

A story which illlustrates that

Unfolding is not unsmearing

or, looking at the math, only very little unsmearing . . .

Michael Schmelling / MPI for Nuclear Physics

source: generated by AI

Alice Wise **Experimentalist** Global Dynamics

source: generated by AI

Bob Smart Experimentalist SaharaTech

source: generated by AI Eve Hibou **Theorist** Saint Marie IAS

source: generated by AI

Jack Trader Sales Manager ACME Instruments

New Physics theory prediction by Eve

❖ "catalized ALP conversion"

In a strong B -field that contributes an axial-vector, γ -rays with $E = m_{\text{ALP}}$ passing through Gd-vapour resonantly convert into ALPs. A measurement requires a broad-band γ -ray source and a good spectrometer.

source: generated by AI experimental signature:

ACME Instruments high-resolution spectrometers

source: generated by AI

❖ Jack Trader:

- all detectors by ACME Instruments are perfectly linear
- the response is very well known

 \Box correction for detector effects requires only linear algebra

 \triangleright discrete unfolding problem for a counting experiment:

$$
a_i = \sum_{j=1}^{n_b} R_{ij} b_j \qquad i = 1, \ldots, n_a \quad \text{or} \quad a = R b
$$

- a : vector of bin contents of the measured distribution
- $R:$ response matrix
- b : vector of bin contents of the true distribution

❖ response matrices for ACME Instruments spectrometers

high resolution and uniform efficiency; available in a year

detector 2: low resolution and uniform efficiency; on stock

detector 3: good resolution but non-uniform efficiency; sold out; not produced anymore

\triangleleft expected measurements $a = R b$

 \triangleleft corrected measurements $b = R^{-1}a$

Competing experimental groups

ce: generated by AI

source: generated by AI

❖ Alice Wise

- \Box γ -ray source with rate of 100 Hz
- **prefer to wait until detector 1 becomes available**
- \Box start measurements with a delay of 1 year

- ❖ Bob Smart
	- \Box γ -ray source with rate of 1 Hz
	- wants to start measurements immediately
	- \Box buy detector 2 and rely on unfolding

results with $N = 2 \times 10^7$ events \rightarrow

❖ raw data

❖ unfolded data

→ use the best possible detector!

\rightarrow understand the limitations of unfolding!

Outline

- **Diagonalization of** $a = R b$
- \Box Information content of the data
- \Box Estimating the truth
- **Summary**

some linear algebra that shows what affects all unfolding methods \rightarrow

1 Diagonalization of $a = R b$

 \bullet expand b into eigenvectors of a symmetric positive definite matrix I

 $I = R^T C_a^{-1} R = V S V^T$ with $V V^T = V^T V = 1$

\blacktriangleright R: response matrix

- \triangleright C_a : covariance matrix of the measurements a
- \blacktriangleright I: inverse of the covariance matrix C_b when estimating b by a least-squares fit: Fisher Information matrix for Poisson or gaussian distributed data
- \triangleright V: "Fisher basis" columns of V are the orthonormal eigenvectors of I
- \triangleright S: diagonal matrix of the eigenvalues sorted in decreasing order

results \rightarrow

 \Box expansion of b in the Fisher basis \rightarrow expansion coefficients β

 $b = V \beta$

allow for (over-)constrained problems and determine β by a least-squares fit \Box

$$
\chi^2 = \left(a - R V \beta\right)^T C_a^{-1} \left(a - R V \beta\right) \stackrel{!}{=} \text{min}
$$

 \blacktriangleright best-fit values

$$
\beta = S^{-1} \alpha \quad \text{with} \quad \alpha = V^T R^T C_a^{-1} a
$$

 \blacktriangleright diagonal covariance matrices

$$
C_{\alpha} = S \quad \text{and} \quad C_{\beta} = S^{-1}
$$

 \blacktriangleright minimum χ^2

$$
\chi^2_{\text{min}} = a^T C_a^{-1} a - \beta^T C_\beta^{-1} \beta \approx n_a - n_b \ll N
$$

2 Information content of the data

❖ number of events used to measure the expansion coefficients

consider a Poisson distributed variable $x=n$ with error $\sigma_x=\sqrt{n}$

$$
\left(\frac{x}{\sigma_x}\right)^2 = \left(\frac{n}{\sqrt{n}}\right)^2 = n
$$

D counting experiment: $(x/\sigma_x)^2$ is the number of events in a measurement x

number of events n_i contributing to the measurements β_i : П

$$
n_i = \beta_i^2 \ S_{ii}
$$

$$
\sum n_i = \beta^T C_{\beta}^{-1} \beta = a^T C_a^{-1} a - \chi_{\text{min}}^2 \approx \sum a_i = N
$$

the n_i sum up to (approximately) the total number of recorded events

 \triangle contribution of expansion coefficients to the total variance of b

 \Box total variance: sum of diagonal elements of C_b

$$
\text{Tr}(\,C_b) = \text{Tr}(\,V\,\,C_\beta\,\,V^{\,T}) = \text{Tr}(S^{-1}) = \sum_i\,\frac{1}{S_{ii}}
$$

 \rightarrow findings regarding expansion coefficients:

- **1.** they contribute uncorrelated independent information
- **2.** effective number of events in β_i : $\beta_i^2 S_{ii}$
- **3.** contribution of β_i to the total variance of b : $1/S_{ii}$

β_i with small S_{ii} are not measured but dominate the variance

comparison of toy-detectors \rightarrow

 \Box the data contribute mainly to the first few coefficients

- \triangleright the well measured expansion coefficients allow for very efficient data reduction
- \Box the variance explodes when using too many coefficients
	- \triangleright how to construct an estimate of the true density is not obvious

3 Estimating the truth

 \triangle e.g. truncation: use a damping matrix D that selects the leading m coefficients

$$
b = V \beta \rightarrow \hat{b} = V D \beta
$$
 with $D = \begin{pmatrix} 1_m & 0 \\ 0 & 0 \end{pmatrix}$ (*m*-dim unit matrix)

■ relation between *b* and \hat{b} : posterior response matrix *P*

 $\hat{b} = V D (V^T V) \beta = P b \quad \text{with} \quad P = V D V^T \quad \text{and} \quad \text{Tr}(P) = m$

- \rightarrow the truncated (regularized) estimate is a biased version of the truth
- the bias is quantified by P in the same way as R quantifies the bias of the data
- **Department in the perfect unfolding with** $P = 1$ requires $D = 1$

Estimating P when D is defined implicitly by an unfolding method

❖ exploit the relation between posterior response and covariance matrix

$$
C_{\hat{b}} = P C_b P^T
$$
 with $C_b = (R^T C_a^{-1} R)^{-1}$

use factorisation of symmetric positive definite matrices (SPDMs) into identical SPDMs H

 $C=C^{1/2}C^{1/2}$

$$
P = C_{\hat{b}}^{1/2} C_b^{-1/2} = C_{\hat{b}}^{1/2} (R^T C_a^{-1} R)^{1/2}
$$

number of coefficients actually used to construct \hat{b} п

 $m = Tr(P)$

illustration for toy-detector $2 \rightarrow$

4 Summary

- already the discrete linear unfolding problem $a = R b$ is tough
	- expansion of b into eigenvectors of $R^T C_a^{-1} R$ diagonalizes the problem
		- \blacktriangleright the expansion coefficients are unbiased and statistically independent
		- \blacktriangleright the well measured coefficients allow for very efficient data reduction
	- finite resolution entails substantial loss of information
		- \triangleright improvement of resolution requires LARGE statistics or extra information
	- the real problem is to construct a good estimate for b with well defined properties
		- \triangleright with truncation, a fluctuation in a single coefficient may cause artefacts everywhere
	- raw data are characterised by the R , unfolded data by the posterior response P

 $P = C_b^{1/2} (R^T C_a^{-1} R)^{1/2}$

 \blacktriangleright Tr(P): number of expansion coefficients effectively used