

A story which illustrates that

Unfolding is not unsmearing

or, looking at the math, only very little unsmearing ...

Michael Schmelling / MPI for Nuclear Physics

Alice Wise Experimentalist **Global Dynamics**

source: generated by AI

Bob Smart Experimentalist SaharaTech

Eve Hibou Theorist Saint Marie IAS

source: generated by AI

Jack Trader Sales Manager ACME Instruments

New Physics theory prediction by Eve

source: generated by Al

"catalized ALP conversion"

In a strong *B*-field that contributes an axial-vector, γ -rays with $E = m_{\rm ALP}$ passing through Gd-vapour resonantly convert into ALPs. A measurement requires a broad-band γ -ray source and a good spectrometer.

experimental signature:

ACME Instruments high-resolution spectrometers

source: generated by AI

Jack Trader:

- all detectors by ACME Instruments are perfectly linear
- the response is very well known
- correction for detector effects requires only linear algebra
 - discrete unfolding problem for a counting experiment:

$$a_i = \sum_{j=1}^{n_b} R_{ij} b_j$$
 $i=1,\ldots,n_a$ or $a=R \ b$

- a: vector of bin contents of the measured distribution
- \blacktriangleright R: response matrix
- b: vector of bin contents of the true distribution

response matrices for ACME Instruments spectrometers

 detector 1: high resolution and uniform efficiency; available in a year

detector 2: low resolution and uniform efficiency; on stock

detector 3: good resolution but non-uniform efficiency; sold out; not produced anymore

\diamond expected measurements a = R b

\diamond corrected measurements $b = R^{-1}a$

Unfolding is not unsmearing

Competing experimental groups

source: generated by Al

source: generated by AI

Alice Wise

- \square γ -ray source with rate of 100 Hz
- prefer to wait until detector 1 becomes available
- start measurements with a delay of 1 year

- Bob Smart
 - γ -ray source with rate of 1 Hz
 - wants to start measurements immediately
 - buy detector 2 and rely on unfolding

results with $N=2 imes 10^7$ events ightarrow

raw data

unfolded data

Unfolding is not unsmearing

→ use the best possible detector!

→ understand the limitations of unfolding!

Outline

- $\square Diagonalization of a = R b$
- Information content of the data
- Estimating the truth
- Summary

some linear algebra that shows what affects all unfolding methods \rightarrow

1 Diagonalization of a = R b

 \diamond expand b into eigenvectors of a symmetric positive definite matrix I

 $I = R^T C_a^{-1} R = V S V^T$ with $V V^T = V^T V = 1$

R: response matrix

- \triangleright C_a : covariance matrix of the measurements a
- ► I: inverse of the covariance matrix C_b when estimating b by a least-squares fit; Fisher Information matrix for Poisson or gaussian distributed data
- ▶ V: "Fisher basis" columns of V are the orthonormal eigenvectors of I
- ▶ S: diagonal matrix of the eigenvalues sorted in decreasing order

results ->

 \square expansion of b in the Fisher basis \rightarrow expansion coefficients β

 $b = V \beta$

 \square allow for (over-)constrained problems and determine β by a least-squares fit

$$\chi^2 = \left(a - R \ V \ \beta\right)^T C_a^{-1} \left(a - R \ V \ \beta\right) \stackrel{!}{=} \min$$

best-fit values

$$\beta = S^{-1} \alpha$$
 with $\alpha = V^T R^T C_a^{-1} a$

diagonal covariance matrices

$$C_{lpha}=S$$
 and $C_{eta}=S^{-1}$

 \blacktriangleright minimum χ^2

$$\chi^2_{\mathsf{min}} = a^{\,T} \, C_a^{-1} \, a - eta^{\,T} \, C_eta^{-1} \, eta pprox n_a - n_b \ll N$$

2 Information content of the data

number of events used to measure the expansion coefficients

 \square consider a Poisson distributed variable x = n with error $\sigma_x = \sqrt{n}$

$$\left(rac{x}{\sigma_x}
ight)^2 = \left(rac{n}{\sqrt{n}}
ight)^2 = n$$

• counting experiment: $(x/\sigma_x)^2$ is the number of events in a measurement x

Inumber of events n_i contributing to the measurements β_i :

$$egin{aligned} n_i &= eta_i^2 \, S_{ii} \ &\sum n_i &= eta^T \, C_eta^{-1} eta &= a^T \, C_a^{-1} \, a - \chi^2_{ ext{min}} pprox \sum a_i = N \end{aligned}$$

the n_i sum up to (approximately) the total number of recorded events

 \diamond contribution of expansion coefficients to the total variance of b

 \Box total variance: sum of diagonal elements of C_b

$$\operatorname{Tr}(C_b) = \operatorname{Tr}(V \; C_eta \; V^T) = \operatorname{Tr}(S^{-1}) = \sum_i \; rac{1}{S_{ii}}$$

→ findings regarding expansion coefficients:

- 1. they contribute uncorrelated independent information
- **2.** effective number of events in β_i : $\beta_i^2 S_{ii}$
- **3.** contribution of β_i to the total variance of $b: 1/S_{ii}$

β_i with small S_{ii} are not measured but dominate the variance

comparison of toy-detectors \rightarrow

the data contribute mainly to the first few coefficients

> the well measured expansion coefficients allow for very efficient data reduction

- the variance explodes when using too many coefficients
 - how to construct an estimate of the true density is not obvious

3 Estimating the truth

 \diamond e.g. truncation: use a damping matrix D that selects the leading m coefficients

$$b = V \beta \quad \Rightarrow \quad \hat{b} = V D \beta \quad \text{with} \quad D = \begin{pmatrix} 1_m & 0 \\ 0 & 0 \end{pmatrix} \quad (m \text{-dim unit matrix})$$

l relation between b and \hat{b} : posterior response matrix P

 $\hat{b} = V D (V^T V) \beta = P b$ with $P = V D V^T$ and $\operatorname{Tr}(P) = m$

- the truncated (regularized) estimate is a biased version of the truth
- ► the bias is quantified by P in the same way as R quantifies the bias of the data
- perfect unfolding with P = 1 requires D = 1

Estimating P when D is defined implicitly by an unfolding method

exploit the relation between posterior response and covariance matrix

$$C_{\hat{b}} = P \ C_b \ P^T$$
 with $C_b = (R^T \ C_a^{-1} R)^{-1}$

use factorisation of symmetric positive definite matrices (SPDMs) into identical SPDMs

 $C = C^{1/2} C^{1/2}$

 \square solving for P

$$P = C_{\hat{b}}^{1/2} C_{b}^{-1/2} = C_{\hat{b}}^{1/2} (R^T C_a^{-1} R)^{1/2}$$

 \square number of coefficients actually used to construct \hat{b}

 $m = \operatorname{Tr}(P)$

illustration for toy-detector 2 ->

4 Summary

- \diamond already the discrete linear unfolding problem a = R b is tough
 - \square expansion of b into eigenvectors of $R^T C_a^{-1} R$ diagonalizes the problem
 - > the expansion coefficients are unbiased and statistically independent
 - ▶ the well measured coefficients allow for very efficient data reduction
 - finite resolution entails substantial loss of information
 - improvement of resolution requires LARGE statistics or extra information
 - \blacksquare the real problem is to construct a good estimate for b with well defined properties
 - ▶ with truncation, a fluctuation in a single coefficient may cause artefacts everywhere
 - \blacksquare raw data are characterised by the R, unfolded data by the posterior response P

 $P = C_{\hat{h}}^{1/2} (R^T C_a^{-1} R)^{1/2}$

▶ Tr(P): number of expansion coefficients effectively used