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Overview
Binned maximum likelihood unfolding is 
the genuine solution to Poisson nature 
of counting experiments

● It gives the smallest unbiased variance

Binned profile likelihood unfolding
● Background subtraction accounted for directly in likelihood
● Systematic uncertainties accounted for directly during unfolding as nuisance 

parameters
● Profile nuisance parameters during unfolding to make most use of data 
● Simultaneous fit across categories and all bins
● Expensive numerical minimization 
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Binned maximum likelihood unfolding
Any template shape fit can be expressed as a many-channel counting experiment, 
negative log likelihood can be written as

nexp
i,p: Yield for each reco bin and process

μp: Signal strength modifier for each process
● Each gen bin is represented by a separate process (template), scaled by the μp

μ1
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Binned profile maximum likelihood unfolding
Any template shape fit can be expressed as a many-channel counting experiment, 
negative log likelihood can be written as

nexp
i,p: Yield for each reco bin and process

μp: Signal strength modifier for each process
● Each gen bin is represented by a separate process (template), scaled by the μp

Θk: Nuisance parameter constrained to unit Gaussian for each systematic uncertainty
κ: size of systematic, 3D tensor of reco bins, processes, 
and nuisance parameters (log normal variations)
● The templates are scaled 

correlated for each 
systematic uncertainty

● #Histograms ~ #gen bins ∙ #systematics
● Potentially 10’s of thousands of histograms

θk



 5

 

Binned profile maximum likelihood unfolding
Uncertainties/ covariances can be inferred from likelihood function

● Exact: Likelihood scan – computationally expensive/slow
● In Gaussian limit: Covariance = Inverse Hessian matrix (second derivative)

In summary
● Challenging minimization problem
● Convergence to global minimum required
● Uncertainties/ covariances 

need to be computed accurately 
● Time/memory of minimization 

must be kept under control
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Example 1: multi process unfolding in CMS
tZq, ttZ, and tWZ are mutual backgrounds
● Simultaneously unfold differential cross sections
● Combined fit of tZq and ttZ enriched selection
● Fit reco variable and event classifier to separate gen bins and processes

 [CMS-PAS-TOP-23-004]
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https://cds.cern.ch/record/2893862?ln=en
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Obtain unfolded cross sections together with full covariance matrix
● Allow consistent re interpretation e.g. in EFT (operators effect both processes)

Specifications: 144 reco bins, 8 gen bins 13 processes in total, ~400 systematics
● O(1,000) histograms
● Computationally “easy” with today's hardware
● Done on traditional CMS way with Combine (roofit via minuit) 

 [CMS-PAS-TOP-23-004]

Example 1: multi process unfolding in CMS

0

2

4

6

8

10

(Z
) 

[f
b
/G

e
V

]
T

/d
p

σ
d

Stat. + syst. unc.

Stat. unc.

SMσ

Theory unc.

Z+tWZtt

CMSPreliminary  (13 TeV)­1138 fb

0 50 100 150 200 250 300

(Z) [GeV]
T

p

0.5

1

1.5

P
re

d
. 
/ 
D

a
ta

0

1

2

3

4

5

6

7

8

9

(Z
) 

[f
b
/G

e
V

]
T

/d
p

σ
d

Stat. + syst. unc.

Stat. unc.

SMσ

Theory unc.

tZq

CMSPreliminary  (13 TeV)­1138 fb

0 50 100 150 200 250 300

(Z) [GeV]
T

p

0.5

1

1.5

P
re

d
. 
/ 
D

a
ta

https://cds.cern.ch/record/2893862?ln=en


 8

 

Example 2: W helicity in CMS
At LO at LHC, W produced via qq
Due to pure left handed coupling, W helicity determined 
by its direction relative to incoming quark
● W helicity contains information about PDFs

Left-handed

Right-handed

 [PRD 102 (2020) 092012]

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.092012
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Decay (anti) lepton prefers to travel (alongside) against direction of W spin
● Polarization states can be extracted from charged lepton |η| - pT distribution
● Avoid dependence on less precise MET

Measure transverse polarization states for W+ and W- in bins of boson rapidity
● Longitudinal component fixed to theory prediction with inflated uncertainty
● Separate signal template for each gen bin

Example 2: W helicity in CMS
 [PRD 102 (2020) 092012]

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.092012
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Muons

Electrons

Example 2: W helicity in CMS
Reco distributions for one charge

 [PRD 102 (2020) 092012]

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.092012
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Example 2: W helicity in CMS
Unfolded differential cross sections with full covariance matrix 

Specifications: 
● 3320 reco bins, 40 gen bins, 78 processes in total
● 1354 systematic uncertainties

● Theory (PDFs, QCD scale, …) Experiment (efficiencies, lepton 
energy/momentum scale, backgrounds, …)

● O(100,000) histograms
● It’s “challenging”

 [PRD 102 (2020) 092012]

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.092012
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Also measured:
● Double differential cross section in |η| and pT for W+ and W- simultaneously
● 2*18*18 = 648 gen bins
● 2448 reco bins
● 1051 nuisance parameters

Example 2: W helicity in CMS
 [PRD 102 (2020) 092012]

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.092012
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The tool: minimization with tensorflow
Roofit via minuit insufficient 
● Limited stability and efficiency (e.g. can not be parallelized)

Tensorflow library with automatic gradient computation via back propagation for 
minimization: 
● Second derivative, trust region based minimizer to reliably find global minimum 

[arXiv:1506.07222]
● Fast, numerically accurate, stable
● Parallelized vector processing units and/or multiple threads
● Sparse tensor implementation to minimize memory consumption (if response 

matrix is close-to-diagonal, e.g. leptonic observables)
● See also [talk at PyHEP 2020 from J. Bendavid]

Future upgrade to newer tools foreseen, such as tensorflow 2, JAX, ... 
● More efficient computation of hessian matrix

https://arxiv.org/abs/1506.07222
https://indico.cern.ch/event/882824/contributions/3932491/
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The future of profile likelihood unfolding
Previous analysis was “only” on 2016 data, a small fraction of current data and 
what will come with Run 3/ HL LHC
● More data will allow finer & more gen and reco bins
● More processes can be measured simultaneously
● Combination of data taking periods and improved precision will require more 

nuisance parameters
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Linearized profile likelihood unfolding
3D tensor will grow to an unmanageable size
● Memory and computation 
● #Histograms ~ #gen bins ∙ #systematics

Linearize the dependence of the signal 
(sum of gen bins) on nuisance parameters

● Treating signal strength multiplier 
similar to nuisance parameters

● Signal tensor reduced to 2D
● #Histograms ~ #gen bins + #systematics

μ1

μ1

Exact

Linearized
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Linearized profile likelihood unfolding

Size of systematic effect vi,k,sig
exp does not directly depend on individual gen bins 

anymore
● This assumption could potentially lead to a bias
● But signal strength modifier are unconstrained, starting value can be chosen freely
● Iterative procedure applied to mitigate bias

1) Initial fit
2) Re compute histograms with reweighting gen bin contribution via postfit signal 

strength modifiers 
3) Repeat fit
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Linearized profile likelihood unfolding

Size of gen bin variation vi,l,sig
exp is in principle arbitrary

● Small dependency observed – mainly for convergence of iterative procedure
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Linearized profile likelihood unfolding
Validation: benchmark linearized likelihood unfolding vs. exact likelihood unfolding
● Real world example: use MiNNLO MC with realistic detector simulation and unfold 

Z boson dilepton pT, |Y|
● 200 gen bins 
● 400 reco bins
● 41 Explicit nuisance parameters (PDFs + αS) + implicit MC stat. uncertainties

● Inject pseudo data by rewighting to HERAPDF2.0 PDF set (nominal is PDF4LHC21)
● Do central values and uncertainties agree? 

100 fb-1 (13TeV)

Detector level
Prefit
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Linearized profile likelihood unfolding
Extracted differential cross section from initial fit
● Almost perfect agreement in central values between exact and linearized 

unfolding
● Deviations much smaller than stat. uncertainty

100 fb-1
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Linearized profile likelihood unfolding
Relative uncertainties from initial fit
● Good agreement in total and data stat. 

uncertainty
● Larger relative disagreement for some 

individual sources of uncertainties
e.g. MC stat. (green) and PDF (red)

 



 21

Linearized profile likelihood unfolding
Relative uncertainties
● Good agreement in total and data stat. 

uncertainty
● Larger relative disagreement for some 

individual sources of uncertainties
e.g. MC stat. (green) and PDF (red)

Agreement improves through iterative 
procedure of linearized unfolding
● Re compute histograms with 

reweighting gen bin contribution via 
postfit signal strength modifiers – and 
repeat fit

● Size of gen bin variation vi,l,sig
exp chosen 

as 1% of gen bin contribution
● Better choice possible, e.g. based on 

uncertainty
● Studies ongoing 
 

1 iteration
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Summary

 

Unfolded distributions provide input for global PDF/EFT/… fits 

Binned profile likelihood unfolding is established as a reliable method
● Problem requires expensive numerical minimization

Modern libraries with automatic differentiation via back propagation allow robust 
and fast minimization
● Unfolding with up to 1000 gen bins well possible

However, complexity may grow soon to unmanageable level
● Linearization procedures can provide remedy 
● Validation shows agreement with exact likelihood unfolding can be restored via 

iterative procedure (1 iteration sufficient in realistic toy study)



Backup
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