

SMEFT at NNLO+PS: *Vh* production

Luc Schnell EFT in Multiboson Production June 10, 2024

Observation of h \rightarrow **bb** @ **LHC Run II**

[see also CMS, 1808.08242]

2

From 5σ to precision measurements

In LHC Run II, signal strength in Vh production found to be SM-like within 25%

[see also CMS, 1808.08242]

From 5σ to precision measurements

[ATI AS 1808 08238]

Ultimate accuracy projected to be 10% to 5% in Wh & Zh channel @ HL-LHC

[see also CMS, 1808.08242; CMS-PAS-FTR-18-011]

EFT in Multiboson Production June 2024

Luc Schnell EFT in Multiboson Production June 2024

QCD, **Higgs** operators:

EFT in Multiboson Production June 2024

[2204.00663] (U. Haisch, D.J. Scott, M. Wiesemann, et al.) $Q_{bH} = y_b (H^{\dagger} H) \,\bar{q}_L b_R H \,, \qquad Q_{bG} = \frac{g_s^3}{(4\pi)^2} \, y_b \,\bar{q}_L \sigma_{\mu\nu} T^a b_R H G^{a,\mu\nu} \,,$ etc.

QCD, **Higgs** operators:

 $Q_{HB} = H^{\dagger} H B_{\mu\nu} B^{\mu\nu} \,,$

EFT in Multiboson Production

[2204.00663] (U. Haisch, D.J. Scott, M. Wiesemann, et al.) $Q_{bH} = y_b (H^{\dagger} H) \,\bar{q}_L b_R H \,, \qquad Q_{bG} = \frac{g_s^3}{(4\pi)^2} \, y_b \,\bar{q}_L \sigma_{\mu\nu} T^a b_R H G^{a,\mu\nu} \,,$ etc.

[2311.06107] (R. Gauld, U. Haisch, LS) Q_{HW} Q_{HWB}

QCD, **Higgs** operators:

 Q_{Hu} Q_{Hd}

EFT in Multiboson Production

[2204.00663] (U. Haisch, D.J. Scott, M. Wiesemann, et al.) $Q_{bH} = y_b (H^{\dagger} H) \,\bar{q}_L b_R H \,, \qquad Q_{bG} = \frac{g_s^3}{(4\pi)^2} \, y_b \,\bar{q}_L \sigma_{\mu\nu} T^a b_R H G^{a,\mu\nu} \,,$ etc.

QCD, **Higgs** operators:

 $Q_{HB} = H^{\dagger} H B_{\mu\nu} B^{\mu\nu} \,,$

 $Q_{Hq}^{(1)} = (H^{\dagger} i \overset{\leftrightarrow}{D}_{\mu} H) (\bar{q} \gamma^{\mu} q) \,,$

 Q_{Hu} Q_{Hd}

EFT in Multiboson Production

[2204.00663] (U. Haisch, D.J. Scott, M. Wiesemann, et al.) $Q_{bH} = y_b (H^{\dagger} H) \,\bar{q}_L b_R H \,, \qquad Q_{bG} = \frac{g_s^3}{(4\pi)^2} \, y_b \,\bar{q}_L \sigma_{\mu\nu} T^a b_R H G^{a,\mu\nu} \,,$ etc. [2311.06107] (R. Gauld, U. Haisch, LS)

EW two-fermion operators:

 Q_{Hud}

 $Q_{Hq}^{(3)}$

[2311.06107] (R. Gauld, U. Haisch, LS)

$$Q_{H\ell}^{(1)} = (H^{\dagger} i \overset{\leftrightarrow}{D}_{\mu} H) (\bar{\ell} \gamma^{\mu} \ell) , \qquad Q_{He}$$

 $Q_{H\ell}^{(3)}$

QCD, **Higgs** operators:

 $Q_{HB} = H^{\dagger} H B_{\mu\nu} B^{\mu\nu} \,,$

 $Q_{Hq}^{(1)} = (H^{\dagger} i \overset{\leftrightarrow}{D}_{\mu} H) (\bar{q} \gamma^{\mu} q) \,,$

 Q_{Hu} Q_{Hd}

 $Q_{H\square} = (H^{\dagger}H)\square(H^{\dagger}H) \,,$

EFT in Multiboson Production

[2204.00663] (U. Haisch, D.J. Scott, M. Wiesemann, et al.) $Q_{bH} = y_b (H^{\dagger} H) \,\bar{q}_L b_R H \,, \qquad Q_{bG} = \frac{g_s^3}{(4\pi)^2} \, y_b \,\bar{q}_L \sigma_{\mu\nu} T^a b_R H G^{a,\mu\nu} \,,$ etc. [2311.06107] (R. Gauld, U. Haisch, LS) Q_{HW} Q_{HWB} **EW two-fermion operators:** [2311.06107] (R. Gauld, U. Haisch, LS) $Q_{Hq}^{(3)}$ $Q_{H\ell}^{(1)} = (H^{\dagger} i \overset{\leftrightarrow}{D}_{\mu} H) (\bar{\ell} \gamma^{\mu} \ell) \,,$ Q_{Hud} Q_{He} $Q_{H\ell}^{(3)}$ [2311.06107] (R. Gauld, U. Haisch, LS) Input scheme corrections: $Q_{\ell\ell}$ Q_{HD}

What are the **current constraints**?

EFT in Multiboson Production

What are the **current constraints**?

VVh:

EFT in Multiboson Production June 2024

What are the **current constraints**?

VVh:

$$\delta \kappa_{\gamma\gamma} \simeq \frac{1}{g_{h\gamma\gamma}} \frac{v^2}{\Lambda^2} \left[c_w^2 C_{HB} + s_w^2 C_{HW} - c_w s_w C_{HWB} \right],$$

$$\delta \kappa_{\gamma Z} \simeq -\frac{1}{g_{h\gamma Z}} \frac{v^2}{\Lambda^2} \left[2c_w s_w \left(C_{HB} - C_{HW} \right) + \left(c_w^2 - s_w^2 \right) C_{HWB} \right],$$

$$c_w s_w C_{HWB} \Big],$$

What are the **current constraints**?

VVh:

$$\delta \kappa_{\gamma\gamma} \simeq \frac{1}{g_{h\gamma\gamma}} \frac{v^2}{\Lambda^2} \left[c_w^2 C_{HB} + s_w^2 C_{HW} - c_w s_w C_{HWB} \right],$$

$$\delta \kappa_{\gamma Z} \simeq -\frac{1}{g_{h\gamma Z}} \frac{v^2}{\Lambda^2} \left[2c_w s_w \left(C_{HB} - C_{HW} \right) + \left(c_w^2 - s_w^2 \right) C_{HWB} \right],$$

EFT in Multiboson Production June 2024

$$c_w s_w C_{HWB} \Big],$$

LHC:

$$\mu_{\rm ggF}^{\gamma\gamma} = 1.05 \pm 0.09 \,,$$

$$\mu_{\rm ggF}^{\gamma Z}=2.2\pm0.7$$

What are the **current constraints**?

VVh:

$$\delta \kappa_{\gamma\gamma} \simeq \frac{1}{g_{h\gamma\gamma}} \frac{v^2}{\Lambda^2} \left[c_w^2 C_{HB} + s_w^2 C_{HW} - \frac{1}{g_{h\gamma Z}} \frac{v^2}{\Lambda^2} \right] \left[2c_w s_w (C_{HB} - C_{H}) \right]$$

EFT in Multiboson Production June 2024

$$c_w s_w C_{HWB} \Big],$$

 $(_{HW}) + (c_w^2 - s_w^2) C_{HWB} |,$

LHC:

$$\mu_{\rm ggF}^{\gamma\gamma} = 1.05 \pm 0.09 \,,$$

$$\mu_{\rm ggF}^{\gamma Z}=2.2\pm0.7$$

$$C_{HB} \simeq -\frac{s_w^2}{c_w^2} C_H$$

What are the **current constraints**?

VVh:
$$C_{HB}, C_{HW}, C_{HW}, C_{HW}, C_{HW}$$

$$\delta \kappa_{\gamma\gamma} \simeq \frac{1}{g_{h\gamma\gamma}} \frac{v^2}{\Lambda^2} \left[c_w^2 C_{HB} + s_w^2 C_{HW} - c_w s_w C_{HWB} \right],$$

$$\delta \kappa_{\gamma Z} \simeq -\frac{1}{g_{h\gamma Z}} \frac{v^2}{\Lambda^2} \left[2c_w s_w \left(C_{HB} - C_{HW} \right) + \left(c_w^2 - s_w^2 \right) C_{HW} \right],$$

Luc Schnell EFT in Multiboson Production June 2024

 C_{HWB} ,

LHC:

$$\mu_{\rm ggF}^{\gamma\gamma} = 1.05 \pm 0.09 \,,$$

$$\mu_{\rm ggF}^{\gamma Z}=2.2\pm0.7$$

$$C_{HB} \simeq -\frac{s_w^2}{c_w^2} C_H$$

What are the **current constraints**?

VVh:
$$C_{HB}, C_{HW}, C_{HW},$$

V(h)II:

Luc Schnell EFT in Multiboson Production June 2024

 C_{HWB} ,

LHC:

$$\mu_{\rm ggF}^{\gamma\gamma} = 1.05 \pm 0.09 \,,$$

$$\mu_{\rm ggF}^{\gamma Z}=2.2\pm0.7$$

$$C_{HB} \simeq -\frac{s_w^2}{c_w^2} C_H$$

What are the **current constraints**?

EFT in Multiboson Production June 2024

 C_{HWB} ,

LHC:

$$\mu_{\rm ggF}^{\gamma\gamma} = 1.05 \pm 0.09 \,,$$

$$\mu_{\rm ggF}^{\gamma Z}=2.2\pm0.7$$

$$C_{HB} \simeq -\frac{s_w^2}{c_w^2} C_H$$

What are the **current constraints**?

EFT in Multiboson Production June 2024

$$c_w s_w C_{HWB} \Big],$$

 $(H_W) + (c_w^2 - s_w^2) C_{HWB} |,$

LEP/SLD:

 $\delta g_L^u \in [0.2, 6.8] \cdot 1$

 $\delta g_L^e \in [-7.1, 2.0]$

hep-ex/0509008 (SLD et al.)

LHC:

$$\mu_{\rm ggF}^{\gamma\gamma} = 1.05 \pm 0.09 \,,$$

$$\mu_{\rm ggF}^{\gamma Z}=2.2\!\pm\!0.7$$

$$C_{HB} \simeq -\frac{s_w^2}{c_w^2} C_H$$

$$C_{HB} \simeq -\frac{s_w^2}{c_w^2} C_{HV}$$

$$10^{-2}$$
,

$$10^{-4}$$
,

$$|\cdot 10$$
 \pm ,

Source: hep-ex/0509008 (ALEPH, DELPHI, L3, OPAL, SLD, LEP EW Working Group, SLD EW and Heavy Flavour Groups)

Luc Schnell EFT in Multiboson Production June 2024

Source: hep-ex/0509008 (ALEPH, DELPHI, L3, OPAL, SLD, LEP EW Working Group, SLD EW and Heavy Flavour Groups)

What are the **current constraints**?

EFT in Multiboson Production June 2024

$$c_w s_w C_{HWB} \Big],$$

 $(H_W) + (c_w^2 - s_w^2) C_{HWB} |,$

LEP/SLD:

 $\delta g_L^u \in [0.2, 6.8] \cdot 1$

 $\delta g_L^e \in [-7.1, 2.0]$

hep-ex/0509008 (SLD et al.)

LHC:

$$\mu_{\rm ggF}^{\gamma\gamma} = 1.05 \pm 0.09 \,,$$

$$\mu_{\rm ggF}^{\gamma Z}=2.2\!\pm\!0.7$$

$$C_{HB} \simeq -\frac{s_w^2}{c_w^2} C_H$$

$$C_{HB} \simeq -\frac{s_w^2}{c_w^2} C_{HV}$$

$$10^{-2}$$
,

$$10^{-4}$$
,

$$|\cdot 10$$
 \pm ,

What are the **current constraints**?

EFT in Multiboson Production June 2024

$$c_w s_w C_{HWB} \Big],$$

 $(HW) + \left(c_w^2 - s_w^2\right)C_{HWB}$,

LEP/SLD:

 $\delta g_L^u \in [0.2, 6.8] \cdot 1$

 $\delta g_L^e \in [-7.1, 2.0]$

<u>hep-ex/0509008</u> (SLD et al.)

LHC:

$$\mu_{\rm ggF}^{\gamma\gamma} = 1.05 \pm 0.09 \,,$$

$$\mu_{\rm ggF}^{\gamma Z}=2.2\!\pm\!0.7$$

$$C_{HB} \simeq -\frac{s_w^2}{c_w^2} C_H$$

$$C_{HB} \simeq -\frac{s_w^2}{c_w^2} C_{HV}$$

$$10^{-2}$$
,

$$10^{-4}$$
,

$$|\cdot 10$$
 \pm ,

What are the **current constraints**?

$$VVh: \qquad \begin{array}{c} & & \delta \kappa_{\gamma\gamma} \simeq \frac{1}{g_{h\gamma\gamma}} \frac{v^2}{\Lambda^2} \left[c_w^2 C_{HB} + s_w^2 C_{HW} - c_w s_w C_{HWB} \right], \\ & \delta \kappa_{\gamma Z} \simeq -\frac{1}{g_{h\gamma Z}} \frac{v^2}{\Lambda^2} \left[2c_w s_w (C_{HB} - C_{HW}) + (c_w^2 - s_w^2) \right], \\ & \delta \kappa_{\gamma Z} \simeq -\frac{1}{g_{h\gamma Z}} \frac{v^2}{\Lambda^2} \left[2c_w s_w (C_{HB} - C_{HW}) + (c_w^2 - s_w^2) \right], \\ & \delta g_L^{\psi} = \frac{g_2}{c_w} \frac{v^2}{\Lambda^2} \left[g_{T_y^3} T_{\psi}^3 - g_{Q_{\psi}} Q_{\psi} - \frac{1}{2} \left(C_{H\psi_L}^{(1)} - 2T_{\psi}^3 C_{H\psi_L}^{(3)} \right) \right], \\ & \delta g_L^e \in \left[\begin{array}{c} \delta g_L^e \in \left[\delta g_L^e \in \left$$

Luc Schnell EFT in Multiboson Production June 2024

 C_{HWB} ,

LD:

 $[0.2, 6.8] \cdot 1$

[-7.1, 2.0]

509008 (SLD et al.)

LHC:

$$\mu_{\rm ggF}^{\gamma\gamma} = 1.05 \pm 0.09 \,,$$

$$\mu_{\rm ggF}^{\gamma Z}=2.2\!\pm\!0.7$$

$$C_{HB} \simeq -\frac{s_w^2}{c_w^2} C_H$$

$$C_{HB} \simeq -\frac{s_w^2}{c_w^2} C_{HV}$$

$$10^{-2}$$
,

$$10^{-4}$$
,

$$|\cdot 10$$
 \pm ,

What are the **current constraints**?

EFT in Multiboson Production

$$c_w s_w C_{HWB}$$
,

LEP/SLD:

 $\delta g_L^u \in [0.2, 6.8] \cdot 10$

 $\delta g_L^e \in [-7.1, 2.0]$

<u>hep-ex/0509008</u> (SLD et al.)

LHC:

$$\mu_{\rm ggF}^{\gamma\gamma} = 1.05 \pm 0.09 \,,$$

$$\mu_{\rm ggF}^{\gamma Z}=2.2\!\pm\!0.7$$

$$C_{HB} \simeq -\frac{s_w^2}{c_w^2} C_H$$

$$C_{HB} \simeq -\frac{s_w^2}{c_w^2} C_{HV}$$

$$10^{-2}$$
,

$$10^{-4}$$
,

$$|\cdot 10$$
 \pm ,

What are the **current constraints**?

EFT in Multiboson Production

$$c_w s_w C_{HWB}$$
,

LHC:

$$\mu_{\rm ggF}^{\gamma\gamma} = 1.05 \pm 0.09 \,,$$

$$\mu_{\rm ggF}^{\gamma Z}=2.2\pm0.7$$

$$C_{HB} \simeq -\frac{s_w^2}{c_w^2} C_H$$

ATLAS-CONF-2021-053 (ATLAS) <u>CMS-PAS-HIG-19-005</u> (CMS)

LEP/SLD:

 $\delta g_L^u \in [0.2, 6.8] \cdot 10^{-2}$,

 $\delta g_L^e \in [-7.1, 2.0] \cdot 10^{-4}$,

<u>hep-ex/0509008</u> (SLD et al.)

$$\frac{v^2}{\Lambda^2} \left[2C_{HWB} + \frac{s_w}{c_w} \left(2C_{H\ell}^{(3)} - C_{\ell\ell} \right) + \frac{c_w}{2s_w} C_{HD} \right]$$

What are the **current constraints**?

EFT in Multiboson Production

$$c_w s_w C_{HWB}$$
,

LHC:

$$\mu_{\rm ggF}^{\gamma\gamma} = 1.05 \pm 0.09 \,,$$

$$\mu_{\rm ggF}^{\gamma Z}=2.2\pm0.7$$

 $C_{HB} \simeq -\frac{s_w^2}{c_w^2} C_{HW}$

ATLAS-CONF-2021-053 (ATLAS) <u>CMS-PAS-HIG-19-005</u> (CMS)

LEP/SLD:

 $\delta g_L^u \in [0.2, 6.8] \cdot 10^{-2}$,

 $\delta g_L^e \in [-7.1, 2.0] \cdot 10^{-4}$,

<u>hep-ex/0509008</u> (SLD et al.)

$$\frac{v^2}{\Lambda^2} \left[2C_{HWB} + \frac{s_w}{c_w} \left(2C_{H\ell}^{(3)} - C_{\ell\ell} \right) + \frac{c_w}{2s_w} C_{HD} \right]$$

PDG:

 $\frac{\delta m_W}{M} \in [-0.9, 5.6] \cdot 10^{-4} \,,$ m_W

What are the **current constraints**?

EFT in Multiboson Production

$$c_w s_w C_{HWB}$$
,

LHC:

$$\mu_{\rm ggF}^{\gamma\gamma} = 1.05 \pm 0.09 \,,$$

$$\mu_{\rm ggF}^{\gamma Z}=2.2\pm0.7$$

 $C_{HB} \simeq -\frac{s_w^2}{c_w^2} C_{HW}$

ATLAS-CONF-2021-053 (ATLAS) <u>CMS-PAS-HIG-19-005</u> (CMS)

LEP/SLD:

 $\delta g_L^u \in [0.2, 6.8] \cdot 10^{-2}$,

 $\delta g_L^e \in [-7.1, 2.0] \cdot 10^{-4}$,

<u>hep-ex/0509008</u> (SLD et al.)

$$\frac{v^2}{\Lambda^2} \left[2C_{HWB} + \frac{s_w}{c_w} \left(2C_{H\ell}^{(3)} - C_{\ell\ell} \right) + \frac{c_w}{2s_w} C_{HD} \right]$$

PDG:

 $\frac{\delta m_W}{M} \in [-0.9, 5.6] \cdot 10^{-4}$ m_W

What are the **current constraints**?

EFT in Multiboson Production

$$c_w s_w C_{HWB}$$
,

LHC:

$$\mu_{\rm ggF}^{\gamma\gamma} = 1.05 \pm 0.09 \,,$$

$$\mu_{\rm ggF}^{\gamma Z}=2.2\pm0.7$$

 $C_{HB} \simeq -\frac{s_w^2}{c_w^2} C_{HW}$

ATLAS-CONF-2021-053 (ATLAS) <u>CMS-PAS-HIG-19-005</u> (CMS)

LEP/SLD:

 $\delta g_L^u \in [0.2, 6.8] \cdot 10^{-2}$,

 $\delta g_L^e \in [-7.1, 2.0] \cdot 10^{-4}$

<u>hep-ex/0509008</u> (SLD et al.)

$$\frac{v^2}{\Lambda^2} \left[2C_{HWB} + \frac{s_w}{c_w} \left(2C_{H\ell}^{(3)} - C_{\ell\ell} \right) + \frac{c_w}{2s_w} C_{HD} \right]$$

PDG:

 $\frac{\delta m_W}{M} \in [-0.9, 5.6] \cdot 10^{-4}$ m_W

3. Higher-Order Corrections **3.1 Amplitudes**

Luc Schnell EFT in Multiboson Production June 2024

3. Higher-Order Corrections 3.1 Amplitudes

In the SM, the higher-order QCD corrections to Vh at NNLO+PS are well-known.

(B-type)

(C,D-type)

(A-type)

EFT in Multiboson Production

[<u>1107.1164</u>] (G. Ferrera, M. Grazzini, F. Tramontano) [<u>1601.00658</u>] (J.M. Campbell, R.K. Ellis, C. Williams) [1705.10304] (G. Ferrera, G. Somogyi, F. Tramotano) [1712.06954] (F. Caola, G. Luisoni, K. Melnikov, R. Röntsch) [1907.05836] (R. Gauld, A. Gehrmann-De Ridder, E.W.N. Glover, et al.) [2112.04168] (S. Zanoli, M. Chiesa, E. Re, M. Wiesemann, G. Zanderighi)

3. Higher-Order Corrections **3.1 Amplitudes**

In the SM, the higher-order QCD corrections to Vh at NNLO+PS are well-known.

Our goal is to calculate the NNLO+PS corrections to these SMEFT contributions:

[<u>1512.02572</u>] (K. Mimasu, V. Sanz, C. Williams) [1609.04833] (C. Degrande, B. Fuks, K. Mawatari, *et al.*) NLO: [<u>1710.04143</u>] (A. Greljo, G. Isidori, J.M. Lindert, *et al.*) [1804.07407] (S. Alioli, W. Denkens, M. Girard, E. Mereghetti)

EFT in Multiboson Production

[<u>1107.1164</u>] (G. Ferrera, M. Grazzini, F. Tramontano) [1601.00658] (J.M. Campbell, R.K. Ellis, C. Williams) [1705.10304] (G. Ferrera, G. Somogyi, F. Tramotano) [1712.06954] (F. Caola, G. Luisoni, K. Melnikov, R. Röntsch) [1907.05836] (R. Gauld, A. Gehrmann-De Ridder, E.W.N. Glover, et al.) [2112.04168] (S. Zanoli, M. Chiesa, E. Re, M. Wiesemann, G. Zanderighi)

NNLO: [2204.00663] (U. Haisch, D.J. Scott, M. Wiesemann, *et al.*)

3. Higher-Order Corrections **3.2** $q\bar{q}$ -initiated contributions

Luc Schnell EFT in Multiboson Production June 2024

3.2 $q\bar{q}$ -initiated contributions

Corrections:

(B-type)

(C,D-type)

3. Higher-Order Corrections **3.2** $q\bar{q}$ -initiated contributions

Corrections:

(C,D-type)

We start with the SM spinor-helicity amplitudes...

[<u>10.3929/ethz-b-000448848</u>] (Thesis of I. Majer) [<u>1112.1531</u>] (T. Gehrmann, L. Tancredi)

Corrections:

(C,D-type)

We start with the SM spinor-helicity amplitudes...

(B1g0Z)

[<u>10.3929/ethz-b-000448848</u>] (Thesis of I. Majer) [1112.1531] (T. Gehrmann, L. Tancredi)

Corrections:

(C,D-type)

We start with the SM spinor-helicity amplitudes...

$$\mathtt{B1g0Z} = \frac{8\pi\alpha_s C_F}{C_A} \sum_{h_q,h_g,h_\ell=\pm} \left| \frac{g_{Zq}^{h_q} g_{Z\ell}^{h_\ell} g_{hZZ}}{D_Z(s_{123}) D_Z(s_{45})} \,\mathcal{A}_{\mathtt{B1g0Z}} \left(1_q^{h_q}, 2_g^{h_g}, 3_{\bar{q}}^{-h_q}; 4_\ell^{h_\ell}, 5_{\bar{\ell}}^{-h_\ell} \right) \right|^2,$$

(B1g0Z)

[<u>10.3929/ethz-b-000448848</u>] (Thesis of I. Majer) [1112.1531] (T. Gehrmann, L. Tancredi)

$$\begin{split} \mathtt{B1g0Z} &= \frac{8\pi\alpha_s C_F}{C_A} \sum_{h_q,h_g,h_\ell=\pm} \left| \frac{g_{Zq}^{h_q} g_{Z\ell}^{h_\ell} g_{hZZ}}{D_Z(s_{123}) D_Z(s_{45})} \mathcal{A}_{\mathtt{B1g0Z}} \left(1_q^{h_q}, 2_g^{h_g}, 3_{\bar{q}}^{-h_q}; 4_\ell^{h_\ell}, 5_{\bar{\ell}}^{-h_\ell} \right) \right|^2, \\ \mathcal{A}_{\mathtt{B1g0Z}} \left(1_q^-, 2_g^-, 3_{\bar{q}}^+; 4_\ell^-, 5_{\bar{\ell}}^+ \right) &= \frac{\langle 34 \rangle}{\langle 12 \rangle \langle 23 \rangle} \left(\langle 13 \rangle [51] + \langle 23 \rangle [52] \right), \end{split}$$

(B1g0Z)

EFT in Multiboson Production June 2024

[<u>10.3929/ethz-b-000448848</u>] (Thesis of I. Majer) [1112.1531] (T. Gehrmann, L. Tancredi)

$$B1g0Z = \frac{8\pi\alpha_{s}C_{F}}{C_{A}}\sum_{h_{q},h_{g},h_{\ell}=\pm} \left| \frac{g_{Zq}^{h_{q}}g_{Z\ell}^{h_{\ell}}g_{hZZ}}{D_{Z}(s_{123})D_{Z}(s_{45})} \mathcal{A}_{B1g0Z} \left(1_{q}^{h_{q}}, 2_{g}^{h_{q}}, 3_{\bar{q}}^{-h_{q}}; 4_{\ell}^{h_{\ell}}, 5_{\bar{\ell}}^{-h_{\ell}}\right) \right|^{2},$$

$$\mathcal{A}_{B1g0Z} \left(1_{q}^{-}, 2_{g}^{-}, 3_{\bar{q}}^{+}; 4_{\ell}^{-}, 5_{\bar{\ell}}^{+}\right) = \frac{\langle 34 \rangle}{\langle 12 \rangle \langle 23 \rangle} \left(\langle 13 \rangle [51] + \langle 23 \rangle [52] \right),$$

$$\langle 4|\gamma_{\mu}|5] \mathcal{A}_{qgq}^{\mu} (1_{q}^{-}, 2_{g}^{-}, 3_{\bar{q}}^{+}).$$

$$SM full amplitude$$

(B1g0Z)

EFT in Multiboson Production June 2024

[<u>10.3929/ethz-b-000448848</u>] (Thesis of I. Majer) [1112.1531] (T. Gehrmann, L. Tancredi)

$$B1g0Z = \frac{8\pi\alpha_{s}C_{F}}{C_{A}}\sum_{h_{q},h_{g},h_{\ell}=\pm} \left| \frac{g_{Zq}^{h_{q}}g_{Z\ell}^{h_{\ell}}g_{hZZ}}{D_{Z}(s_{123})D_{Z}(s_{45})} \mathcal{A}_{B1g0Z} \left(1_{q}^{h_{q}}, 2_{g}^{h_{q}}, 3_{\bar{q}}^{-h_{q}}; 4_{\ell}^{h_{\ell}}, 5_{\bar{\ell}}^{-h_{\ell}}\right) \right|^{2},$$

$$\mathcal{A}_{B1g0Z} \left(1_{q}^{-}, 2_{g}^{-}, 3_{\bar{q}}^{+}; 4_{\ell}^{-}, 5_{\bar{\ell}}^{+}\right) = \frac{\langle 34 \rangle}{\langle 12 \rangle \langle 23 \rangle} \left(\langle 13 \rangle [51] + \langle 23 \rangle [52] \right),$$

$$\langle 4|\gamma_{\mu}|5] \mathcal{A}_{qgq}^{\mu} (1_{q}^{-}, 2_{g}^{-}, 3_{\bar{q}}^{+}).$$

$$SM full amplitude$$

EFT in Multiboson Production June 2024

[<u>10.3929/ethz-b-000448848</u>] (Thesis of I. Majer) [1112.1531] (T. Gehrmann, L. Tancredi)

$$B1g0Z = \frac{8\pi\alpha_{s}C_{F}}{C_{A}}\sum_{h_{q},h_{g},h_{\ell}=\pm} \left| \frac{g_{Zq}^{h_{q}}g_{Z\ell}^{h_{\ell}}g_{hZZ}}{D_{Z}(s_{123})D_{Z}(s_{45})} \mathcal{A}_{B1g0Z} \left(1_{q}^{h_{q}},2_{g}^{h_{g}},3_{\bar{q}}^{-h_{q}};4_{\ell}^{h_{\ell}},5_{\bar{\ell}}^{-h_{\ell}}\right) \right|^{2},$$

$$\mathcal{A}_{B1g0Z} \left(1_{q}^{-},2_{g}^{-},3_{\bar{q}}^{+};4_{\ell}^{-},5_{\bar{\ell}}^{+}\right) = \frac{\langle 34 \rangle}{\langle 12 \rangle \langle 23 \rangle} \left(\langle 13 \rangle [51] + \langle 23 \rangle [52] \right),$$

$$\langle 4|\gamma_{\mu}|5] \mathcal{A}_{qgq}^{\mu}(1_{q}^{-},2_{g}^{-},3_{\bar{q}}^{+}).$$

$$SM full amplitude$$

(B1g0Z)

EFT in Multiboson Production June 2024

[<u>10.3929/ethz-b-000448848</u>] (Thesis of I. Majer) [1112.1531] (T. Gehrmann, L. Tancredi)

$$B1g0Z = \frac{8\pi\alpha_s C_F}{C_A} \sum_{h_q,h_g,h_\ell=\pm} \left| \frac{g_{Zq}^{h_q} g_{Z\ell}^{h_\ell} g_{Z\ell}$$

(B1g0Z)

EFT in Multiboson Production

[<u>10.3929/ethz-b-000448848</u>] (Thesis of I. Majer) [1112.1531] (T. Gehrmann, L. Tancredi)

Luc Schnell EFT in Multiboson Production June 2024

... and contract the **new helicity structures**.

EFT in Multiboson Production

... and contract the **new helicity structures**.

$$\mathcal{A}^{\mu}_{qgq}(1^-_q, 2^-_g, 3^+_{\bar{q}}) = \frac{\langle 13 \rangle \langle 3|\gamma^{\mu}|1]}{2\langle 1|\rangle}$$

(B1g0Z)

EFT in Multiboson Production June 2024

SM initial state

... and contract the **new helicity structures**.

$$\begin{split} \mathcal{A}_{qgq}^{\mu}(1_{q}^{-},2_{g}^{-},3_{\bar{q}}^{+}) &= \frac{\langle 13 \rangle \langle 3 | \gamma^{\mu} | 1] + \langle 23 \rangle \langle 3 | \gamma^{\mu} | 2]}{2 \langle 12 \rangle \langle 23 \rangle} . \\ \mathbf{SM initial} \\ \mathcal{A}_{hZZ}^{\mu}(p_{123},4_{\ell}^{-},5_{\bar{\ell}}^{+}) &= \frac{g_{Zq}^{-}g_{Z\ell}^{-}}{D_{Z}(s_{123}) D_{Z}(s_{45})} \left\{ \langle 4 | \gamma^{\mu} | 5] \left(g_{hZZ} + \delta g_{hZZ}^{(2)} \left(s_{123} + s_{34} \right) + \delta g_{hZZ}^{(3)} \right) \right\} \\ &- \delta g_{hZZ}^{(2)} p_{123}^{\mu} \langle 4 | \not{p}_{123} | 5] - \frac{\delta g_{hZZ}^{(1)}}{2} \left(\langle 4 | \gamma^{\mu} \not{p}_{123} | 4 \rangle [45] + \langle 45 \rangle [5 | \not{p}_{123} \gamma^{\mu} | 5] \right) \right\} , \\ \mathcal{A}_{h\gamma Z}^{\mu}(p_{123}, 4_{\ell}^{-}, 5_{\bar{\ell}}^{+}) &= \frac{g_{\gamma q}^{-} g_{Z\ell}^{-}}{s_{123} D(s_{45})} \left\{ - \frac{\delta g_{h\gamma Z}^{(1)}}{2} \left(\langle 4 | \gamma^{\mu} | 5] \left(\langle 4 | \not{p}_{123} | 4] + \langle 5 | \not{p}_{123} | 5 | \right) \right. \\ &- 2 \left(p_{4}^{\mu} + p_{5}^{\mu} \right) \langle 4 | \not{p}_{123} | 5] \right) + \delta g_{h\gamma Z}^{(2)} \left(\langle 4 | \gamma^{\mu} | 5] s_{123} - p_{123}^{\mu} \left(4 | \not{p}_{123} | 5 | \right) \right\} , \end{split}$$

Luc Schnell EFT in Multiboson Production June 2024

New helicity structures

[<u>1512.02572</u>] (K. Mimasu, *et al.*)

P D

(B1g0Z)

 $\mathcal{A}^{\mu}_{qgq}(1^{-}_{q}, 2^{-}_{g}, 3^{+}_{\bar{q}}) = \frac{\langle 13 \rangle \langle 3|\gamma^{\mu}|1] + \langle 23 \rangle \langle 3|\gamma^{\mu}|2]}{2\langle 12 \rangle \langle 23 \rangle}$ $\mathcal{A}^{\mu}_{hZZ}(p_{123}, 4^{-}_{\ell}, 5^{+}_{\bar{\ell}}) = \frac{g_{Zq}g^{-}_{Z\ell}}{D_Z(s_{123})D_Z(c_{\ell})}$ $-\delta g_{hZZ}^{(2)} p_{123}^{\mu} \langle 4 | p_{123} | 5]$ $\mathcal{A}^{\mu}_{h\gamma Z}(p_{123}, 4^{-}_{\ell}, 5^{+}_{\bar{\ell}}) = \frac{g^{-}_{\gamma q} g^{-}_{Z\ell}}{s_{123} D(s_{45})} \left\{ \right.$ $-2(p_4^{\mu}+p_5^{\mu})\langle 4|p_{123}|5\rangle$

$$\mathcal{A}_{qgq,\mu}\left(1_q^{h_q}, 2_g^{h_g}, 3_{\bar{q}}^{-h_q}\right) \left[\mathcal{A}_{hZZ}^{\mu}(p_{123})\right]$$

SM initial state

$$\begin{aligned} &\frac{1}{(s_{45})} \left\{ \langle 4|\gamma^{\mu}|5] \left(g_{hZZ} + \delta g_{hZZ}^{(2)} \left(s_{123} + s_{34} \right) + \delta g_{hZZ}^{(3)} \right) \\ &- \frac{\delta g_{hZZ}^{(1)}}{2} \left(\langle 4|\gamma^{\mu} \not{p}_{123}|4\rangle [45] + \langle 45\rangle [5|\not{p}_{123} \gamma^{\mu}|5] \right) \right\}, \\ &\int \left(-\frac{\delta g_{h\gamma Z}^{(1)}}{2} \left(\langle 4|\gamma^{\mu}|5] \left(\langle 4|\not{p}_{123}|4] + \langle 5|\not{p}_{123}|5] \right) \right) \\ &\delta \right) + \delta g_{h\gamma Z}^{(2)} \left(\langle 4|\gamma^{\mu}|5] s_{123} - p_{123}^{\mu} \left\langle 4|\not{p}_{123}|5] \right) \right\}, \end{aligned}$$

New helicity structures

SMEFT full amplitude

[<u>1512.02572</u>] (K. Mimasu, *et al.*)

 $_{3}, 4_{\ell}^{h_{\ell}}, 5_{\bar{\ell}}^{-h_{\ell}}) + \mathcal{A}_{h\gamma Z}^{\mu}(p_{123}, 4_{\ell}^{h_{\ell}}, 5_{\bar{\ell}}^{-h_{\ell}}) \Big] .$

Luc Schnell EFT in Multiboson Production June 2024

Corrections:

Diagrams:

(A-type)

EFT in Multiboson Production June 2024

Corrections:

Diagrams:

(A-type)

We start with the **SM spinor-helicity amplitudes**...

EFT in Multiboson Production

Corrections:

Diagrams:

(A-type)

We start with the **SM spinor-helicity amplitudes**...

$$\begin{split} \text{AOg2Z} &= \frac{\alpha_s^2}{8\pi^2 (C_A^2 - 1)^2} \sum_{h_g, h_\ell = \pm} \left| \sum_{q=t, b} \left(\mathcal{A}_{\Delta}^q + \sum_{s=\pm} \frac{m_q^2}{m_Z^2} \mathcal{A}_{\Box}^{q, s} \right) \right|^2 \,, \end{split}$$
 with
$$\mathcal{A}_{\Delta}^q &= \frac{(g_{Zq}^- - g_{Zq}^+) g_{Z\ell}^{h_\ell} g_{hZZ}}{D_Z(s_{12}) D_Z(s_{34})} \, \mathcal{A}_{\text{Aog2Z}\Delta}^q \left(1_g^{h_g}, 2_g^{h_g}, 3_{\ell}^{h_\ell}, 4_{\bar{\ell}}^{-h_\ell} \right) \,, \end{split}$$

$$\mathcal{A}_{\text{AOg2Z}\triangle}^{q} \left(1_{g}^{+}, 2_{g}^{+}, 3_{\ell}^{-}, 4_{\bar{\ell}}^{+}\right) = -\frac{2\left[21\right]\left(\left[41\right]\langle13\rangle + \left[42\right]\langle23\rangle\right)}{\langle12\rangle} \left(1 - \frac{s_{12}}{m_{Z}^{2}}\right) \times m_{q}^{2} C_{0}(s_{12}, 0, 0, m_{q}, m_{q}, m_{q}).$$

[1601.00658] (J.M. Campbell, R.K. Ellis, C. Williams)

EFT in Multiboson Production

Corrections:

Diagrams:

(A-type)

We start with the **SM spinor-helicity amplitudes**...

$$\begin{split} \mathsf{A0g2Z} &= \frac{\alpha_s^2}{8\pi^2 (C_A^2 - 1)^2} \sum_{h_g, h_\ell = \pm} \left| \sum_{q=t, b} \left(\mathcal{A}_{\Delta}^q + \sum_{s=\pm} \frac{m_q^2}{m_Z^2} \mathcal{A}_{\Box}^{q,s} \right) \right|^2, \\ \text{with} \\ \mathcal{A}_{\Delta}^q &= \frac{(g_{Zq}^- - g_{Zq}^+) g_{Z\ell}^{h_\ell} g_{hZZ}}{D_Z(s_{12}) D_Z(s_{34})} \, \mathcal{A}_{\mathsf{A0g2Z\Delta}}^q \left(\mathbf{1}_g^{h_q}, \mathbf{2}_g^{h_g}, \mathbf{3}_\ell^{h_\ell}, \mathbf{4}_{\bar{\ell}}^{-h_\ell} \right), \\ \mathcal{A}_{\mathsf{A0g2Z\Delta}}^q \left(\mathbf{1}_g^+, \mathbf{2}_g^+, \mathbf{3}_{\ell}^-, \mathbf{4}_{\bar{\ell}}^+ \right) = -\frac{2 \left[21 \right] \left(\left[41 \right] \langle 13 \rangle + \left[42 \right] \langle 23 \rangle \right) \right]}{\langle 12 \rangle} \left(1 - \frac{s_{12}}{m_Z^2} \right) \\ &\times m_q^2 C_0(s_{12}, 0, 0, m_q, m_q, m_q). \end{split}$$

[1601.00658] (J.M. Campbell, R.K. Ellis, C. Williams)

EFT in Multiboson Production

ongitudinal ontribution

Corrections:

Diagrams:

(A-type)

We start with the **SM spinor-helicity amplitudes**...

$$\begin{split} \mathsf{AOg2Z} &= \frac{\alpha_s^2}{8\pi^2 (C_A^2 - 1)^2} \sum_{h_g, h_\ell = \pm} \left| \sum_{q=t, b} \left(\mathcal{A}_{\Delta}^q + \sum_{s=\pm} \frac{m_q^2}{m_Z^2} \mathcal{A}_{\Box}^{q, s} \right) \right|^2, \\ \text{with} \\ \mathcal{A}_{\Delta}^q &= \frac{\left(\overline{g_{Zq}^- - g_{Zq}^+} \right) \overline{g_{Z\ell}^{h_\ell} g_{hZZ}}}{D_Z(s_{12}) D_Z(s_{34})} \mathcal{A}_{\mathsf{AOg2Z\Delta}}^q \left(1_g^{h_g}, 2_g^{h_g}, 3_{\ell}^{h_\ell}, 4_{\bar{\ell}}^{-h_\ell} \right), \\ \mathcal{A}_{\mathsf{AOg2Z\Delta}}^q \left(1_g^+, 2_g^+, 3_{\ell}^-, 4_{\bar{\ell}}^+ \right) = -\frac{2 \left[21 \right] \left(\left[41 \right] \langle 13 \rangle + \left[42 \right] \langle 23 \rangle \right)}{\langle 12 \rangle} \left(1 - \frac{s_{12}}{m_Z^2} \right) \right) \\ &\times m_q^2 C_0(s_{12}, 0, 0, m_q, m_q, m_q). \end{split}$$

[1601.00658] (J.M. Campbell, R.K. Ellis, C. Williams)

EFT in Multiboson Production

- Only axial part contributes
- ongitudinal ontribution

Corrections:

Diagrams:

(A-type)

We start with the **SM spinor-helicity amplitudes**...

$$\begin{split} \mathsf{AOg2Z} &= \frac{\alpha_s^2}{8\pi^2 (C_A^2 - 1)^2} \sum_{h_g, h_\ell = \pm} \left| \sum_{q=t, b} \left(\mathcal{A}_{\Delta}^q + \sum_{s=\pm} \frac{m_q^2}{m_Z^2} \mathcal{A}_{\Box}^{q, s} \right) \right|^2, \\ \text{with} \\ \mathcal{A}_{\Delta}^q &= \frac{\left(\overline{g_{Zq}^- - g_{Zq}^+} \right) \overline{g_{Z\ell}^{h_\ell} g_{hZZ}}}{D_Z(s_{12}) D_Z(s_{34})} \mathcal{A}_{\mathsf{AOg2Z\Delta}}^q \left(1_g^{h_g}, 2_g^{h_g}, 3_{\ell}^{h_\ell}, 4_{\bar{\ell}}^{-h_\ell} \right), \\ \mathcal{A}_{\mathsf{AOg2Z\Delta}}^q \left(1_g^+, 2_g^+, 3_{\ell}^-, 4_{\bar{\ell}}^+ \right) = -\frac{2 \left[21 \right] \left(\left[41 \right] \langle 13 \rangle + \left[42 \right] \langle 23 \rangle \right)}{\langle 12 \rangle} \left(1 - \frac{s_{12}}{m_Z^2} \right) \right) \\ &\times m_q^2 C_0(s_{12}, 0, 0, m_q, m_q, m_q). \end{split}$$

[1601.00658] (J.M. Campbell, R.K. Ellis, C. Williams)

EFT in Multiboson Production

- Only axial part contributes
- ongitudinal ontribution

Anomaly cancellation in the **SM**:

$$(g_{Zt}^{-} - g_{Zt}^{+}) = -(g_{Zb}^{-} - g_{Zb}^{+}),$$

Corrections:

Diagrams:

(A-type)

We start with the SM spinor-helicity amplitudes...

$$\begin{aligned} \mathsf{AOg2Z} &= \frac{\alpha_s^2}{8\pi^2 (C_A^2 - 1)^2} \sum_{h_g, h_\ell = \pm} \left| \sum_{q=t, b} \left(\mathcal{A}_{\Delta}^q + \sum_{s=\pm} \frac{m_q^2}{m_Z^2} \mathcal{A}_{\Box}^{q, s} \right) \right|^2, \end{aligned} \qquad \begin{aligned} \mathsf{Only} \text{ ax contribution} \\ & \mathsf{with} \\ \mathcal{A}_{\Delta}^q = \underbrace{\left(g_{Zq}^- - g_{Zq}^+ \right) g_{Z\ell}^{h_\ell} g_{hZZ}}_{D_Z(s_{12}) D_Z(s_{34})} \mathcal{A}_{\mathsf{AOg2Z\Delta}}^q \left(1_g^{h_g}, 2_g^{h_g}, 3_\ell^{h_\ell}, 4_{\bar{\ell}}^{-h_\ell} \right), \end{aligned} \qquad \begin{aligned} \mathsf{Longitudinal contribution} \\ \mathcal{A}_{\mathsf{AOg2Z\Delta}}^q \left(1_g^+, 2_g^+, 3_{\ell}^-, 4_{\bar{\ell}}^+ \right) &= -\frac{2 \left[21 \right] \left(\left[41 \right] \langle 13 \rangle + \left[42 \right] \langle 23 \rangle \right) }{\langle 12 \rangle} \left(1 - \frac{s_{12}}{m_Z^2} \right) \\ & \times m_q^2 C_0(s_{12}, 0, 0, m_q, m_q, m_q). \end{aligned}$$

[1601.00658] (J.M. Campbell, R.K. Ellis, C. Williams)

EFT in Multiboson Production June 2024

Only axial part

contributes

Anomaly cancellation in the **SM**:

$$(g_{Zt}^{-} - g_{Zt}^{+}) = -(g_{Zb}^{-} - g_{Zb}^{+}),$$

$$\sum_{q=t,b} \left(g_{Zq}^{-} - g_{Zq}^{+}\right) \mathcal{A}_{\mathtt{A0g2Z}\bigtriangleup}^{q} = \left(g_{Zt}^{-} - g_{Zt}^{+}\right) \left(\mathcal{A}_{\mathtt{A0g2Z}\bigtriangleup}^{t} - \mathcal{A}_{\mathtt{A0g2Z}\bigtriangleup}^{b}\right)$$

Luc Schnell

Corrections:

Diagrams:

(A-type)

We start with the SM spinor-helicity amplitudes...

$$\begin{split} \mathsf{AOg2Z} &= \frac{\alpha_s^2}{8\pi^2 (C_A^2 - 1)^2} \sum_{h_g, h_\ell = \pm} \left| \sum_{q=t, b} \left(\mathcal{A}_{\Delta}^q + \sum_{s=\pm} \frac{m_q^2}{m_Z^2} \mathcal{A}_{\Box}^{q, s} \right) \right|^2, \\ \text{with} \\ \mathcal{A}_{\Delta}^q &= \frac{\left(\overline{g_{Zq}^- - g_{Zq}^+} \right) \overline{g_{Z\ell}^{h_\ell} g_{hZZ}}}{D_Z(s_{12}) D_Z(s_{34})} \mathcal{A}_{\mathsf{AOg2Z\Delta}}^q \left(1_g^{h_g}, 2_g^{h_g}, 3_{\ell}^{h_\ell}, 4_{\bar{\ell}}^{-h_\ell} \right), \\ \mathcal{A}_{\mathsf{AOg2Z\Delta}}^q \left(1_g^+, 2_g^+, 3_{\ell}^-, 4_{\bar{\ell}}^+ \right) = -\frac{2 \left[21 \right] \left(\left[41 \right] \langle 13 \rangle + \left[42 \right] \langle 23 \rangle \right)}{\langle 12 \rangle} \left(1 - \frac{s_{12}}{m_Z^2} \right) \right) \\ &\times m_q^2 C_0(s_{12}, 0, 0, m_q, m_q, m_q). \end{split}$$

[1601.00658] (J.M. Campbell, R.K. Ellis, C. Williams)

EFT in Multiboson Production

Only axial part contributes

ongitudinal ontribution

Anomaly cancellation in the **SM**:

$$(g_{Zt}^{-} - g_{Zt}^{+}) = -(g_{Zb}^{-} - g_{Zb}^{+}),$$

$$\sum_{q=t,b} \left(g_{Zq}^{-} - g_{Zq}^{+}\right) \mathcal{A}_{\mathsf{AOg2Z}\bigtriangleup}^{q} = \left(g_{Zt}^{-} - g_{Zt}^{+}\right) \left(\mathcal{A}_{\mathsf{AOg2Z}\bigtriangleup}^{t} - \mathcal{A}_{\mathsf{AOg2Z}\bigtriangleup}^{b}\right)$$

 \rightarrow how does this work in the **SMEFT**?

Luc Schnell June 2024

Luc Schnell EFT in Multiboson Production June 2024

Anomaly cancellation in the **SMEFT**:

EFT in Multiboson Production June 2024

Anomaly cancellation in the **SMEFT**:

EFT in Multiboson Production June 2024

Anomaly cancellation in the **SMEFT**:

EFT in Multiboson Production June 2024

3.3 *gg*-initiated contributions

Anomaly cancellation in the **SMEFT**:

 $\left(\delta g_{hZq}^{(1)-} - \delta g_{hZq}^{(1)+}\right) g_{Z\ell}^{h_\ell}$ $\mathcal{A}^q_{ t A0g22}$ $D_Z(s_{34})$

$$\frac{\sum \left(1_g^{h_g}, 2_g^{h_g}, 3_\ell^{h_\ell}, 4_{\bar{\ell}}^{-h_\ell}\right)}{1 - \frac{s_{12}}{m_Z^2}},$$

Anomaly cancellation in the **SMEFT**:

$$\frac{\left(\delta g_{hZq}^{(1)-} - \delta g_{hZq}^{(1)+}\right) g_{Z\ell}^{h_{\ell}}}{D_Z(s_{34})} \quad \underline{\mathcal{A}_{AC}^q}$$

EFT in Multiboson Production June 2024

No longitudinal contribution (massless leptons)

Anomaly cancellation in the **SMEFT**:

EFT in Multiboson Production June 2024

$$\Delta\left(1_g^{h_g}, 2_g^{h_g}, 3_\ell^{h_\ell}, 4_{\bar{\ell}}^{-h_\ell}\right)$$

Anomaly cancellation in the **SMEFT**:

EFT in Multiboson Production June 2024

$$\Delta \left(1_{g}^{h_{g}}, 2_{g}^{h_{g}}, 3_{\ell}^{h_{\ell}}, 4_{\bar{\ell}}^{-h_{\ell}} \right) = -\frac{\left(\delta g_{hZq}^{(1)-} - \delta g_{hZq}^{(1)+} \right) g_{Z\ell}^{h_{\ell}}}{D_{Z}(s_{34})} \frac{1}{1 - \frac{s_{12}}{m_{Z}^{2}}} \left(1_{g}^{h_{g}}, 2_{g}^{h_{g}}, 3_{\ell}^{h_{\ell}}, \frac{1}{2} \right)$$

Anomaly cancellation in the **SMEFT**:

Anomaly cancellation in the **SMEFT**:

The SMEFT is **anomaly-free** (up to spurious "irrelevant" anomalies that can be subtracted). \rightarrow Great advantage e.g. with respect to the κ framework.

[2012.13989] (F. Feruglio)

[2012.07740] (Q. Bonnefoy, L. Di Luzio, Ch. Grojean, A. Paul, A.N. Rossia)

$$\Delta \left(1_{g}^{h_{g}}, 2_{g}^{h_{g}}, 3_{\ell}^{h_{\ell}}, 4_{\bar{\ell}}^{-h_{\ell}} \right) = -\frac{\left(\delta g_{hZq}^{(1)-} - \delta g_{hZq}^{(1)+} \right) g_{Z\ell}^{h_{\ell}}}{D_{Z}(s_{34})} \frac{1}{1 - \frac{s_{12}}{m_{Z}^{2}}} - \frac{A_{AOg2Z\Delta}^{q} \left(1_{g}^{h_{g}}, 2_{g}^{h_{g}}, 3_{\ell}^{h_{\ell}}, 3_{\ell}^{h_{\ell}} \right)}{2 - \frac{s_{12}}{m_{Z}^{2}}} - \frac{1}{2 - \frac{s_{12}}{m_{Z}^{2}}} - \frac$$

Phenomenology analysis

extra gluon emission in leading-order Q_{bG} contribution tends to reduce dibottom invariant mass relative to SM

[UH, Scott, Wiesemann, Zanderighi & Zanoli, 2204.00663]

Phenomenology analysis

size of effect depends on radius parameter R used to reconstruct anti-k_t jets

[UH, Scott, Wiesemann, Zanderighi & Zanoli, 2204.00663]

4. Phenomenology 4.1 Matrix element library

EFT in Multiboson Production June 2024

4. Phenomenology 4.1 Matrix element library

We implemented all squared matrix elements in a Fortran library using spinor helicity amplitudes...

EFT in Multiboson Production

4. Phenomenology 4.1 Matrix element library

$$2s_b \mathcal{B}_{ij} = -N \sum_{\substack{\text{spins}\\\text{colours}}} \mathcal{M}_{\{c_k\}} \left(\mathcal{M}_{\{c_k\}}^{\dagger} \right)_{\substack{c_i \to c'_i \\ c_j \to c'_j}} T^a_{c_i,c'_i} T^a_{c_j,c'_j}.$$

$$\mathcal{B}_{j}^{\mu\nu} = N \sum_{\{i\}, s_j, s'_j} \mathcal{M}\left(\{i\}, s_j\right) \mathcal{M}^{\dagger}\left(\{i\}, s'_j\right) \left(\epsilon_{s_j}^{\mu}\right)^* \epsilon_{s'_j}^{\nu},$$

EFT in Multiboson Production

We implemented all squared matrix elements in a Fortran library using spinor helicity amplitudes...

4.1 Matrix element library

We implemented all squared matrix elements in a Fortran library using spinor helicity amplitudes...

$$2s_b \mathcal{B}_{ij} = -N \sum_{\substack{\text{spins}\\\text{colours}}} \mathcal{M}_{\{c_k\}} \left(\mathcal{M}_{\{c_k\}}^{\dagger} \right)_{\substack{c_i \to c'_i \\ c_j \to c'_j}} T^a_{c_i,c'_i} T^a_{c_j,c'_j}.$$

$$\mathcal{B}_{j}^{\mu\nu} = N \sum_{\{i\}, s_j, s'_j} \mathcal{M}\left(\{i\}, s_j\right) \mathcal{M}^{\dagger}\left(\{i\}, s'_j\right) \left(\epsilon_{s_j}^{\mu}\right)^* \epsilon_{s'_j}^{\nu},$$

Luc Schnell EFT in Multiboson Production June 2024

```
Standard Model
! ( 1q-, 2g-, 3qb+; 4l-, 5lb+ )
! Particles before the ";" are incoming, after outgoing.
! This corresponds to the LL case.
complex(8) function B1g0V_Hel_SM_LL_minus(i1,i2,i3,i4,i5,K)
   integer, intent(in) :: i1, i2, i3, i4, i5
   type(Event_t), intent(in) :: K
   type(Constants_t) :: C
    ! Get Constants from K
   C = K C
    ! The helicity amplitude
   B1g0V_Hel_SM_LL_minus = K%Za(i3,i4)/K%Za(i1,i2)/K%Za(i2,i3) &
     * (K%Za(i1,i3)*K%Zb(i5,i1)+K%Za(i2,i3)*K%Zb(i5,i2))
end function B1g0V_Hel_SM_LL_minus
```

4.1 Matrix element library

We implemented all squared matrix elements in a Fortran library using spinor helicity amplitudes...

$$2s_b \mathcal{B}_{ij} = -N \sum_{\substack{\text{spins}\\\text{colours}}} \mathcal{M}_{\{c_k\}} \left(\mathcal{M}_{\{c_k\}}^{\dagger} \right)_{\substack{c_i \to c'_i \\ c_j \to c'_j}} T^a_{c_i,c'_i} T^a_{c_j,c'_j}.$$

$$\mathcal{B}_{j}^{\mu\nu} = N \sum_{\{i\}, s_j, s'_j} \mathcal{M}\left(\{i\}, s_j\right) \mathcal{M}^{\dagger}\left(\{i\}, s'_j\right) \left(\epsilon_{s_j}^{\mu}\right)^* \epsilon_{s'_j}^{\nu},$$

Luc Schnell EFT in Multiboson Production June 2024

4. Phenomenology 4.3 Spectra

Luc Schnell EFT in Multiboson Production June 2024

4. Phenomenology 4.3 Spectra

Luc Schnell EFT in Multiboson Production June 2024

4. Phenomenology 4.3 Spectra

[2311.06107] (R. Gauld, U. Haisch, LS)

Parameter benchmarks discussed in

our paper.

Luc Schnell EFT in Multiboson Production June 2024

4.3 Spectra

[2311.06107] (R. Gauld, U. Haisch, LS)

Parameter benchmarks discussed in

our paper.

Luc Schnell EFT in Multiboson Production June 2024

Luc Schnell EFT in Multiboson Production June 2024

Luc Schnell EFT in Multiboson Production June 2024

[1804.07407] (S. Alioli, W. Dekens, M. Girard, E. Mereghetti)

Our NNLO+PS code can do SM, linear SMEFT, quadratic SMEFT individually (+ input scheme corrections).

Luc Schnell EFT in Multiboson Production June 2024

[1804.07407] (S. Alioli, W. Dekens, M. Girard, E. Mereghetti)

Luc Schnell EFT in Multiboson Production June 2024

allows to measure Higgs couplings precisely.

EFT in Multiboson Production

The associated Higgs production (Vh) channel is interesting phenomenologically, as it

allows to measure Higgs couplings precisely.

them in an NNLO+PS accurate POWHEG MiNNLO_{PS} event generator.

The associated Higgs production (Vh) channel is interesting phenomenologically, as it

• We calculated SMEFT contributions to $pp \rightarrow V(\rightarrow l^+l^-)h$ at NNLO and implemented

allows to measure Higgs couplings precisely.

• We calculated SMEFT contributions to $pp \rightarrow V(\rightarrow l^+l^-)h$ at NNLO and implemented them in an NNLO+PS accurate POWHEG MiNNLO_{PS} event generator.

 \rightarrow useful tool for future Higgs characterisation studies at the LHC

The associated Higgs production (Vh) channel is interesting phenomenologically, as it

allows to measure Higgs couplings precisely.

• We calculated SMEFT contributions to $pp \rightarrow V(\rightarrow l^+l^-)h$ at NNLO and implemented them in an NNLO+PS accurate POWHEG MiNNLO_{PS} event generator. \rightarrow useful tool for future Higgs characterisation studies at the LHC

In our calculation we encountered interesting theoretical aspects, including the un- and recontraction of spinor-helicity amplitudes and the cancellation of gauge anomalies in the SMEFT.

The associated Higgs production (Vh) channel is interesting phenomenologically, as it

Backup

EFT in Multiboson Production June 2024

EFT in Multiboson Production

[1908.06987] (P. Monni, E. Re. M. Wiesemann, G. Zanderighi) [2006.04133] (P. Monni, E. Re. M. Wiesemann)

... and implemented the matrix elements in a **POWHEG MINNLO_{PS} NNLO+PS event generator**.

IR singularities

Deal with cases where emitted parton is soft or coll.

EFT in Multiboson Production

[1908.06987] (P. Monni, E. Re. M. Wiesemann, G. Zanderighi) [2006.04133] (P. Monni, E. Re. M. Wiesemann)

... and implemented the matrix elements in a POWHEG MINNLOPS NNLO+PS event generator.

IR singularities

Deal with cases where emitted parton is soft or coll.

Matching

Avoid double counting between the full real and the approx. real from the PS.

EFT in Multiboson Production

[1908.06987] (P. Monni, E. Re. M. Wiesemann, G. Zanderighi) [2006.04133] (P. Monni, E. Re. M. Wiesemann)

... and implemented the matrix elements in a POWHEG MINNLOPS NNLO+PS event generator.

IR singularities

Deal with cases where emitted parton is soft or coll.

Matching

Avoid double counting between the full real and the approx. real from the PS.

EFT in Multiboson Production June 2024

[1908.06987] (P. Monni, E. Re. M. Wiesemann, G. Zanderighi) [2006.04133] (P. Monni, E. Re. M. Wiesemann)

... and implemented the matrix elements in a **POWHEG MINNLO_{PS} NNLO+PS event generator**.

Merging

Combine Z at NLO with ZJ at NLO.

... and implemented the matrix elements in a **POWHEG MINNLO_{PS} NNLO+PS event generator**.

... and implemented the matrix elements in a **POWHEG MINNLO_{PS} NNLO+PS event generator**.

$$NLO = \int d\mathbf{\Phi}_{F} \bar{B}(\mathbf{P}_{F}) \left[\Delta_{pwg}(\mathbf{P}_{F}, p_{T,pwg}) \mathcal{O}(\mathbf{\Phi}_{F}) + \sum_{\alpha} \int_{p_{T,pwg}} d\Phi_{rad}^{(\alpha)} \frac{R^{(\alpha)}\left(\vec{\mathbf{P}}_{FJ}^{(\alpha)}\right)}{B(\mathbf{P}_{F})} \Delta_{pwg}\left(\mathbf{P}_{F}, q_{T,rad}^{(\alpha)}\right) \mathcal{O}\left(\vec{\mathbf{\Phi}}_{FJ}^{(\alpha)}\right) \right]$$

Master formula

$$\begin{split} \bar{B}(\boldsymbol{P}_{F}) &\equiv B(\boldsymbol{P}_{F}) + V(\boldsymbol{P}_{F}) \\ &+ \sum_{\alpha} \int d\Phi_{\mathrm{rad}}^{(\alpha)} \left(R^{(\alpha)} \left(\vec{\boldsymbol{P}}_{FJ}^{(\alpha)} \right) - C^{(\alpha)} \left(\vec{\boldsymbol{P}}_{FJ}^{(\alpha)} \right) \right) \\ &+ \sum_{\alpha_{\oplus}} \int \frac{dz}{z} G_{\oplus}^{(\alpha_{\oplus})} \left(\left\{ \boldsymbol{P}_{F}, z \right\} \right) + \sum_{\alpha_{\ominus}} \int \frac{dz}{z} G_{\ominus}^{(\alpha_{\ominus})} \left(\left\{ \boldsymbol{P}_{F}, z \right\} \right) \,. \end{split}$$

... and implemented the matrix elements in a **POWHEG MINNLO_{PS} NNLO+PS event generator**.

$$NLO = \int d\mathbf{\Phi}_{F} \bar{B}(\mathbf{P}_{F}) \left[\Delta_{pwg}(\mathbf{P}_{F}, p_{T,pwg}) \mathcal{O}(\mathbf{\Phi}_{F}) + \sum_{\alpha} \int_{p_{T,pwg}} d\Phi_{rad}^{(\alpha)} \frac{R^{(\alpha)}\left(\vec{\mathbf{P}}_{FJ}^{(\alpha)}\right)}{B(\mathbf{P}_{F})} \Delta_{pwg}\left(\mathbf{P}_{F}, q_{T,rad}^{(\alpha)}\right) \mathcal{O}\left(\vec{\mathbf{\Phi}}_{FJ}^{(\alpha)}\right) \right]$$

Master formula

... and implemented the matrix elements in a **POWHEG MINNLO_{PS} NNLO+PS event generator**.

$$NLO = \int d\mathbf{\Phi}_{F} \bar{B}(\mathbf{P}_{F}) \left[\Delta_{pwg}(\mathbf{P}_{F}, p_{T,pwg}) \mathcal{O}(\mathbf{\Phi}_{F}) + \sum_{\alpha} \int_{p_{T,pwg}} d\Phi_{rad}^{(\alpha)} \frac{R^{(\alpha)}\left(\vec{\mathbf{P}}_{FJ}^{(\alpha)}\right)}{B(\mathbf{P}_{F})} \Delta_{pwg}\left(\mathbf{P}_{F}, q_{T,rad}^{(\alpha)}\right) \mathcal{O}\left(\vec{\mathbf{\Phi}}_{FJ}^{(\alpha)}\right) \right]$$

... and implemented the matrix elements in a **POWHEG MINNLO_{PS} NNLO+PS event generator**.

$$NLO = \int d\mathbf{\Phi}_{F} \bar{B}(\mathbf{P}_{F}) \left[\Delta_{pwg}(\mathbf{P}_{F}, p_{T,pwg}) \mathcal{O}(\mathbf{\Phi}_{F}) + \sum_{\alpha} \int_{p_{T,pwg}} d\Phi_{rad}^{(\alpha)} \frac{R^{(\alpha)}\left(\vec{\mathbf{P}}_{FJ}^{(\alpha)}\right)}{B(\mathbf{P}_{F})} \Delta_{pwg}\left(\mathbf{P}_{F}, q_{T,rad}^{(\alpha)}\right) \mathcal{O}\left(\vec{\mathbf{\Phi}}_{FJ}^{(\alpha)}\right) \right]$$

EFT in Multiboson Production

$$\begin{split} \bar{B}(\boldsymbol{P}_{F}) &\equiv B(\boldsymbol{P}_{F}) + V(\boldsymbol{P}_{F}) \\ &+ \sum_{\alpha} \int d\Phi_{\mathrm{rad}}^{(\alpha)} \left(R^{(\alpha)}(\vec{\boldsymbol{P}}_{FJ}^{(\alpha)}) - C^{(\alpha)}(\vec{\boldsymbol{P}}_{FJ}^{(\alpha)}) \right) \\ &+ \sum_{\alpha \oplus} \int \frac{dz}{z} G_{\oplus}^{(\alpha_{\oplus})} \left(\{\boldsymbol{P}_{F}, z\} \right) + \sum_{\alpha_{\ominus}} \int \frac{dz}{z} G_{\ominus}^{(\alpha_{\ominus})} \left(\{\boldsymbol{P}_{F}, z\} \right). \end{split}$$

Subtraction counterterms.

EFT in Multiboson Production

$$\begin{split} \bar{B}(\boldsymbol{P}_{F}) &\equiv B(\boldsymbol{P}_{F}) + V(\boldsymbol{P}_{F}) \\ &+ \sum_{\alpha} \int d\Phi_{\mathrm{rad}}^{(\alpha)} \left(R^{(\alpha)}(\vec{\boldsymbol{P}}_{FJ}^{(\alpha)}) - C^{(\alpha)}(\vec{\boldsymbol{P}}_{FJ}^{(\alpha)}) \right) \\ &+ \sum_{\alpha \oplus} \int \frac{dz}{z} G_{\oplus}^{(\alpha_{\oplus})} \left(\{\boldsymbol{P}_{F}, z\} \right) + \sum_{\alpha_{\ominus}} \int \frac{dz}{z} G_{\ominus}^{(\alpha_{\ominus})} \left(\{\boldsymbol{P}_{F}, z\} \right). \end{split}$$

Subtraction counterterms.

... and implemented the matrix elements in a **POWHEG MINNLO_{PS} NNLO+PS event generator**.

 \rightarrow only use PS below p_T^{\min}

Higher-Order Corrections $q\bar{q}$ -initiated contributions

... and repeat.

Loop coefficients:

$$\Omega = I^{(1)}(\epsilon) \,\Omega^{(0)} + \Omega^{(1),\,\text{finite}} \,, \qquad \text{with } \Omega = \alpha, \beta, \gamma$$
$$\Omega^{(1),\,\text{finite}} = C_A \,\Omega_1^{(1),\,\text{finite}} + \frac{1}{C_A} \,\Omega_2^{(1),\,\text{finite}} + \beta_0 \,\Omega_3^{(1),\,\text{finite}} \,,$$

(B1g1Z)

(same as in the **SM**)

Luc Schnell EFT in Multiboson Production June 2024

[<u>1112.1531</u>] (T. Gehrmann, L. Tancredi)

$$\mathcal{A}_{\mathtt{B1g1Z}} = \alpha \mathcal{A}_{\alpha} + \beta \mathcal{A}_{\beta} + \gamma \mathcal{A}_{\gamma}$$

Helicity amplitudes:

 $\mathcal{A}_{\rm nc} = \langle 13 \rangle [21] \frac{\langle 14 \rangle [51] + \langle 24 \rangle [52] + \langle 34 \rangle [53]}{2s_{123} \langle 12 \rangle}$

(add contribution, since momentum is carried away by the Higgs and therefore $p_1 + p_2 + p_3 \neq p_4 + p_5$)

Obtain **SMEFT spinor-helicity** amplitudes by un- and recontracting the SM initial-state amplitude.

Interesting Aspects of the Calculation $q\bar{q}$ -initiated contributions

Corrections:

(C,D-type)

These contributions give **overall factors** to the SM amplitude.

$$B1g0Z = \frac{8\pi\alpha_s C_F}{C_A} \sum_{h_q,h_g,h_\ell=\pm} \left| \frac{g_{Zq}^{h_q} g_{Z\ell}^{h_\ell} g_{hZZ}}{D_Z(s_{23}) D_Z(s_{45})} \mathcal{A}_{B1g0Z} \left(1_q^{h_q}, 2_g^{h_g}, 3_{\bar{q}}^{-h_q}; 4_{\ell}^{h_\ell}, 5_{\bar{\ell}}^{-h_\ell} \right) \right|^2,$$

$$\delta g_{Zd}^{(1)-} = \frac{v^2 g_+}{2} \left(C_{Hq}^{(1)} + C_{Hq}^{(3)} \right), \qquad \delta g_{Zu}^{(1)-} = \frac{v^2 g_+}{2} \left(C_{Hq}^{(1)} - C_{Hq}^{(3)} \right),$$

$$\left(\frac{\delta g_{hZq}^{(1)h_q} g_{Z\ell}^{h_\ell}}{D_Z(s_{45})} + \frac{g_{Zq}^{h_q} \delta g_{hZ\ell}^{(1)h_\ell}}{D_Z(s_{123})} \right) \mathcal{A}_{B1g0Z} \left(1_q^{h_q}, 2_g^{h_g}, 3_{\bar{q}}^{-h_q}; 4_{\ell}^{h_\ell}, 5_{\bar{\ell}}^{-h_\ell} \right),$$

Direct contributions

(+ input scheme corrections)

"Quartic" contributions

Details of the calculation The POWHEG method

$$\sigma_{\text{NLO}} = \int d\Phi_n \mathcal{L} \left[\mathcal{B}(\Phi_n) + \mathcal{V}_{\text{b}}(\Phi_n) \right] + \int d\Phi_{n+1} \mathcal{L} \mathcal{R}(\Phi_{n+1}) \\ + \int d\Phi_{n,\oplus} \mathcal{L} \mathcal{G}_{\oplus,\text{b}}(\Phi_{n,\oplus}) + \int d\Phi_{n,\oplus} \mathcal{L} \mathcal{G}_{\Theta,\text{b}}(\Phi_{n,\oplus}) ,$$

$$\rightarrow \text{ how to deal with IR singularities?}$$
Soft/collinear
divergences

Subtraction:

$$\begin{split} \bar{B}(\boldsymbol{P}_{F}) &\equiv B(\boldsymbol{P}_{F}) + V(\boldsymbol{P}_{F}) \\ &+ \sum_{\alpha} \int d\Phi_{\mathrm{rad}}^{(\alpha)} \left(R^{(\alpha)} \left(\vec{\boldsymbol{P}}_{FJ}^{(\alpha)} \right) - C^{(\alpha)} \left(\vec{\boldsymbol{P}}_{FJ}^{(\alpha)} \right) \right) \\ &+ \sum_{\alpha_{\oplus}} \int \frac{dz}{z} G_{\oplus}^{(\alpha_{\oplus})} \left(\{ \boldsymbol{P}_{F}, z \} \right) + \sum_{\alpha_{\ominus}} \int \frac{dz}{z} G_{\ominus}^{(\alpha_{\ominus})} \left(\{ \boldsymbol{P}_{F}, z \} \right) + \sum_{\alpha_{\oplus}} \int \frac{dz}{z} G_{\oplus}^{(\alpha_{\oplus})} \left(\{ \boldsymbol{P}_{F}, z \} \right) + \sum_{\alpha_{\oplus}} \int \frac{dz}{z} G_{\oplus}^{(\alpha_{\oplus})} \left(\{ \boldsymbol{P}_{F}, z \} \right) + \sum_{\alpha_{\oplus}} \int \frac{dz}{z} G_{\oplus}^{(\alpha_{\oplus})} \left(\{ \boldsymbol{P}_{F}, z \} \right) + \sum_{\alpha_{\oplus}} \int \frac{dz}{z} G_{\oplus}^{(\alpha_{\oplus})} \left(\{ \boldsymbol{P}_{F}, z \} \right) + \sum_{\alpha_{\oplus}} \int \frac{dz}{z} G_{\oplus}^{(\alpha_{\oplus})} \left(\{ \boldsymbol{P}_{F}, z \} \right) + \sum_{\alpha_{\oplus}} \int \frac{dz}{z} G_{\oplus}^{(\alpha_{\oplus})} \left(\{ \boldsymbol{P}_{F}, z \} \right) + \sum_{\alpha_{\oplus}} \int \frac{dz}{z} G_{\oplus}^{(\alpha_{\oplus})} \left(\{ \boldsymbol{P}_{F}, z \} \right) + \sum_{\alpha_{\oplus}} \int \frac{dz}{z} G_{\oplus}^{(\alpha_{\oplus})} \left(\{ \boldsymbol{P}_{F}, z \} \right) + \sum_{\alpha_{\oplus}} \int \frac{dz}{z} G_{\oplus}^{(\alpha_{\oplus})} \left(\{ \boldsymbol{P}_{F}, z \} \right) + \sum_{\alpha_{\oplus}} \int \frac{dz}{z} G_{\oplus}^{(\alpha_{\oplus})} \left(\{ \boldsymbol{P}_{F}, z \} \right) + \sum_{\alpha_{\oplus}} \int \frac{dz}{z} G_{\oplus}^{(\alpha_{\oplus})} \left(\{ \boldsymbol{P}_{F}, z \} \right) + \sum_{\alpha_{\oplus}} \int \frac{dz}{z} G_{\oplus}^{(\alpha_{\oplus})} \left(\{ \boldsymbol{P}_{F}, z \} \right) + \sum_{\alpha_{\oplus}} \int \frac{dz}{z} G_{\oplus}^{(\alpha_{\oplus})} \left(\{ \boldsymbol{P}_{F}, z \} \right) + \sum_{\alpha_{\oplus}} \int \frac{dz}{z} G_{\oplus}^{(\alpha_{\oplus})} \left(\{ \boldsymbol{P}_{F}, z \} \right) + \sum_{\alpha_{\oplus}} \int \frac{dz}{z} G_{\oplus}^{(\alpha_{\oplus})} \left(\{ \boldsymbol{P}_{F}, z \} \right) + \sum_{\alpha_{\oplus}} \int \frac{dz}{z} G_{\oplus}^{(\alpha_{\oplus})} \left(\{ \boldsymbol{P}_{F}, z \} \right) + \sum_{\alpha_{\oplus}} \int \frac{dz}{z} G_{\oplus}^{(\alpha_{\oplus})} \left(\{ \boldsymbol{P}_{F}, z \} \right) + \sum_{\alpha_{\oplus}} \int \frac{dz}{z} G_{\oplus}^{(\alpha_{\oplus})} \left(\{ \boldsymbol{P}_{F}, z \} \right) + \sum_{\alpha_{\oplus}} \int \frac{dz}{z} G_{\oplus}^{(\alpha_{\oplus})} \left(\{ \boldsymbol{P}_{F}, z \} \right) + \sum_{\alpha_{\oplus}} \int \frac{dz}{z} G_{\oplus}^{(\alpha_{\oplus})} \left(\{ \boldsymbol{P}_{F}, z \} \right) + \sum_{\alpha_{\oplus}} \int \frac{dz}{z} G_{\oplus}^{(\alpha_{\oplus})} \left(\{ \boldsymbol{P}_{F}, z \} \right) + \sum_{\alpha_{\oplus}} \int \frac{dz}{z} G_{\oplus}^{(\alpha_{\oplus})} \left(\{ \boldsymbol{P}_{F}, z \} \right) + \sum_{\alpha_{\oplus}} \int \frac{dz}{z} G_{\oplus}^{(\alpha_{\oplus})} \left(\{ \boldsymbol{P}_{F}, z \} \right) + \sum_{\alpha_{\oplus}} \int \frac{dz}{z} G_{\oplus}^{(\alpha_{\oplus})} \left(\{ \boldsymbol{P}_{F}, z \} \right) + \sum_{\alpha_{\oplus}} \int \frac{dz}{z} G_{\oplus}^{(\alpha_{\oplus})} \left(\{ \boldsymbol{P}_{F}, z \} \right) + \sum_{\alpha_{\oplus}} \int \frac{dz}{z} G_{\oplus}^{(\alpha_{\oplus})} \left(\{ \boldsymbol{P}_{F}, z \} \right) + \sum_{\alpha_{\oplus}} \int \frac{dz}{z} G_{\oplus}^{(\alpha_{\oplus})} \left(\{ \boldsymbol{P}_{F}, z \} \right) + \sum_{\alpha_{\oplus}} \int \frac{dz}{z} G_{\oplus}^{(\alpha_{\oplus})} \left(\{ \boldsymbol{P}_{F}, z \} \right) + \sum_{\alpha_{\oplus}} \int \frac{dz}{z} G_{\oplus}^{(\alpha_{\oplus})} \left(\{ \boldsymbol{P}_{F}, z \} \right)$$

\rightarrow inclusive (N)NLO

Sources: [1] [0709.2092] (S. Frixione, P. Nason, C. Oleari).

$$\langle \mathcal{O} \rangle_{\text{NLO}} = \int d\mathbf{\Phi}_F \bar{B}(\mathbf{P}_F) \left[\Delta_{\text{pwg}}(\mathbf{P}_F, p_{T, \text{pwg}}) \mathcal{O}(\mathbf{\Phi}_F) + \sum_{\alpha} \int_{p_{T, \text{pwg}}} d\Phi_{\text{rad}}^{(\alpha)} \frac{R^{(\alpha)}\left(\vec{\mathbf{P}}_{FJ}^{(\alpha)}\right)}{B(\mathbf{P}_F)} \Delta_{\text{pwg}}\left(\mathbf{P}_F, q_{T, \text{rad}}^{(\alpha)}\right) \mathcal{O}\left(\vec{\mathbf{\Phi}}_{FJ}^{(\alpha)}\right) \right]$$

Master formula

Sudakov form factor:

$$\Delta_{\rm pwg}(\boldsymbol{P}_F, p_{T, \rm pwg}) \equiv \exp\left[-\sum_{\alpha} \int d\Phi_{\rm rad}^{(\alpha)} \frac{R^{(\alpha)} \left(\vec{\boldsymbol{P}}_{FJ}^{(\alpha)}\right) \theta\left(q_{T, \rm rad}^{(\alpha)} - p_{T, \rm pwg}\right)}{B(\boldsymbol{P}_F)}\right]$$

 \rightarrow exclusive above p_T^{\min} \rightarrow parton shower for radiation below p_T^{\min}

 $(\{\boldsymbol{P}_F,z\})$.

Operators considered in our work

$$Q_{H\square} = (H^{\dagger}H) \square (H^{\dagger}H)$$

$$Q_{bH} = y_b (H^{\dagger} H) \,\bar{q}_L \,b_R H$$

$$Q_{HG} = \frac{g_s^2}{(4\pi)^2} \left(H^{\dagger} H \right) G^a_{\mu\nu} G^{a,\mu\nu}$$

Operators normalised such that Wilson coefficients are expected to be of O(1) in UV-complete weakly-coupled BSM models

[UH, Scott, Wiesemann, Zanderighi & Zanoli, 2204.00663]

$Q_{HD} = (H^{\dagger}D_{\mu}H)^* (H^{\dagger}D^{\mu}H)$

$$Q_{bG} = \frac{g_s^3}{(4\pi)^2} y_b \bar{q}_L \sigma_{\mu\nu} T^a b_R H G^{a,\mu\nu}$$

$$Q_{3G} = \frac{g_s^3}{(4\pi)^2} f^{abc} G^{a,\nu}_{\mu} G^{b,\sigma}_{\nu} G^{c,\mu}_{\sigma}$$

Factorisable contributions

Since operators $Q_{H\Box}$, Q_{HD} & Q_{bH} do not contain a gluon, associated SMEFT effects factorise to all orders in strong coupling constant. SMEFT results can be obtained from SM matrix elements by following simple replacement:

$$y_b^2 \to y_b^2 \left\{ 1 + \frac{2v^2}{\Lambda^2} \left[0 \right] \right\} \right\}$$

corrections due to Higgs wave function

[UH, Scott, Wiesemann, Zanderighi & Zanoli, 2204.00663]

Factorisable contributions

For example in case of partial $h \rightarrow b\overline{b}$ decay rate factorisable corrections are:

[in principle extension to N⁴LO possible using SM results given in Baikov et al., hep-ph/0511063; Herzog et al., 1707.01044]

$$+\frac{2v^{2}}{\Lambda^{2}}\left[C_{H\Box}-\frac{C_{HD}}{4}-\operatorname{Re}\left(C_{bH}\right)\right]\right\}$$
5.67 + $\left(\frac{\alpha_{s}}{\pi}\right)^{2}$ 29.15
NLO & NNLO QCD correction in SM

Dominant non-factorisable corrections arise from dipole operator Q_{bG} :

[Gauld, Pecjak & Scott, 1607.06354]

leading contribution from interference of $h \rightarrow b\overline{b}g$ amplitude in SMEFT & SM

Dominant non-factorisable corrections arise from dipole operator Q_{bG}:

beyond leading order, double real, 1-loop single real & 2-loop virtual contributions

$$\begin{aligned} & (1, p_2, p_3, p_4) = \frac{4y_{24}^2}{y_{23}y_{34}y_{234}} + \frac{y_{13}^2y_{24}^2}{2y_{14}y_{23}y_{34}y_{134}y_{234}} + \frac{(1+1)y_{34} - 4y_{24}}{y_{23}y_{134}y_{234}} + \frac{(1+1)y_{34} - 4y_{24}}{y_{23}y_{134}y_{234}} + \frac{(1+1)y_{34} - 4y_{24}}{2y_{34}y_{134}y_{234}} + \frac{(1+1)y_{34} - 4y_{24}y_{23}y_{134}}{2y_{34}y_{134}y_{234}} + \frac{(1+1)y_{34}y_{23}y_{134}}{2y_{34}y_{134}y_{234}} + \frac{(1+1)y_{34}y_{23}y_{134}}{2y_{34}y_{134}y_{234}} + \frac{(1+1)y_{34}y_{23}y_{134}}{y_{13}y_{14}y_{234}y_{234}} + \frac{(1+1)y_{34}y_{23}y_{134}y_{234}}{y_{13}y_{14}y_{134}y_{234}} + \frac{(1+1)y_{34}y_{23}y_{134}y_{234}}{y_{13}y_{13}y_{14}y_{234}y_{234}} + \frac{(1+1)y_{34}y_{23}y_{134}y_{234}}{y_{13}y_{13}y_{14}y_{234}y_{234}} + \frac{(1+1)y_{34}y_{23}y_{134}y_{234}}{y_{13}y_{23}y_{134}y_{234}} + \frac{(1+1)y_{34}y_{23}y_{134}y_{234}}{y_{13}y_{234}} + \frac{(1+1)y_{34}y_{23}y_{134}y_{234}}{y_{13}y_{234}} + \frac{(1+1)y_{34}y_{23}y_{23}y_{134}y_{234}}{y_{13}y_{234}} + \frac{(1+1)y_{34}y_{23}y_{134}y_{234}}{y_{13}y_{234}} + \frac{(1+1)y_{34}y_{23}y_{23}y_{134}y_{234}}{y_{13}y_{234}} + \frac{(1+1)y_{34}y_{23}y_{23}y_{23}}{y_{13}y_{23}} + \frac{(1+1)y_{34}y_{23}y_{23}y_{23}}{y_{13}y_{23}} + \frac{(1+1)y_{34}y_{23}y_{23}y_{23}}{y_{13}} + \frac{(1+1)y_{34}y_{23}y_$$

 Q_{bG} corrections implemented into POWHEG-BOX. Possible to obtain realistic exclusive description of pp \rightarrow Zh \rightarrow I⁺I⁻bb̄ production with NNLO accuracy using MiNLO' & MiNNLO_{PS} methods. Applying code to Higgs decay leads to:

$$\Gamma(h \to b\bar{b})_{\text{SMEFT}}^{\text{non}} = \frac{3y_b^2 m_h}{16\pi} \left(\frac{\alpha_s}{\pi}\right)^2 \frac{m_h^2}{3v^2} \left[1 + \frac{\alpha_s}{\pi} 17.32\right] \frac{v^2}{\Lambda^2} \operatorname{Re}\left(C_{bG}\right)$$

[see MiNNLO talks on Tuesday morning; UH, Scott, Wiesemann, Zanderighi & Zanoli, 2204.00663]

new term represents a 60% correction

Contributions from QHG

$$\frac{\Gamma(h \to b\bar{b})_{\rm SMEFT}^{HG}}{\Gamma(h \to b\bar{b})_{\rm SM}^{\rm LO}} = \left(\frac{\alpha_s}{\pi}\right)^2 \left[\frac{19}{3} - 2b_{\rm SM}^{\rm C}\right]$$

[Gauld, Pecjak & Scott, 1607.06354; UH, Scott, Wiesemann, Zanderighi & Zanoli, 2204.00663]

Contributions from QHG

$$\frac{\sigma(pp \to hZ)_{\rm SMEFT}^{HG}}{\sigma(pp \to hZ)_{\rm SM}^{\rm LO}} = 3 \left(\frac{1}{2} \right)^{\rm LO}$$

[Brein, Harlander, Wiesemann & Zirke, 1111.0761; UH, Scott, Wiesemann, Zanderighi & Zanoli, 2204.00663]

 $c_{HG} = \frac{v^2}{\Lambda^2} C_{HG} \in [-0.09, 0.06]$ [Ellis et al., 2012.02779] $\left(\frac{\alpha_s}{\pi}\right)^2 \delta c_{HG} \in \left[-3.9, 2.4\right] \cdot 10^{-3}$ numerically, one has $\delta = 10.7$

Contributions from Q_{3G}

[UH, Scott, Wiesemann, Zanderighi & Zanoli, 2204.00663]

 $c_{3G} = \frac{v^2}{\Lambda^2} C_{3G} \in [-12.5, -4.1]$ [Ellis et al., 2012.02779] $\frac{\Gamma(h \to b\bar{b})_{\rm SMEFT}^{3G}}{\Gamma(h \to b\bar{b})_{\rm SM}^{\rm LO}} = N_{3G}^{\rm dec} \left(\frac{\alpha_s}{\pi}\right)^2 \frac{m_h^2}{v^2} c_{3G} \in [-0.3, -0.1] \cdot 10^{-3}$

explicit calculation gives $N_{3G}^{dec} = 2.23$

Contributions from Q_{3G}

[UH, Scott, Wiesemann, Zanderighi & Zanoli, 2204.00663]

quoted number corresponds to $N_{3G}^{prod} = 10$

QHD, QbH & QbG do not exceed level of a few permille

derived from global fits of SMEFT Wilson coefficients:

$$\frac{\Gamma(h \to b\bar{b})_{\text{SMEFT}}^{\text{N}^{3}\text{LO}}}{\Gamma(h \to b\bar{b})_{\text{SM}}^{\text{N}^{3}\text{LO}}} - 1 \in [-39, 26]\% \text{ for } c_{bH} = \frac{v^{2}}{\Lambda^{2}} \operatorname{Re}(C_{bH}) \in [-0.13, 0.20]$$
[Ellis et al., 2012.02779]

- We have seen that QCD corrections associated to operators other than $Q_{H\Box}$,
- Maximal size of factorisable corrections to partial $h \rightarrow bb$ decay rate can be

Interlude: bounds on dipole operator QbG

Observable

Dijet angular distributions Two *b*-tagged jets *Z*-boson production with two *b*-jets Searches for neutron electric dipole more

Due to chirality-flipping nature of Q_{bG} no interference between SMEFT & SM amplitudes for $m_b = 0$. Resulting LHC bounds on $|c_{bG}|$ thus very weak. $|Im(c_{bG})|$ instead severely constrained by neutron electric dipole moment

[UH & Koole, 2106.01289]

	Wilson coefficient	95% CL bound
	C_{bG}	2864
	CbG	152
5	$ c_{bG} $	438
ment	$\left \operatorname{Im}\left(c_{bG}\right)\right $	0.05

[UH & Koole, 2106.01289]

Q_{bG} contributions lead to an enhanced activity of high-energy jets in central region

[UH & Koole, 2106.01289]

Q_{bG} contributions lead to an enhancement of rate for high dijet invariant masses

[UH & Koole, 2106.01289]

 Q_{bG} effects grow with transverse momentum & lead to more events at high $p_T(Z)$

Despite large Wilson coefficient of Q_{bG} possible size of non-factorisable ones by a factor of O(5):

$$\frac{\Gamma(h \to b\bar{b})_{\text{SMEFT}}^{\text{N}^{3}\text{LO}}}{\Gamma(h \to b\bar{b})_{\text{SM}}^{\text{N}^{3}\text{LO}}} - 1 \in [-6.3, 6.3]\% \text{ for } c_{bG} = \frac{v^{2}}{\Lambda^{2}} \operatorname{Re}(C_{bG}) \in [-438, 438]$$

But non-factorisable contributions lead to non-trivial modifications of spectra in pp \rightarrow Zh \rightarrow I+I-bb production

contributions to partial $h \rightarrow b\bar{b}$ decay rate smaller than that of factorisable

factorisable contributions just lead to a constant shift, i.e. a K-factor, in all $pp \rightarrow Zh \rightarrow I+I-b\overline{b}$ distributions

[UH, Scott, Wiesemann, Zanderighi & Zanoli, 2204.00663]

Also 3-jet invariant mass reduced on average. Effects again R-dependent

SMEFT corrections to total Higgs width

$$\Gamma_h^{\text{SMEFT}} = \left(1 + 2c_{\text{kin}}\right) \left[\Gamma_h^{\text{SM}} - \left(2\Delta\right) \right]$$

 $\Delta c_{bH} - K_{bG} \Delta_{\rm non} c_{bG} \Gamma(h \to bb)_{\rm SM}^{\rm LO}$

Event selections

In our differential analysis we select events with two charged leptons (electrons or muons) to explore the $Zh \rightarrow \ell^+ \ell^- bb$ signature. The leptons are required to have a transverse momentum of $p_{T,\ell} > 15 \,\text{GeV}$ and a pseudorapidity of $|\eta_{\ell}| < 2.5$. The invariant mass of the dilepton pair is restricted to $m_{\ell^+\ell^-} \in [75, 105] \,\text{GeV}$. The events are furthermore required to have at least two b-jets, which are reconstructed using the anti- k_t algorithm [65] as implemented in FastJet [66]. We impose transverse momentum cuts of $p_{T,b} > 25 \text{ GeV}$ and a rapidity threshold of $|\eta_b| < 2.5$ on the *b*-jets. The definition of potential additional jets use the same thresholds as those of the b-jets. The dominant background processes are $Z + \text{jets}, t\bar{t}, \text{ single-top}$ and diboson production. The latter three types of backgrounds can be substantially reduced by requiring large values of $p_{T,Z}$ [67]. Hence, to improve the signalto-background ratio we impose $p_{T,Z} \in [150, 250] \text{ GeV}$. Notice that this $p_{T,Z}$ requirement corresponds to the second resolved $p_{T,Z}$ bin as recommended in the stage 1.2 simplified template cross sections (STXS) framework [68-70] which is also implemented in the latest ATLAS LHC Run II measurements of the $pp \to Zh \to \ell^+ \ell^- b\bar{b}$ process [71, 72]. We will also comment on how our results are modified if the other two resolved regions, i.e. $p_{T,Z} \in$ [75, 150] GeV and $p_{T,Z} > 250$ GeV, are considered.

1-loop threshold corrections involving Q_{bG} generate CP-violating Weinberg operator. This operator leads to a non-zero neutron electric dipole moment at hadronic scale

[UH & Koole, 2106.01289]

