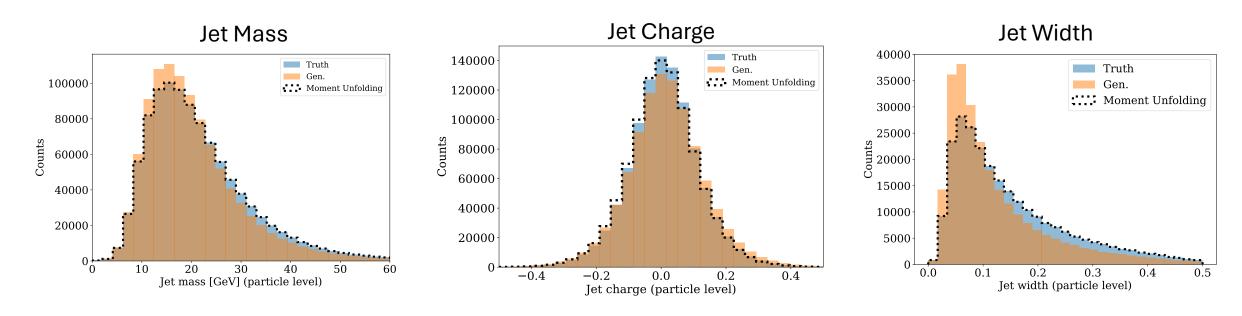
Momentum dependence

$$g[z,\vec{\beta}(p_T)] = \frac{1}{P} e^{-\sum_{a=1}^n \beta_a(p_T) z^a}$$

Empirically, the ratio of spectra is approximately linear so we parametrize β_a as linear functions

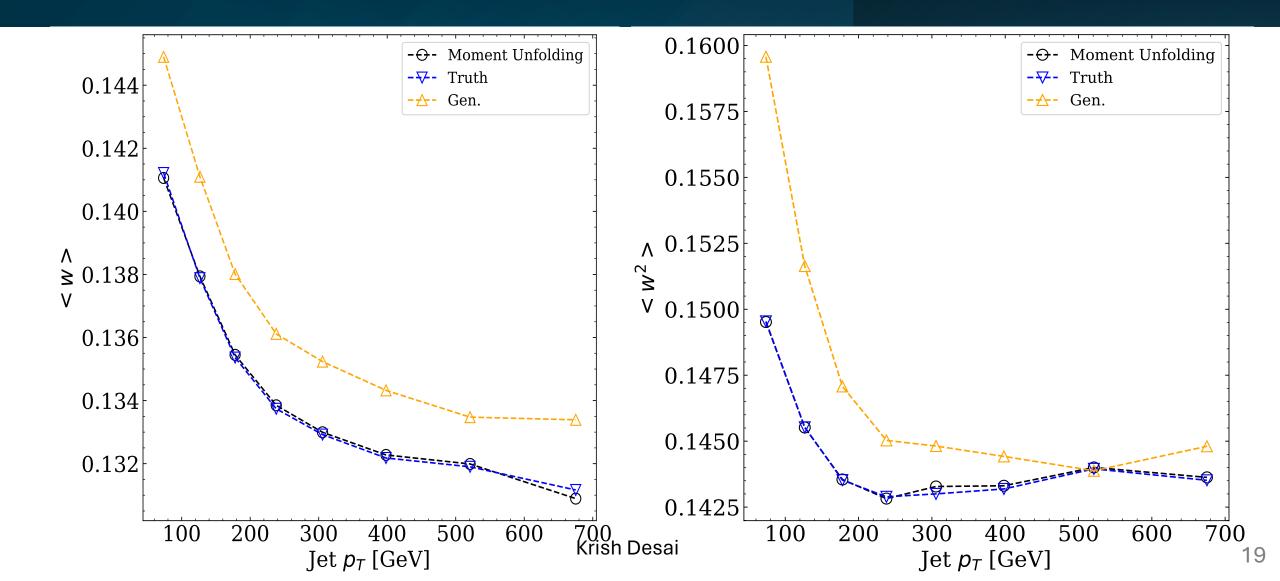
$$\vec{\beta}(p_T) = \overrightarrow{\beta^{(0)}}(p_T) + p_T \overrightarrow{\beta^{(1)}}(p_T)$$

Momentum Dependence

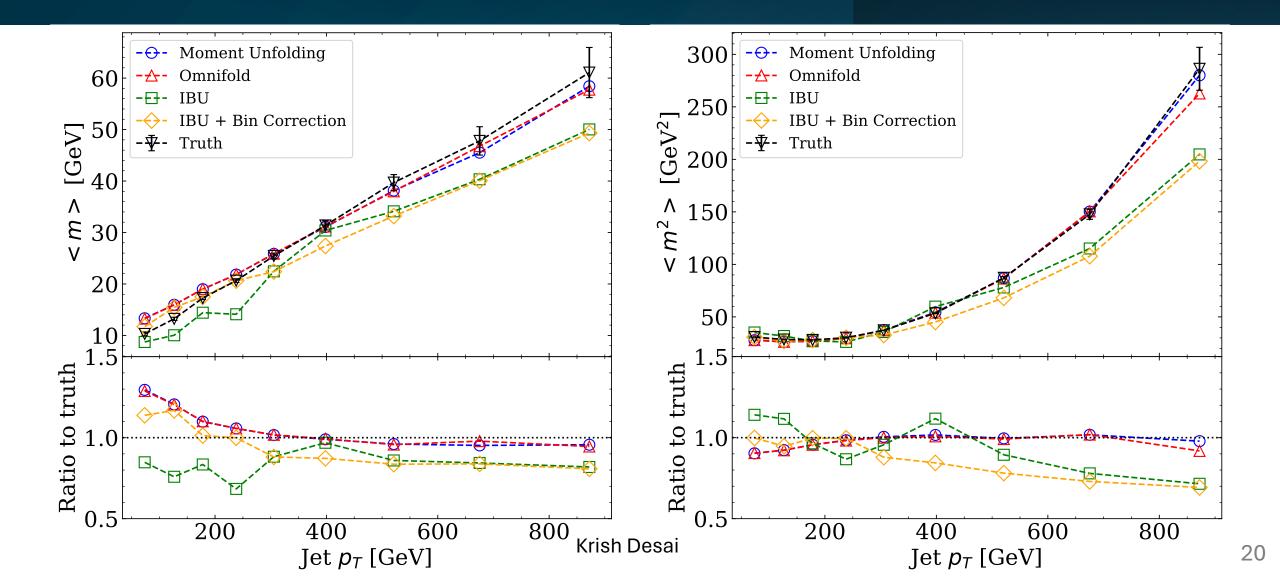


- Substructure variables unfolded conditional on jet p_T but plotted inclusively
- Note greater accuracy of unfolding

Jet variables as a function of p_T



Comparison to other methods



Bonus: Unfold entire distributions?

Infinite Moment Unfolding

$$g(x) = e^{\lambda_0 + \lambda_1 x + \lambda_2 x^2 + \cdots} = e^{f(x)}$$

Success:

- Analytically can be proven to converge to MLE

Problems:

- Renormalization
- Generator stabilization

Conclusion and Outlook

Introduced novel reweighting-based GAN-like model to unfold moments without binning artifacts.

Successfully unfolded moments of jet substructure variables

Precisely computed momentum dependence of moments

Infinite Unfolding and Renormalization

Questions?

