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What is Combine?

3

Combine is the software package used for statistical analyses by the CMS collaboration 
Built around the ROOT, RooFit, and RooStats packages (+ additional libraries for optimised algebraic calculations)

Alessandro Tarabini
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-1L = 4.6-4.8 fb
 = 7 TeVsCMS,  

Originally designed for searches for 
the Higgs boson and their 

combination…

10.1016/j.physletb.2012.02.064

… it has been extended and used in numerous 
publications for the CMS Collaborations
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Combine is public!

4

While Combine is developed for CMS analysis, and with CMS users in mind, the code is public and can 
be compiled in standalone mode 

Alessandro Tarabini

Website

Paper

CMS will release full statistical models of analyses, the one for the Higgs Boson discovery is already 
available here

https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/latest/
https://inspirehep.net/literature/2775812
https://new-cds.cern.ch/records/c2948-e8875


How Combine works? — The datacard
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Datacard: configuration file in a plain text format that represents the primary input for Combine

Example of a simple datacard for a counting experiment



How Combine works? — The datacard
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Number of bins/channel
Number of processes
Number of nuisance parameters

Unique channel label
Number of observed events in a channel

Process label
Process ID (<=0 for signal) 
Expected number of events

Name Type Effect on process

Systematic uncertainties

Datacard: configuration file in a plain text format that represents the primary input for Combine

Example of a simple datacard for a counting experiment



•The probability to observe  events is described by a 
Poisson distribution 

•  represents the total number of expected events 
•One signal process (ppX) 
•Two background processes (WW and tt) 
•Each systematic uncertainty results in an associated 

probability term

n

λ(r, ⃗ν)

How Combine works? — text2workspace
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text2workspace.py: Convert info in the datacard into a binary ROOT file containing the statistical 
model in the form of a RooFit workspace

p(n, ⃗y; r, ⃗ν) =
λ(r, ⃗ν)n

n!
e−λ(r, ⃗ν) 1

2π
e−(νlumi−ylumi)2e−(νxs−yxs)2 (νnWW)ynWW

ynWW!
e−(ννnWW)

→ n = 0, ylumi = yxs = 0, ynWW = 4

→ λ(r, ⃗ν) = r 1.47 (1.11)νlumi (1.2)νxs + 0.22 (1.11)νlumi + 0.64 (1.11)νlumi
νnWW

0.64
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•Default physics model: the rate of every signal process 
is multiplied by a common factor  

•Customised physics model: scaling signals with 
different scaling parameters, parametrisation of signal 
processes for interpretations ( -framework, EFT, AC, …), 
signal and background interference, …

r

κ

p(n, ⃗y; r, ⃗ν) =
λ(r, ⃗ν)n

n!
e−λ(r, ⃗ν) 1

2π
e−(νlumi−ylumi)2 e−(νxs−yxs)2 (νnWW)ynWW

ynWW!
e−(ννnWW)
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What are we doing? (default binned model)
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not used because of the overwhelming QCD background while the VBF mode has low sensitivity and
is not included in this combination, although CMS recently published their first result in this specific
channel [71].

The signal yield in a category k, nsignal(k), can be expressed as a sum over all possible Higgs boson
production processes i, with cross section �

i
, and decay channels f , with branching ratio BR f :

nsignal(k) = L(k) ⇥
X

i

X

f

(
�
i
⇥ A

f

i
(k) ⇥ " f

i
(k) ⇥ BR f

)
,

= L(k) ⇥
X

i

X

f

µ
i
µf

(
�SM
i
⇥ A

f

i
(k) ⇥ " f

i
(k) ⇥ BR f

SM

) (7)

where L(k) represents the integrated luminosity, A
f

i
(k) the detector acceptance, and " f

i
(k) the overall

selection and analysis e�ciency for the signal category k. The symbols µ
i

and µf are the production and
decay signal strengths defined in Section 2.3, respectively. As Eq. 7 shows, the measurements considered
in this paper are only sensitive to the products of the cross sections and branching ratios, �

i
⇥ BR f .

Additional information or assumptions are needed to determine the cross sections and branching ratios
separately.

In the ideal case, each category would only select signal events from a given production process and decay
channel. Most decay channels approach this ideal case, but, in the case of the production processes, the
categories are much less pure and there is important cross-contamination in most channels.

3.2. Statistical treatment

The overall statistics methodology used in the combination to extract the parameters of interest in various
parameterisations is that adopted also for the individual ATLAS and CMS combinations, as published
in Refs. [13,14]. It has been developed by the ATLAS and CMS Collaborations in the context of the LHC
Higgs Combination Group and is described in Ref. [72]. Some details of this procedure are important for
this combination and are briefly reviewed here.

The statistical treatment of the data is based on the standard LHC data modelling and handling toolkits,
RooFit [73], RooStats [74] and HistFactory [75]. The parameters of interest ~↵, e.g. signal strengths
(µ), coupling modifiers (), production cross sections, branching ratios or ratios of the above quantities,
are estimated with their corresponding confidence intervals via the profile likelihood ratio test statistic
⇤(~↵) [76]. The latter depends on one or more parameters of interest, as well as on the nuisance parameters
~✓, which reflect various experimental or theoretical uncertainties.

⇤(~↵) =
L
�
~↵ ,

ˆ̂
~✓(~↵)
�

L(~̂↵, ~̂✓)
(8)

The likelihood functions in the numerator and denominator of this equation are built using products of
signal and background probability density functions (pdfs) in the discriminating variables. The pdfs are
derived from simulation for the signal and from both data and simulation for the background, as described
in Refs. [13, 14]. The vectors ~̂↵ and ~̂✓ denote the unconditional maximum likelihood estimates of the
parameter values, and

ˆ̂
~✓ denotes the conditional maximum likelihood estimate for given fixed values of

13
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8 Binned likelihood1999

This section describes the form of the binned likelihood implemented in combine. In general,2000

the model is composed of NC channels, each one representing the distribution of an observable2001

under a particular event selection. The set of channels are labelled by c, where c = 1, . . . , NC.2002

Each channel contains a set of bins b, where b = 1, . . . , N
c

B
. The observed event count in a given2003

channel and bin is denoted ncb. The model expectation in a given channel is defined as a sum2004

over processes, p = 1, . . . , N
c

P
, with the total expectation for a given bin denoted lcb.2005

The model is a function of the parameters of interest (POIs)~a, a set of nuisance parameters ~q2006

that are constrained with the external measurements ~̃q, as well as nuisance parameters ~r that2007

have no external constraint. The externally constrained parameters ~q are labelled by e, where2008

e = 1, . . . , NE.2009

The likelihood is defined as a product of Poisson pdfs over the bins in all channels, and over2010

the constraint pdfs pe for the externally constrained nuisance parameters:2011

L(data |~a,~q,~r) =
NC

’
c=1

N
c

B

’
b=1

Poisson(ncb | lcb(~a,~q,~r))
NE

’
i=1

pe(q̃e | qe). (8.1)

We can divide the constrained parameters~q into four groups:2012

• ~qL: associated with normalization uncertainties which are modelled by a log-normal2013

distribution. By convention, the constraint term for each qL has the form of a unit2014

width Gaussian pdf, Gaus(q̃L | qL), where the mean corresponds to the external2015

measurement q̃L = 0. The process normalization scales as kqL , where k determines2016

the magnitude of the uncertainty, which may be a fixed value (symmetric), or vary2017

as a function of qL (asymmetric).2018

• ~qG: “Gamma” uncertainties affecting process normalization, typically because of sta-2019

tistical uncertainties in a control region. Each parameter qG has a constraint term of2020

p(q̃G | qG) = Poisson(q̃G | qG).2021

• ~qS: associated with a shape uncertainty having a unit Gaussian constraint term,2022

Gaus(q̃S | qS).2023

• ~qB: per-bin statistical uncertainties on the templates, with either Gaussian or Poisson2024

constraint pdfs.2025

The model expectation for a given bin is expressed as a sum over processes,2026

lcb = max

 
0, Â

p

Mcp(~a)Ncp(~qL,~qS,~qG, r)ycbp(~qS) + Ecb(~qB)

!
, (8.2)

where M is a process normalization factor that depends on the POIs, N is a process normaliza-2027

tion modifier that depends on the log-normal, gamma and shape uncertainty parameters, ycbp2028

is the expectation for the process template that depends only on the shape uncertainty param-2029
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eters, and E is a term that accounts for the per-bin statistical uncertainties. These factors are2030

described in detail in the following sections.2031

8.1 Normalization due the POIs2032

The factor M can have arbitrary dependence on~a, and is defined by the physics model selected2033

by the user. In the default model, where the sole POI is the signal strength r, M = r for all2034

signal processes, and M = 1 for all background processes. The physics model framework is2035

described in more detail in Section 5.2036

8.2 Normalization uncertainties2037

The normalization modifier for a specific process, Ncp in Eq. (8.2), has the form

N = N0(qG)’
n

kn
qL,n ’

a

kA
a (q

a

L(S), k+a , k�a )
qa

L(S) ’
r

Fr(~r), (8.3)

where for brevity the channel and process labels have been suppressed, the indices n and a run2038

over the applicable symmetric and asymmetric log-normal uncertainties, respectively, with the2039

latter including the set of shape uncertainties. The terms are:2040

• N0(qG), in which each process normalization is optionally adjusted by a single gamma2041

uncertainty, in terms of the number of externally observed events q̃G, where N0 is2042

qG/q̃G if the uncertainty is applied, and unity otherwise;2043

• k
qL,n
n , the log-normal uncertainties specified by a fixed value k;2044

• kA
a (q

a

L(S), k+a , k�a ): the asymmetric log-normal uncertainties, in which the value of kA
2045

depends on the nuisance parameter and two fixed values k+a and k�a ;2046

• Fr(~r), which are arbitrary functions of the unconstrained nuisance parameters, typ-2047

ically introduced via the mechanism described in Section 3.3.1.2048

The function for the asymmetric normalization modifier is

kA(q, k+, k�) =

8
><

>:

k+, for q � 0.5;
k�, for q  �0.5;
exp

� 1
2
�
(ln k+ + ln k+) + 1

4 (ln k+ � ln k�)I(q)
��

, otherwise,
(8.4)

where I(q) = 48q5 � 40q3 + 15q, which ensures kA and its first and second derivatives are2049

continuous for all values of q.2050

8.3 Shape uncertainties2051

The number of events in a given bin b, ycbp, is a function of the shape parameters ~qS. In the2052

following, the channel and process labels c and p apply to every term, and so are omitted.2053

The fixed nominal number of events is denoted y
0
b
. For each applicable shape uncertainty s, two

additional predictions are specified, y
s,+
b

and y
s,�
b

, typically corresponding to the +1s and �1s
variations, respectively. These may change both the shape and normalization of the process.
The two effects are separated; the shape transformation is constructed in terms of the fractional
event counts in the templates via a smooth vertical interpolation, and the normalization is
treated as an asymmetric log-normal uncertainty, as described above. For the latter, the k+ and
k� values are defined as

k±s =
Âb y

s,±
b

Âb y
0
b

. (8.5)
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depends on the nuisance parameter and two fixed values k+a and k�a ;2046

• Fr(~r), which are arbitrary functions of the unconstrained nuisance parameters, typ-2047

ically introduced via the mechanism described in Section 3.3.1.2048
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kA(q, k+, k�) =

8
><

>:

k+, for q � 0.5;
k�, for q  �0.5;
exp

� 1
2
�
(ln k+ + ln k+) + 1

4 (ln k+ � ln k�)I(q)
��

, otherwise,
(8.4)

where I(q) = 48q5 � 40q3 + 15q, which ensures kA and its first and second derivatives are2049

continuous for all values of q.2050

8.3 Shape uncertainties2051

The number of events in a given bin b, ycbp, is a function of the shape parameters ~qS. In the2052

following, the channel and process labels c and p apply to every term, and so are omitted.2053

The fixed nominal number of events is denoted y
0
b
. For each applicable shape uncertainty s, two

additional predictions are specified, y
s,+
b

and y
s,�
b

, typically corresponding to the +1s and �1s
variations, respectively. These may change both the shape and normalization of the process.
The two effects are separated; the shape transformation is constructed in terms of the fractional
event counts in the templates via a smooth vertical interpolation, and the normalization is
treated as an asymmetric log-normal uncertainty, as described above. For the latter, the k+ and
k� values are defined as

k±s =
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s,±
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Âb y
0
b

. (8.5)
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For a given process, the shape may be interpolated either directly in terms of the fractional
bin yields, fb = yb/ Â yb or their logarithms, ln( fb). The transformed yield is then given as,
respectively,

yb(~qS) =

(
max

�
0, y

0 �
f

0
b
+ Âs F(qs, ds,+

b
, ds,�

b
), es

��
(direct),

max
�
0, y

0 exp
�
ln( f

0
b
) + Âs F(qs, Ds,+

b
, Ds,�

b
, es)

��
(logarithmic),

(8.6)

where y
0 = Â y

0
b
, d± = f

±
i
� f

0
i

, and D± = ln( f
±
i
)� ln( f

0
i
). The smooth interpolating function
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but may be set to different values, for example if the y
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correspond to the ±Xs variations,
then es = 1/X is typically set. The minimum value of e over the shape uncertainties for a
given process is q = min(es). The function F is then defined as
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where q
0
= qe, q̄ = q

0/q, and the label s has been omitted. This function ensures the yield and2054

its first and second derivatives are continuous for all values of q.2055

8.4 Per-bin statistical uncertainties2056

These uncertainties are defined in terms of the uncertainties associated to each process in each
bin, ecpb, as described in Section 4. The uncertainty for a given bin can be modelled via a single
nuisance parameter, in which case
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Alternatively, one parameter is assigned per process, which may be modelled with either a
Poisson or Gaussian constraint pdf:
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where the indices i and j runs over the Poisson- and Gaussian-constrained processes, respec-2057

tively. The parameters q̃i represent the nominal unweighted numbers of events, and are treated2058

as the external measurements in Eq. (8.1), and Ncp and ycib are defined as in Eqs. (8.3) and (8.6).2059
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eters, and E is a term that accounts for the per-bin statistical uncertainties. These factors are2030

described in detail in the following sections.2031

8.1 Normalization due the POIs2032

The factor M can have arbitrary dependence on~a, and is defined by the physics model selected2033

by the user. In the default model, where the sole POI is the signal strength r, M = r for all2034

signal processes, and M = 1 for all background processes. The physics model framework is2035

described in more detail in Section 5.2036
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N = N0(qG)’
n

kn
qL,n ’

a

kA
a (q

a

L(S), k+a , k�a )
qa

L(S) ’
r

Fr(~r), (8.3)
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2045

depends on the nuisance parameter and two fixed values k+a and k�a ;2046
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ically introduced via the mechanism described in Section 3.3.1.2048
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where I(q) = 48q5 � 40q3 + 15q, which ensures kA and its first and second derivatives are2049

continuous for all values of q.2050

8.3 Shape uncertainties2051

The number of events in a given bin b, ycbp, is a function of the shape parameters ~qS. In the2052

following, the channel and process labels c and p apply to every term, and so are omitted.2053

The fixed nominal number of events is denoted y
0
b
. For each applicable shape uncertainty s, two

additional predictions are specified, y
s,+
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and y
s,�
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, typically corresponding to the +1s and �1s
variations, respectively. These may change both the shape and normalization of the process.
The two effects are separated; the shape transformation is constructed in terms of the fractional
event counts in the templates via a smooth vertical interpolation, and the normalization is
treated as an asymmetric log-normal uncertainty, as described above. For the latter, the k+ and
k� values are defined as
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For a given process, the shape may be interpolated either directly in terms of the fractional
bin yields, fb = yb/ Â yb or their logarithms, ln( fb). The transformed yield is then given as,
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where y
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). The smooth interpolating function

F, defined below, depends on a set of coefficients, es. These are assumed to be unity by default,
but may be set to different values, for example if the y

s,±
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correspond to the ±Xs variations,
then es = 1/X is typically set. The minimum value of e over the shape uncertainties for a
given process is q = min(es). The function F is then defined as
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where q
0
= qe, q̄ = q

0/q, and the label s has been omitted. This function ensures the yield and2054

its first and second derivatives are continuous for all values of q.2055

8.4 Per-bin statistical uncertainties2056

These uncertainties are defined in terms of the uncertainties associated to each process in each
bin, ecpb, as described in Section 4. The uncertainty for a given bin can be modelled via a single
nuisance parameter, in which case
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Alternatively, one parameter is assigned per process, which may be modelled with either a
Poisson or Gaussian constraint pdf:
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where the indices i and j runs over the Poisson- and Gaussian-constrained processes, respec-2057

tively. The parameters q̃i represent the nominal unweighted numbers of events, and are treated2058

as the external measurements in Eq. (8.1), and Ncp and ycib are defined as in Eqs. (8.3) and (8.6).2059
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For a given process, the shape may be interpolated either directly in terms of the fractional
bin yields, fb = yb/ Â yb or their logarithms, ln( fb). The transformed yield is then given as,
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F, defined below, depends on a set of coefficients, es. These are assumed to be unity by default,
but may be set to different values, for example if the y
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correspond to the ±Xs variations,
then es = 1/X is typically set. The minimum value of e over the shape uncertainties for a
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where q
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its first and second derivatives are continuous for all values of q.2055

8.4 Per-bin statistical uncertainties2056

These uncertainties are defined in terms of the uncertainties associated to each process in each
bin, ecpb, as described in Section 4. The uncertainty for a given bin can be modelled via a single
nuisance parameter, in which case
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Alternatively, one parameter is assigned per process, which may be modelled with either a
Poisson or Gaussian constraint pdf:
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where the indices i and j runs over the Poisson- and Gaussian-constrained processes, respec-2057

tively. The parameters q̃i represent the nominal unweighted numbers of events, and are treated2058

as the external measurements in Eq. (8.1), and Ncp and ycib are defined as in Eqs. (8.3) and (8.6).2059
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For a given process, the shape may be interpolated either directly in terms of the fractional
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its first and second derivatives are continuous for all values of q.2055

8.4 Per-bin statistical uncertainties2056

These uncertainties are defined in terms of the uncertainties associated to each process in each
bin, ecpb, as described in Section 4. The uncertainty for a given bin can be modelled via a single
nuisance parameter, in which case
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Alternatively, one parameter is assigned per process, which may be modelled with either a
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where the indices i and j runs over the Poisson- and Gaussian-constrained processes, respec-2057

tively. The parameters q̃i represent the nominal unweighted numbers of events, and are treated2058

as the external measurements in Eq. (8.1), and Ncp and ycib are defined as in Eqs. (8.3) and (8.6).2059
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For a given process, the shape may be interpolated either directly in terms of the fractional
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as the external measurements in Eq. (8.1), and Ncp and ycib are defined as in Eqs. (8.3) and (8.6).2059
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eters, and E is a term that accounts for the per-bin statistical uncertainties. These factors are2030

described in detail in the following sections.2031

8.1 Normalization due the POIs2032

The factor M can have arbitrary dependence on~a, and is defined by the physics model selected2033

by the user. In the default model, where the sole POI is the signal strength r, M = r for all2034

signal processes, and M = 1 for all background processes. The physics model framework is2035

described in more detail in Section 5.2036

8.2 Normalization uncertainties2037

The normalization modifier for a specific process, Ncp in Eq. (8.2), has the form

N = N0(qG)’
n

kn
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a
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L(S), k+a , k�a )
qa
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r

Fr(~r), (8.3)

where for brevity the channel and process labels have been suppressed, the indices n and a run2038

over the applicable symmetric and asymmetric log-normal uncertainties, respectively, with the2039

latter including the set of shape uncertainties. The terms are:2040

• N0(qG), in which each process normalization is optionally adjusted by a single gamma2041

uncertainty, in terms of the number of externally observed events q̃G, where N0 is2042

qG/q̃G if the uncertainty is applied, and unity otherwise;2043

• k
qL,n
n , the log-normal uncertainties specified by a fixed value k;2044

• kA
a (q

a

L(S), k+a , k�a ): the asymmetric log-normal uncertainties, in which the value of kA
2045

depends on the nuisance parameter and two fixed values k+a and k�a ;2046

• Fr(~r), which are arbitrary functions of the unconstrained nuisance parameters, typ-2047

ically introduced via the mechanism described in Section 3.3.1.2048

The function for the asymmetric normalization modifier is
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where I(q) = 48q5 � 40q3 + 15q, which ensures kA and its first and second derivatives are2049

continuous for all values of q.2050

8.3 Shape uncertainties2051

The number of events in a given bin b, ycbp, is a function of the shape parameters ~qS. In the2052

following, the channel and process labels c and p apply to every term, and so are omitted.2053

The fixed nominal number of events is denoted y
0
b
. For each applicable shape uncertainty s, two

additional predictions are specified, y
s,+
b

and y
s,�
b

, typically corresponding to the +1s and �1s
variations, respectively. These may change both the shape and normalization of the process.
The two effects are separated; the shape transformation is constructed in terms of the fractional
event counts in the templates via a smooth vertical interpolation, and the normalization is
treated as an asymmetric log-normal uncertainty, as described above. For the latter, the k+ and
k� values are defined as

k±s =
Âb y

s,±
b

Âb y
0
b

. (8.5)
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Default binned model

https://indico.cern.ch/event/1232388/contributions/5184999/attachments/2578402/4446519/PhysicsDays-Stats.pdf


•All commonly used statistical methods are implemented 
‣ Limit setting (asymptotic and toy-based) 
‣ Significance / p-value calculation 
‣ Confidence interval 

‣ All method can run on real data or internally generated toys/Asimov datasets 
•Also diagnostics and model information 

•Pre-/post-fit yields, shape, and uncertainties 
•Covariance matrices

How Combine works? — Running the tool
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Typically, these methods make use of the profile negative-log-
likelihood function, in which the nuisance parameters are profiled

ℒ( ⃗μ , ⃗ν) = ∏
d

p( ⃗xd; ⃗μ , ⃗ν)∏
k

pk(yk; νk)
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•All commonly used statistical methods are implemented 
‣ Limit setting (asymptotic and toy-based) 
‣ Significance / p-value calculation 
‣ Confidence interval 

•All methods can run on real data or internally generated toys/Asimov datasets 
•Also diagnostics and model information 
‣ Pre-/post-fit yields, shape, and uncertainties 
‣ Covariance matrices

How Combine works? — Running the tool
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Likelihood-based unfolding
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Since Combine has access to the full likelihood, it can be used to perform likelihood-based unfolding

Alessandro Tarabini

Advantages of likelihood-based unfolding 
•Signal extraction + unfolding + inclusion of systematic uncertainties + measurement of physics 
quantities (+ regularisation) in one shot 

•Background subtraction is accounted directly in the likelihood 
•Systematic uncertainties are accounted for directly during the unfolding as nuisance parameters 
•We can profile the nuisance parameters during the unfolding to make the most of the data available

⃗xreco = R ⋅ ⃗xtrue + b⃗

ℒ( ⃗μ , ⃗ν) =
reco

∏
i

Poiss(xreco,i

true

∑
j

μj ⋅ xtrue,i( ⃗ν) ⋅ Rij( ⃗ν) + bi( ⃗ν))∏
k

pk(ν̃k |νk)



Likelihood-based unfolding: counting experiment

16Alessandro Tarabini

ℒ( ⃗μ , ⃗ν) =
reco

∏
i

Poiss(xreco,i

true

∑
j

μj ⋅ xtrue,i( ⃗ν) ⋅ Rij( ⃗ν) + bi( ⃗ν))∏
k

pk(ν̃k |νk)

•Input parameters in the model are the signal, bkg, and data yields 
•In each reco-level category, consider the contributions of all true-level 

bins 
•Rarely used, lower sensitivity

imax * 
jmax * 
kmax * 
# ---------------------------------- 
bin                    reco1  reco2 
observation   1500   1900 
# ---------------------------------- 
bin              reco1  reco1  reco1  reco2  reco2  reco2 
process     true1  true2  bkg      true1  true2   bkg 
process     0          -1         1           0          -1         1 
rate           1000   70        200      40        1300   250 
# ---------------------------------- 
# systematics 
# ----------------------------------

Unfolding with two reco-level 
categories and two true-level categories



Likelihood-based unfolding: counting experiment
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ℒ( ⃗μ , ⃗ν) =
reco

∏
i

Poiss(xreco,i

true

∑
j

μj ⋅ xtrue,i( ⃗ν) ⋅ Rij( ⃗ν) + bi( ⃗ν))∏
k

pk(ν̃k |νk)

Comparison of likelihood-based unfolding and least-squares 
based unfolding as implemented in RooUnfold

•Input parameters in the model are the signal, bkg, and data yields 
•In each reco-level category, consider the contributions of all true-level 

bins 
•Rarely used, lower sensitivity

imax * 
jmax * 
kmax * 
# ---------------------------------- 
bin                    reco1  reco2 
observation   1500   1900 
# ---------------------------------- 
bin              reco1  reco1  reco1  reco2  reco2  reco2 
process     true1  true2  bkg      true1  true2   bkg 
process     0          -1         1           0          -1         1 
rate           1000   70        200      40        1300   250 
# ---------------------------------- 
# systematics 
# ----------------------------------

Unfolding with two reco-level 
categories and two true-level categories



ℒ( ⃗μ , ⃗ν) =
reco

∏
i

Poiss(xreco,i

true

∑
j

μj ⋅ xtrue,i( ⃗ν) ⋅ Rij( ⃗ν) ⋅ fsig( ⃗ν) + bi( ⃗ν) ⋅ fbkg( ⃗ν))∏
k

pk(ν̃k |νk)

Likelihood-based unfolding: shape-based
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It is also possible to move to shape-based (unbinned) analysis to make the most of the data



ℒ( ⃗μ , ⃗ν) =
reco

∏
i

Poiss(xreco,i

true

∑
j

μj ⋅ xtrue,i( ⃗ν) ⋅ Rij( ⃗ν) ⋅ fsig( ⃗ν) + bi( ⃗ν) ⋅ fbkg( ⃗ν))∏
k

pk(ν̃k |νk)

Likelihood-based unfolding: shape-based

19Alessandro Tarabini

Import any arbitrary binned/unbinned RooFit pdfs 
Links to the ROOT files with the corresponding 

RooAbsPdf/RooDataSet

It is also possible to move to shape-based (unbinned) analysis to make the most of the data
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An example of shape-based likelihood unfolding: XS measurement in the H—>𝛾𝛾 channel

A real-case scenario: H—>𝛄𝛄

ℒ( ⃗μ , ⃗ν) =
reco

∏
i

Poiss(xreco,i

true

∑
j

μj ⋅ xtrue,i( ⃗ν) ⋅ Rij( ⃗ν) ⋅ fsig( ⃗ν) + bi( ⃗ν) ⋅ fbkg( ⃗ν))∏
k

pk(ν̃k |νk)
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An example of shape-based likelihood unfolding: XS measurement in the H—>𝛾𝛾 channel

ℒ( ⃗μ , ⃗ν) =
reco

∏
i

Poiss(xreco,i

true

∑
j

μj ⋅ xtrue,i( ⃗θ) ⋅ Rij( ⃗ν) ⋅ fsig( ⃗ν) + bi( ⃗ν) ⋅ fbkg( ⃗ν))∏
k

pk(ν̃k |νk)
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The simplest way to introduce regularisation in the likelihood-based approach is to apply a penalty term in the 
likelihood function (so-called Tikhonov regularisation)

ℒ( ⃗μ , ⃗ν) =
reco

∏
i

Poiss(xreco,i

true

∑
j

μj ⋅ xtrue,i( ⃗ν) ⋅ Rij( ⃗ν) ⋅ fsig( ⃗ν) + bi( ⃗ν) ⋅ fbkg( ⃗ν))∏
k

pk(ν̃k |νk) ⋅ 𝒦( ⃗μ )

In Combine, it is possible to implement both the TUnfold and SVD variant of the Tikhonov regularisation



Regularisation: H—>WW
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𝒦( ⃗μ ) =
N−1

∏
i=2

exp( −[(μi+1 − μi) − (μi − μi−1)]2

2δ2 )
•The regularisation term penalises the curvature (high-frequency 

fluctuations) 
•Regularisation strength : optimised in order to minimise the mean 

of the global correlation coefficient on an Asimov dataset
δ

<name> constr <formula> <args> <delta>

The regularisation term can be added to the likelihood with a simple line in the systematics section of the datacard

exp[−
1
2 ( < formula >

< delta > )]

https://link.springer.com/article/10.1007/JHEP03(2021)003
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constr0   constr   @0-2*@1+@2   r_0,r_1,r_2   2.50 
constr1   constr   @0-2*@1+@2   r_1,r_2,r_3   2.50 
constr2   constr   @0-2*@1+@2   r_2,r_3,r_4   2.50 
constr3   constr   @0-2*@1+@2   r_3,r_4,r_5   2.50

The analysis measures the XS in 6  bins —> 4 penalty 
terms to add to the likelihood 

Regularisation strength optimised to be 2.50
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𝒦( ⃗μ ) =
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∏
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exp( −[(μi+1 − μi) − (μi − μi−1)]2

2δ2 )
•The regularisation term penalises the curvature (high-frequency 

fluctuations) 
•Regularisation strength : optimised in order to minimise the mean 

of the global correlation coefficient on an Asimov dataset
δ

The regularisation term can be added to the likelihood with a simple line in the systematics section of the datacard

https://link.springer.com/article/10.1007/JHEP03(2021)003
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constr0 constr @0-2*@1+@2 r_0,r_1,r_2 2.50 
constr1 constr @0-2*@1+@2 r_1,r_2,r_3 2.50 
constr2 constr @0-2*@1+@2 r_2,r_3,r_4 2.50 
constr3 constr @0-2*@1+@2 r_3,r_4,r_5 2.50

The analysis measures the XS in 6  bins —> 4 penalty 
terms to add to the likelihood 

Regularisation strength optimised to b 2.50
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𝒦( ⃗μ ) =
N−1

∏
i=2

exp( −[(μi+1 − μi) − (μi − μi−1)]2

2δ2 )
•The regularisation term penalises the curvature (high-frequency 

fluctuations) 
•Regularisation strength : optimised in order to minimise the mean 

of the global correlation coefficient on an Asimov dataset
δ

The regularisation term can be added to the likelihood with a simple line in the systematics section of the datacard
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https://link.springer.com/article/10.1007/JHEP03(2021)003


TUnfold vs Combine
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TUnfold Combine

Method Least-square minimisation Maximum likelihood

Speed Linear algebra —> very fast
Numerical minimisation with Minuit and 
complex fit with nuisance parameters —> 

much slower

Number of unfolded bins Up to very large numbers Complexity of the fit increases with the 
number of bins

Regularisation Possible Possible

Background Simple subtraction Can do simultaneous binwise signal + 
background fit

Systematic uncertainties Vary externally and repeat unfolding Simultaneous fit of nuisance parameters 
and profiling them

Ideal application High statistics, low background, precision 
analyses, e.g., inclusive jets, ttbar production

Anything, except cases with very large 
numbers of unfolded events

Credits: O. Behnke, P. Gras, G. Kasieczka



Conclusions
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After a decade of development, the Combine package has become the main tool used for 
statistical analysis of data by the CMS Collaboration 

The statistical model is constructed from a text file provided by the user and a configurable 
physics model that encodes the parameters of interest and the nuisance parameters that 

model systematic uncertainties 

The Combine package can perform a variety of statistical procedures, including the 
possibility of performing likelihood-based unfolding



Backup



Nuisance parameters
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Global correlation coefficients
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V represents the covariance matrix



Datacard for a template-based analysis
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Number of bins/channel
Number of processes
Number of nuisance parameters

Unique channel label
Number of observed events in a channel

Process label
Process ID (<=0 for signal) 
Expected number of events

Name Type Effect on process

Systematic uncertainties

Links to the 
histograms saved 

in a root file

Root file containing the nominal 
histograms and two additional 
histograms per process related 

to the ±1σ shift
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Other tools
• Several other tools exist which offer various advantages over the ROOT/RooFit base of combine: 

• Can lack some of the features needed to cover all our needs 

• RooFit development currently quite active (vectorized evaluation, GPU dispatch and auto-grad on the horizon) 

• Should continually survey the alternatives, and consider where future efforts from our side are best directed

17

combine-tensorflow 
• Originally for W helicity analysis 
• Combine binned model implemented 
• Auto-grad+hessian, parallelisation 
• + Alternative minimizers 

Performance > 100x wrt. current combine

zfit 
• Also TF based, supports parametric 

models

pyhf 
• Pure-python implementation of 

HistFactory (used in ATLAS) 
• Support for PyTorch/TF/JAX backends 
• Becoming popular for sharing public 

models

+ several others


