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New Physics theory prediction by Eve

< “catalized ALP conversion”

In a strong B-field that contributes an axial-vector, y-rays with

E = ma1p passing through Gd-vapour resonantly convert into
ALPs. A measurement requires a broad-band y-ray source and a
good spectrometer.

experimental signature:
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ACME Instruments high-resolution spectrometers

< Jack Trader:
@ all detectors by ACME Instruments are perfectly linear
O the response is very well known
O correction for detector effects requires only linear algebra
» discrete unfolding problem for a counting experiment:

Tp
a,i:ZRUbj t=1,...,m, or a=Rb
j=1

» a: vector of bin contents of the measured distribution
» R:response matrix
» b: vector of bin contents of the true distribution



« response matrices for ACME Instruments spectrometers
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% corrected measurements b = R~ 1a
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Competing experimental groups

< Alice Wise
@ +-ray source with rate of 100 Hz
O prefer to wait until detector 1 becomes available
O start measurements with a delay of 1 year

< Bob Smart
@ +-ray source with rate of 1 Hz
O wants to start measurements immediately
O buy detector 2 and rely on unfolding

results with N = 2 x 107 events =»



% raw data

1o perfect detector: Tr(C)=20000000
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< unfolded data
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Lessons learned and next steps

=» use the best possible detector!

=» understand the limitations of unfolding!

Outline
O Diagonalizationof a = R b
O Information content of the data
@ Estimating the truth
@ Summary

some linear algebra that shows what affects all unfolding methods =»



1 Diagonalization of a = R b

< expand b into eigenvectors of a symmetric positive definite matrix I

I=RTC,*R=VSVT with VVT=vTVv=1

\4

R: response matrix

v

C,: covariance matrix of the measurements a

v

I: inverse of the covariance matrix Cj, when estimating b by a least-squares fit;
Fisher Information matrix for Poisson or gaussian distributed data

v

V': “Fisher basis” — columns of V" are the orthonormal eigenvectors of I

v

S': diagonal matrix of the eigenvalues — sorted in decreasing order

results =¥



O expansion of b in the Fisher basis =» expansion coefficients 3
b=V§p
@ allow for (over-)constrained problems and determine (3 by a least-squares fit
x2 = (a—RV[S)TC;1 (a— RV B) =min
» best-fit values
B=S"ta with a=VTRTC; a
» diagonal covariance matrices
Cyx=S and Cz=8"
» minimum x?

Xain=aTC.ta—BTCyt prng —my < N



2 Information content of the data

< number of events used to measure the expansion coefficients

@O consider a Poisson distributed variable z = n with error 0, = /1
2 2
2\ (),
(%) -(5)
» counting experiment: (z/0,)? is the number of events in a measurement

@ number of events n; contributing to the measurements f3;:
n, = 612 Su
Zni =BTCy'p=a"Crla—xZ, ~ Z a, =N

» the n, sum up to (approximately) the total number of recorded events



« contribution of expansion coefficients to the total variance of b

O total variance: sum of diagonal elements of C,,

Te(Cy) = Te(V Gy V) = Te(S 1) = Y Si

=¥ findings regarding expansion coefficients:
1. they contribute uncorrelated independent information
2. effective number of events in ;: 325

3. contribution of (3; to the total variance of b: 1/.Sy;

; with small S;; are not measured but dominate the variance

comparison of toy-detectors =¥
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@ the data contribute mainly to the first few coefficients
» the well measured expansion coefficients allow for very efficient data reduction

@ the variance explodes when using too many coefficients
» how to construct an estimate of the true density is not obvious
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3 Estimating the truth

« e.g. truncation: use a damping matrix D that selects the leading m coefficients

. 1, O
b=Vp = b=VDpB with D=| " (m-dim unit matrix)
0 0

@ relation between b and b: posterior response matrix P
b=VD(VTV)p=Pb with P=VDVT and Tr(P)=m

» the truncated (regularized) estimate is a biased version of the truth
» the bias is quantified by P in the same way as R quantifies the bias of the data
» perfect unfolding with P = 1 requires D =1



Estimating P when D is defined implicitly by an unfolding method

< exploit the relation between posterior response and covariance matrix

C,=PC,PT with C,=(RTC;'R)!

O use factorisation of symmetric positive definite matrices (SPDMs) into identical SPDMs
C = Cl/2 01/2
O solving for P
P=cC?c,V? = C}/*(RTC; ' R)M?

O number of coefficients actually used to construct b

m = Tr(P)

illustration for toy-detector 2 =¥
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< already the discrete linear unfolding problem a = R b is tough
O expansion of b into eigenvectors of RT C; ! R diagonalizes the problem
» the expansion coefficients are unbiased and statistically independent
» the well measured coefficients allow for very efficient data reduction
@ finite resolution entails substantial loss of information
» improvement of resolution requires LARGE statistics or extra information
@ the real problem is to construct a good estimate for b with well defined properties
» with truncation, a fluctuation in a single coefficient may cause artefacts everywhere
O raw data are characterised by the R, unfolded data by the posterior response P

P=C}*(RTC,'R)"/?

» Tr(P): number of expansion coefficients effectively used



