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Observation of h → bb @ LHC Run II
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In LHC Run II, signal strength in Vh production found to be SM-like within 25%

[see also CMS, 1808.08242]
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modes. Figure 15 shows the expected precision of the measured cross sections when the gg and qq̄ to
Z H production modes are combined. It’s worthwhile to note that in this latter fit, the uncertainty on the
inclusive Z H signal process is much smaller than the uncertainties on the single qq̄ ! Z H and gg ! Z H

processes, due to correlations between their measurements.
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Figure 14: The fitted values of the Higgs boson cross section divided by their SM values for the W H , qq̄ ! Z H

and gg ! Z H processes expected with 3000 fb�1 at the HL-LHC in the (a) scenario S1 and (b) S2 extrapolations.
The individual cross section values for the three processes are obtained from a simultaneous fit in which the cross
section parameters for the W H , qq̄ ! Z H and gg ! Z H processes are floating independently.
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Figure 15: The fitted values of the Higgs boson cross section divided by their SM values for the W H and Z H

processes expected with 3000 fb�1 at the HL-LHC in the (a) scenario S1 and (b) S2 extrapolations. The individual
cross section values for the two processes are obtained from a simultaneous fit in which the cross section parameters
for the W H and Z H processes are floating independently.
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cle, including a discussion of the normalisation chosen for the individual effective inter-
actions. Section 3 contains a brief description of the basic ingredients of the SMEFT
calculations for pp ! Zh and h ! bb̄ and their combination and implementation in our
NNLO+PS event generator. The impact of the SMEFT corrections on kinematic distribu-
tions in pp ! Zh ! `

+
`
�
bb̄ production at NNLO+PS is presented in Section 4 by using

simple benchmark scenarios for the Wilson coefficients. We conclude and present an outlook
in Section 5. The lenghty analytic expressions for the squared matrix elements that are
relevant for our work are relegated to Appendix A, while Appendix B contains numerical
estimates of higher-order QCD corrections associated to the subset of the SMEFT opera-
tors that are considered in this paper. The discussed corrections have been neglected in our
phenomenological study because they all turn out to contribute less than a percent once
existing experimental limits on the relevant Wilson coefficients are taken into account.

2 Preliminaries

In this article we consider the following set of dimension-six operators

QH2 = (H
†
H)2 (H

†
H) , QHD = (H

†
DµH)

⇤
(H

†
D

µ
H) ,

QbH = yb(H
†
H) q̄LbRH , QbG =

g
3
s

(4⇡)2
yb q̄L�µ⌫T

a
bRHG

a,µ⌫
, (2.1)

QHG =
g
2
s

(4⇡)2
(H

†
H)G

a

µ⌫G
a,µ⌫

, Q3G =
g
3
s

(4⇡)2
f
abc

G
a,⌫

µ G
b,�

⌫ G
c,µ

� ,

which appear in the full SMEFT Lagrangian

LSMEFT �

X

i

Ci

⇤2
Qi . (2.2)

Here 2 = @µ@
µ, �µ⌫ = i/2(�µ�⌫ � �⌫�µ) with �µ the usual Dirac matrices, H denotes the

SM Higgs doublet, qL is the left-handed third-generation quark doublet, bR is the right-
handed bottom-quark singlet, while gs =

p
4⇡↵s and G

a
µ⌫ denote the coupling constant and

the field strength tensor of QCD, respectively. The definition of the covariant derivative
is Dµ = @µ � igsG

a
µT

a with T
a being the SU(3) generators and f

abc denote the fully
antisymmetric QCD structure constants. The bottom-quark Yukawa coupling is defined
as yb =

p
2m̄b/v, with the MS bottom-quark mass m̄b and the Higgs vacuum expectation

value (VEV) v, while ⇤ denotes the new-physics mass scale that suppresses the dimension-
six operators Qi entering (2.2) and Ci are the corresponding Wilson coefficients. Notice
finally that in the case of QbH and QbG the sum over the hermitian conjugate in (2.1) is
understood.

The normalisations of the dimension-six operators introduced in (2.1) deserve some
additional comments. First, the two mixed-chirality operators QbH and QbG include a
factor of yb which serves as an order parameter and explicitly appears in a broad class
of ultraviolet (UV) completions that match onto the set of operators in (2.1). See for
example the discussions in [23, 24]. Second, the factors of gs and 1/(4⇡)

2 that arise in

– 3 –
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and h ! bb̄ can be combined, while Section 7 contains our conclusions and an outlook.
The analytic formulae for the parameters and couplings that have been implemented into
our MC code are relegated to Appendix A. Details on our implementation of the gg ! Zh

process can be found in Appendix B. In Appendix C we finally discuss the impact of
NNLO QCD effects by comparing results for pp ! Zh ! `

+
`
�
h production obtained at

NLO+PS and NNLO+PS, respectively.

2 SMEFT operators

Throughout this work we neglect all light fermion masses in both the SM and SMEFT
corrections to the pp ! Zh and pp ! Wh processes. The full set of dimension-six SMEFT
operators has been presented in the so-called Warsaw basis in the article [6]. This basis
contains the following three independent operators

QHB = H
†
HBµ⌫B

µ⌫
, QHW = H

†
HW

a

µ⌫W
a,µ⌫

, QHWB = H
†
�
a
HW

a

µ⌫B
µ⌫

, (2.1)

that modify the couplings between the Higgs and two vector bosons at tree level. The SM
Higgs doublet is denoted by H, while Bµ⌫ and W

a
µ⌫ are the U(1)Y and SU(2)L gauge field

strength tensors and �
a are the Pauli matrices. In the case of the operators that result in

couplings between the Higgs, a W or a Z boson, and light quarks, we consider the following
four effective interactions

Q
(1)
Hq

= (H†
i

$
DµH)(q̄�µq) , Q

(3)
Hq

= (H†
i

$
D

a

µH)(q̄�µ�a
q) ,

QHd = (H†
i

$
DµH)(d̄�µd) , QHu = (H†

i

$
DµH)(ū�µu) ,

(2.2)

where H
†
i

$
DµH = iH

†�
Dµ �

 
Dµ

�
H and H

†
i

$
D

a
µH = iH

†�
�
a
Dµ �

 
Dµ�

a
�
H with Dµ the

usual covariant derivative. The symbol q denotes left-handed quark doublets, while u and d

are the right-handed quark singlets of up and down type, respectively. Illustrative diagrams
that contribute to Zh production and involve an insertion of one of the operators in (2.1)
or (2.2) are displayed in Figure 1.

Besides the two sets of operators (2.1) and (2.2) that alter the pp ! V h production
process, we also consider effective interactions that modify the Z ! `

+
`
� and W ! `⌫

decays at tree level. In the Warsaw basis there are three such operators, namely

Q
(1)
H`

= (H†
i

$
DµH)(¯̀�µ`) , Q

(3)
H`

= (H†
i

$
D

a

µH)(¯̀�µ�a
`) , QHe = (H†

i

$
DµH)(ē�µe) . (2.3)

Here ` and e denote a left-handed lepton doublet and right-handed lepton singlet field,
respectively. Notice that in writing (2.2) and (2.3) we have assumed that the full SMEFT
Lagrangian respects an approximate U(3)5 flavour symmetry which allows us to drop all
flavour indices.

The final type of SMEFT corrections that change the Higgsstrahlungs processes indi-
rectly is provided by the Wilson coefficients of the operators that shift the Higgs kinetic
term and/or the EW SM input parameters. In order to fully describe these shifts the
following three additional operators are needed at tree level:

QH2 = (H†
H)2(H†

H) , QHD = (H†
DµH)⇤(H†

D
µ
H) , Q`` = (¯̀�µ`)(¯̀�

µ
`) . (2.4)
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DµH)(ū�µu) ,

(2.2)

where H
†
i

$
DµH = iH

†�
Dµ �

 
Dµ

�
H and H

†
i

$
D

a
µH = iH

†�
�
a
Dµ �

 
Dµ�

a
�
H with Dµ the

usual covariant derivative. The symbol q denotes left-handed quark doublets, while u and d

are the right-handed quark singlets of up and down type, respectively. Illustrative diagrams
that contribute to Zh production and involve an insertion of one of the operators in (2.1)
or (2.2) are displayed in Figure 1.

Besides the two sets of operators (2.1) and (2.2) that alter the pp ! V h production
process, we also consider effective interactions that modify the Z ! `

+
`
� and W ! `⌫

decays at tree level. In the Warsaw basis there are three such operators, namely

Q
(1)
H`

= (H†
i

$
DµH)(¯̀�µ`) , Q

(3)
H`

= (H†
i

$
D

a

µH)(¯̀�µ�a
`) , QHe = (H†

i

$
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identified earlier. In Section 6 we outline how the NNLO+PS calculations of pp ! V h
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operators in (2.1) or (2.2) are displayed in Figure 1. Notice that QHud only contributes
to pp ! Wh production and the dimension-six SMEFT Lagrangian includes the sum of the
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cle, including a discussion of the normalisation chosen for the individual effective inter-
actions. Section 3 contains a brief description of the basic ingredients of the SMEFT
calculations for pp ! Zh and h ! bb̄ and their combination and implementation in our
NNLO+PS event generator. The impact of the SMEFT corrections on kinematic distribu-
tions in pp ! Zh ! `

+
`
�
bb̄ production at NNLO+PS is presented in Section 4 by using

simple benchmark scenarios for the Wilson coefficients. We conclude and present an outlook
in Section 5. The lenghty analytic expressions for the squared matrix elements that are
relevant for our work are relegated to Appendix A, while Appendix B contains numerical
estimates of higher-order QCD corrections associated to the subset of the SMEFT opera-
tors that are considered in this paper. The discussed corrections have been neglected in our
phenomenological study because they all turn out to contribute less than a percent once
existing experimental limits on the relevant Wilson coefficients are taken into account.
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µ, �µ⌫ = i/2(�µ�⌫ � �⌫�µ) with �µ the usual Dirac matrices, H denotes the

SM Higgs doublet, qL is the left-handed third-generation quark doublet, bR is the right-
handed bottom-quark singlet, while gs =
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4⇡↵s and G

a
µ⌫ denote the coupling constant and

the field strength tensor of QCD, respectively. The definition of the covariant derivative
is Dµ = @µ � igsG
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a with T
a being the SU(3) generators and f

abc denote the fully
antisymmetric QCD structure constants. The bottom-quark Yukawa coupling is defined
as yb =
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2m̄b/v, with the MS bottom-quark mass m̄b and the Higgs vacuum expectation

value (VEV) v, while ⇤ denotes the new-physics mass scale that suppresses the dimension-
six operators Qi entering (2.2) and Ci are the corresponding Wilson coefficients. Notice
finally that in the case of QbH and QbG the sum over the hermitian conjugate in (2.1) is
understood.

The normalisations of the dimension-six operators introduced in (2.1) deserve some
additional comments. First, the two mixed-chirality operators QbH and QbG include a
factor of yb which serves as an order parameter and explicitly appears in a broad class
of ultraviolet (UV) completions that match onto the set of operators in (2.1). See for
example the discussions in [23, 24]. Second, the factors of gs and 1/(4⇡)
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and h ! bb̄ can be combined, while Section 7 contains our conclusions and an outlook.
The analytic formulae for the parameters and couplings that have been implemented into
our MC code are relegated to Appendix A. Details on our implementation of the gg ! Zh

process can be found in Appendix B. In Appendix C we finally discuss the impact of
NNLO QCD effects by comparing results for pp ! Zh ! `

+
`
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h production obtained at

NLO+PS and NNLO+PS, respectively.

2 SMEFT operators

Throughout this work we neglect all light fermion masses in both the SM and SMEFT
corrections to the pp ! Zh and pp ! Wh processes. The full set of dimension-six SMEFT
operators has been presented in the so-called Warsaw basis in the article [6]. This basis
contains the following three independent operators
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that modify the couplings between the Higgs and two vector bosons at tree level. The SM
Higgs doublet is denoted by H, while Bµ⌫ and W
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µ⌫ are the U(1)Y and SU(2)L gauge field

strength tensors and �
a are the Pauli matrices. In the case of the operators that result in
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usual covariant derivative. The symbol q denotes left-handed quark doublets, while u and d

are the right-handed quark singlets of up and down type, respectively. Illustrative diagrams
that contribute to Zh production and involve an insertion of one of the operators in (2.1)
or (2.2) are displayed in Figure 1.

Besides the two sets of operators (2.1) and (2.2) that alter the pp ! V h production
process, we also consider effective interactions that modify the Z ! `
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Here ` and e denote a left-handed lepton doublet and right-handed lepton singlet field,
respectively. Notice that in writing (2.2) and (2.3) we have assumed that the full SMEFT
Lagrangian respects an approximate U(3)5 flavour symmetry which allows us to drop all
flavour indices.

The final type of SMEFT corrections that change the Higgsstrahlungs processes indi-
rectly is provided by the Wilson coefficients of the operators that shift the Higgs kinetic
term and/or the EW SM input parameters. In order to fully describe these shifts the
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that contribute to Zh production and involve an insertion of one of the operators in (2.1)
or (2.2) are displayed in Figure 1.
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respectively. Notice that in writing (2.2) and (2.3) we have assumed that the full SMEFT
Lagrangian respects an approximate U(3)5 flavour symmetry which allows us to drop all
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are the right-handed quark singlets of up and down type, respectively. Illustrative diagrams
that contribute to Zh production and involve an insertion of one of the operators in (2.1)
or (2.2) are displayed in Figure 1.
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respectively. Notice that in writing (2.2) and (2.3) we have assumed that the full SMEFT
Lagrangian respects an approximate U(3)5 flavour symmetry which allows us to drop all
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DµH)(ū�µu) ,

(2.2)

where H
†
i

$
DµH = iH

†�
Dµ �

 
Dµ

�
H and H

†
i

$
D

a
µH = iH

†�
�
a
Dµ �

 
Dµ�

a
�
H with Dµ the

usual covariant derivative. The symbol q denotes left-handed quark doublets, while u and d

are the right-handed quark singlets of up and down type, respectively. Illustrative diagrams
that contribute to Zh production and involve an insertion of one of the operators in (2.1)
or (2.2) are displayed in Figure 1.
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Here ` and e denote a left-handed lepton doublet and right-handed lepton singlet field,
respectively. Notice that in writing (2.2) and (2.3) we have assumed that the full SMEFT
Lagrangian respects an approximate U(3)5 flavour symmetry which allows us to drop all
flavour indices.

The final type of SMEFT corrections that change the Higgsstrahlungs processes indi-
rectly is provided by the Wilson coefficients of the operators that shift the Higgs kinetic
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usual covariant derivative. The symbol q denotes left-handed quark doublets, while u and d

are the right-handed quark singlets of up and down type, respectively. Illustrative diagrams
that contribute to Zh production and involve an insertion of one of the operators in (2.1)
or (2.2) are displayed in Figure 1.
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Here ` and e denote a left-handed lepton doublet and right-handed lepton singlet field,
respectively. Notice that in writing (2.2) and (2.3) we have assumed that the full SMEFT
Lagrangian respects an approximate U(3)5 flavour symmetry which allows us to drop all
flavour indices.

The final type of SMEFT corrections that change the Higgsstrahlungs processes indi-
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identified earlier. In Section 6 we outline how the NNLO+PS calculations of pp ! V h

and h ! bb̄ can be combined, while Section 7 contains our conclusions and an outlook.
The analytic formulae for the parameters and couplings that have been implemented into
our MC code are relegated to Appendix A. Details on our implementation of the gg ! Zh

process can be found in Appendix B. In Appendix C we finally discuss the impact of
NNLO QCD effects by comparing results for pp ! Zh ! `

+
`
�
h production obtained at

NLO+PS and NNLO+PS, respectively.

2 SMEFT operators

Throughout this work we neglect all light fermion masses in both the SM and SMEFT
corrections to the pp ! Zh and pp ! Wh processes. The full set of dimension-six SMEFT
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Higgs doublet is denoted by H, while Bµ⌫ and W
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iDµH)(ū�µd) ,

(2.2)

where H
†
i

$
DµH = iH

†�
Dµ �

 
Dµ

�
H and H

†
i

$
D

a
µH = iH

†�
�
a
Dµ �

 
Dµ�

a
�
H with Dµ the
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symmetric and ✏12 = 1 has been used. The symbol q denotes left-handed quark doublets,
while u and d are the right-handed quark singlets of up and down type, respectively. Illus-
trative diagrams that contribute to Zh production and involve an insertion of one of the
operators in (2.1) or (2.2) are displayed in Figure 1. Notice that QHud only contributes
to pp ! Wh production and the dimension-six SMEFT Lagrangian includes the sum of the
operator QHud and its hermitian conjugate.

Besides the two sets of operators (2.1) and (2.2) that alter the pp ! V h production
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respectively. Notice that in writing (2.2) and (2.3) we have assumed that the full SMEFT
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cle, including a discussion of the normalisation chosen for the individual effective inter-
actions. Section 3 contains a brief description of the basic ingredients of the SMEFT
calculations for pp ! Zh and h ! bb̄ and their combination and implementation in our
NNLO+PS event generator. The impact of the SMEFT corrections on kinematic distribu-
tions in pp ! Zh ! `

+
`
�
bb̄ production at NNLO+PS is presented in Section 4 by using

simple benchmark scenarios for the Wilson coefficients. We conclude and present an outlook
in Section 5. The lenghty analytic expressions for the squared matrix elements that are
relevant for our work are relegated to Appendix A, while Appendix B contains numerical
estimates of higher-order QCD corrections associated to the subset of the SMEFT opera-
tors that are considered in this paper. The discussed corrections have been neglected in our
phenomenological study because they all turn out to contribute less than a percent once
existing experimental limits on the relevant Wilson coefficients are taken into account.

2 Preliminaries

In this article we consider the following set of dimension-six operators

QH2 = (H
†
H)2 (H

†
H) , QHD = (H

†
DµH)

⇤
(H

†
D

µ
H) ,

QbH = yb(H
†
H) q̄LbRH , QbG =
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, (2.1)
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, Q3G =
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a,⌫

µ G
b,�

⌫ G
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� ,

which appear in the full SMEFT Lagrangian

LSMEFT �

X

i

Ci

⇤2
Qi . (2.2)

Here 2 = @µ@
µ, �µ⌫ = i/2(�µ�⌫ � �⌫�µ) with �µ the usual Dirac matrices, H denotes the

SM Higgs doublet, qL is the left-handed third-generation quark doublet, bR is the right-
handed bottom-quark singlet, while gs =

p
4⇡↵s and G

a
µ⌫ denote the coupling constant and

the field strength tensor of QCD, respectively. The definition of the covariant derivative
is Dµ = @µ � igsG

a
µT

a with T
a being the SU(3) generators and f

abc denote the fully
antisymmetric QCD structure constants. The bottom-quark Yukawa coupling is defined
as yb =

p
2m̄b/v, with the MS bottom-quark mass m̄b and the Higgs vacuum expectation

value (VEV) v, while ⇤ denotes the new-physics mass scale that suppresses the dimension-
six operators Qi entering (2.2) and Ci are the corresponding Wilson coefficients. Notice
finally that in the case of QbH and QbG the sum over the hermitian conjugate in (2.1) is
understood.

The normalisations of the dimension-six operators introduced in (2.1) deserve some
additional comments. First, the two mixed-chirality operators QbH and QbG include a
factor of yb which serves as an order parameter and explicitly appears in a broad class
of ultraviolet (UV) completions that match onto the set of operators in (2.1). See for
example the discussions in [23, 24]. Second, the factors of gs and 1/(4⇡)

2 that arise in
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and h ! bb̄ can be combined, while Section 7 contains our conclusions and an outlook.
The analytic formulae for the parameters and couplings that have been implemented into
our MC code are relegated to Appendix A. Details on our implementation of the gg ! Zh

process can be found in Appendix B. In Appendix C we finally discuss the impact of
NNLO QCD effects by comparing results for pp ! Zh ! `

+
`
�
h production obtained at

NLO+PS and NNLO+PS, respectively.

2 SMEFT operators

Throughout this work we neglect all light fermion masses in both the SM and SMEFT
corrections to the pp ! Zh and pp ! Wh processes. The full set of dimension-six SMEFT
operators has been presented in the so-called Warsaw basis in the article [6]. This basis
contains the following three independent operators
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that modify the couplings between the Higgs and two vector bosons at tree level. The SM
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usual covariant derivative. The symbol q denotes left-handed quark doublets, while u and d

are the right-handed quark singlets of up and down type, respectively. Illustrative diagrams
that contribute to Zh production and involve an insertion of one of the operators in (2.1)
or (2.2) are displayed in Figure 1.

Besides the two sets of operators (2.1) and (2.2) that alter the pp ! V h production
process, we also consider effective interactions that modify the Z ! `
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decays at tree level. In the Warsaw basis there are three such operators, namely
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Here ` and e denote a left-handed lepton doublet and right-handed lepton singlet field,
respectively. Notice that in writing (2.2) and (2.3) we have assumed that the full SMEFT
Lagrangian respects an approximate U(3)5 flavour symmetry which allows us to drop all
flavour indices.

The final type of SMEFT corrections that change the Higgsstrahlungs processes indi-
rectly is provided by the Wilson coefficients of the operators that shift the Higgs kinetic
term and/or the EW SM input parameters. In order to fully describe these shifts the
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and h ! bb̄ can be combined, while Section 7 contains our conclusions and an outlook.
The analytic formulae for the parameters and couplings that have been implemented into
our MC code are relegated to Appendix A. Details on our implementation of the gg ! Zh

process can be found in Appendix B. In Appendix C we finally discuss the impact of
NNLO QCD effects by comparing results for pp ! Zh ! `

+
`
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h production obtained at

NLO+PS and NNLO+PS, respectively.

2 SMEFT operators

Throughout this work we neglect all light fermion masses in both the SM and SMEFT
corrections to the pp ! Zh and pp ! Wh processes. The full set of dimension-six SMEFT
operators has been presented in the so-called Warsaw basis in the article [6]. This basis
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Higgs doublet is denoted by H, while Bµ⌫ and W

a
µ⌫ are the U(1)Y and SU(2)L gauge field

strength tensors and �
a are the Pauli matrices. In the case of the operators that result in

couplings between the Higgs, a W or a Z boson, and light quarks, we consider the following
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usual covariant derivative. The symbol q denotes left-handed quark doublets, while u and d

are the right-handed quark singlets of up and down type, respectively. Illustrative diagrams
that contribute to Zh production and involve an insertion of one of the operators in (2.1)
or (2.2) are displayed in Figure 1.

Besides the two sets of operators (2.1) and (2.2) that alter the pp ! V h production
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Here ` and e denote a left-handed lepton doublet and right-handed lepton singlet field,
respectively. Notice that in writing (2.2) and (2.3) we have assumed that the full SMEFT
Lagrangian respects an approximate U(3)5 flavour symmetry which allows us to drop all
flavour indices.

The final type of SMEFT corrections that change the Higgsstrahlungs processes indi-
rectly is provided by the Wilson coefficients of the operators that shift the Higgs kinetic
term and/or the EW SM input parameters. In order to fully describe these shifts the
following three additional operators are needed at tree level:
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and h ! bb̄ can be combined, while Section 7 contains our conclusions and an outlook.
The analytic formulae for the parameters and couplings that have been implemented into
our MC code are relegated to Appendix A. Details on our implementation of the gg ! Zh

process can be found in Appendix B. In Appendix C we finally discuss the impact of
NNLO QCD effects by comparing results for pp ! Zh ! `
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Throughout this work we neglect all light fermion masses in both the SM and SMEFT
corrections to the pp ! Zh and pp ! Wh processes. The full set of dimension-six SMEFT
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that modify the couplings between the Higgs and two vector bosons at tree level. The SM
Higgs doublet is denoted by H, while Bµ⌫ and W
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µ⌫ are the U(1)Y and SU(2)L gauge field

strength tensors and �
a are the Pauli matrices. In the case of the operators that result in
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usual covariant derivative. The symbol q denotes left-handed quark doublets, while u and d

are the right-handed quark singlets of up and down type, respectively. Illustrative diagrams
that contribute to Zh production and involve an insertion of one of the operators in (2.1)
or (2.2) are displayed in Figure 1.

Besides the two sets of operators (2.1) and (2.2) that alter the pp ! V h production
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Here ` and e denote a left-handed lepton doublet and right-handed lepton singlet field,
respectively. Notice that in writing (2.2) and (2.3) we have assumed that the full SMEFT
Lagrangian respects an approximate U(3)5 flavour symmetry which allows us to drop all
flavour indices.

The final type of SMEFT corrections that change the Higgsstrahlungs processes indi-
rectly is provided by the Wilson coefficients of the operators that shift the Higgs kinetic
term and/or the EW SM input parameters. In order to fully describe these shifts the
following three additional operators are needed at tree level:
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identified earlier. In Section 6 we outline how the NNLO+PS calculations of pp ! V h

and h ! bb̄ can be combined, while Section 7 contains our conclusions and an outlook.
The analytic formulae for the parameters and couplings that have been implemented into
our MC code are relegated to Appendix A. Details on our implementation of the gg ! Zh

process can be found in Appendix B. In Appendix C we finally discuss the impact of
NNLO QCD effects by comparing results for pp ! Zh ! `

+
`
�
h production obtained at

NLO+PS and NNLO+PS, respectively.

2 SMEFT operators

Throughout this work we neglect all light fermion masses in both the SM and SMEFT
corrections to the pp ! Zh and pp ! Wh processes. The full set of dimension-six SMEFT
operators has been presented in the so-called Warsaw basis in the article [6]. This basis
contains the following three independent operators
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†
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, (2.1)

that modify the couplings between the Higgs and two vector bosons at tree level. The SM
Higgs doublet is denoted by H, while Bµ⌫ and W

a
µ⌫ are the U(1)Y and SU(2)L gauge field

strength tensors and �
a are the Pauli matrices. In the case of the operators that result in

couplings between the Higgs, a W or a Z boson, and light quarks, we consider the following
five effective interactions
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usual covariant derivative and the shorthand notation eHi = ✏ij(Hj)⇤ with ✏ij totally anti-
symmetric and ✏12 = 1 has been used. The symbol q denotes left-handed quark doublets,
while u and d are the right-handed quark singlets of up and down type, respectively. Illus-
trative diagrams that contribute to Zh production and involve an insertion of one of the
operators in (2.1) or (2.2) are displayed in Figure 1. Notice that QHud only contributes
to pp ! Wh production and the dimension-six SMEFT Lagrangian includes the sum of the
operator QHud and its hermitian conjugate.

Besides the two sets of operators (2.1) and (2.2) that alter the pp ! V h production
process, we also consider effective interactions that modify the Z ! `

+
`
� and W ! `⌫

decays at tree level. In the Warsaw basis there are three such operators, namely
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$
DµH)(ē�µe) . (2.3)

Here ` and e denote a left-handed lepton doublet and right-handed lepton singlet field,
respectively. Notice that in writing (2.2) and (2.3) we have assumed that the full SMEFT
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cle, including a discussion of the normalisation chosen for the individual effective inter-
actions. Section 3 contains a brief description of the basic ingredients of the SMEFT
calculations for pp ! Zh and h ! bb̄ and their combination and implementation in our
NNLO+PS event generator. The impact of the SMEFT corrections on kinematic distribu-
tions in pp ! Zh ! `

+
`
�
bb̄ production at NNLO+PS is presented in Section 4 by using

simple benchmark scenarios for the Wilson coefficients. We conclude and present an outlook
in Section 5. The lenghty analytic expressions for the squared matrix elements that are
relevant for our work are relegated to Appendix A, while Appendix B contains numerical
estimates of higher-order QCD corrections associated to the subset of the SMEFT opera-
tors that are considered in this paper. The discussed corrections have been neglected in our
phenomenological study because they all turn out to contribute less than a percent once
existing experimental limits on the relevant Wilson coefficients are taken into account.

2 Preliminaries

In this article we consider the following set of dimension-six operators

QH2 = (H
†
H)2 (H

†
H) , QHD = (H

†
DµH)

⇤
(H

†
D

µ
H) ,

QbH = yb(H
†
H) q̄LbRH , QbG =

g
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(4⇡)2
yb q̄L�µ⌫T

a
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, (2.1)
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, Q3G =
g
3
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G
a,⌫

µ G
b,�

⌫ G
c,µ

� ,

which appear in the full SMEFT Lagrangian

LSMEFT �

X

i

Ci

⇤2
Qi . (2.2)

Here 2 = @µ@
µ, �µ⌫ = i/2(�µ�⌫ � �⌫�µ) with �µ the usual Dirac matrices, H denotes the

SM Higgs doublet, qL is the left-handed third-generation quark doublet, bR is the right-
handed bottom-quark singlet, while gs =

p
4⇡↵s and G

a
µ⌫ denote the coupling constant and

the field strength tensor of QCD, respectively. The definition of the covariant derivative
is Dµ = @µ � igsG

a
µT

a with T
a being the SU(3) generators and f

abc denote the fully
antisymmetric QCD structure constants. The bottom-quark Yukawa coupling is defined
as yb =

p
2m̄b/v, with the MS bottom-quark mass m̄b and the Higgs vacuum expectation

value (VEV) v, while ⇤ denotes the new-physics mass scale that suppresses the dimension-
six operators Qi entering (2.2) and Ci are the corresponding Wilson coefficients. Notice
finally that in the case of QbH and QbG the sum over the hermitian conjugate in (2.1) is
understood.

The normalisations of the dimension-six operators introduced in (2.1) deserve some
additional comments. First, the two mixed-chirality operators QbH and QbG include a
factor of yb which serves as an order parameter and explicitly appears in a broad class
of ultraviolet (UV) completions that match onto the set of operators in (2.1). See for
example the discussions in [23, 24]. Second, the factors of gs and 1/(4⇡)

2 that arise in
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relevant for our work are relegated to Appendix A, while Appendix B contains numerical
estimates of higher-order QCD corrections associated to the subset of the SMEFT opera-
tors that are considered in this paper. The discussed corrections have been neglected in our
phenomenological study because they all turn out to contribute less than a percent once
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six operators Qi entering (2.2) and Ci are the corresponding Wilson coefficients. Notice
finally that in the case of QbH and QbG the sum over the hermitian conjugate in (2.1) is
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The normalisations of the dimension-six operators introduced in (2.1) deserve some
additional comments. First, the two mixed-chirality operators QbH and QbG include a
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and h ! bb̄ can be combined, while Section 7 contains our conclusions and an outlook.
The analytic formulae for the parameters and couplings that have been implemented into
our MC code are relegated to Appendix A. Details on our implementation of the gg ! Zh

process can be found in Appendix B. In Appendix C we finally discuss the impact of
NNLO QCD effects by comparing results for pp ! Zh ! `

+
`
�
h production obtained at

NLO+PS and NNLO+PS, respectively.

2 SMEFT operators

Throughout this work we neglect all light fermion masses in both the SM and SMEFT
corrections to the pp ! Zh and pp ! Wh processes. The full set of dimension-six SMEFT
operators has been presented in the so-called Warsaw basis in the article [6]. This basis
contains the following three independent operators
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, (2.1)

that modify the couplings between the Higgs and two vector bosons at tree level. The SM
Higgs doublet is denoted by H, while Bµ⌫ and W

a
µ⌫ are the U(1)Y and SU(2)L gauge field

strength tensors and �
a are the Pauli matrices. In the case of the operators that result in

couplings between the Higgs, a W or a Z boson, and light quarks, we consider the following
four effective interactions
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usual covariant derivative. The symbol q denotes left-handed quark doublets, while u and d

are the right-handed quark singlets of up and down type, respectively. Illustrative diagrams
that contribute to Zh production and involve an insertion of one of the operators in (2.1)
or (2.2) are displayed in Figure 1.

Besides the two sets of operators (2.1) and (2.2) that alter the pp ! V h production
process, we also consider effective interactions that modify the Z ! `
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Here ` and e denote a left-handed lepton doublet and right-handed lepton singlet field,
respectively. Notice that in writing (2.2) and (2.3) we have assumed that the full SMEFT
Lagrangian respects an approximate U(3)5 flavour symmetry which allows us to drop all
flavour indices.

The final type of SMEFT corrections that change the Higgsstrahlungs processes indi-
rectly is provided by the Wilson coefficients of the operators that shift the Higgs kinetic
term and/or the EW SM input parameters. In order to fully describe these shifts the
following three additional operators are needed at tree level:
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and h ! bb̄ can be combined, while Section 7 contains our conclusions and an outlook.
The analytic formulae for the parameters and couplings that have been implemented into
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DµH)(ū�µu) ,

(2.2)

where H
†
i

$
DµH = iH

†�
Dµ �

 
Dµ

�
H and H

†
i

$
D

a
µH = iH

†�
�
a
Dµ �

 
Dµ�

a
�
H with Dµ the

usual covariant derivative. The symbol q denotes left-handed quark doublets, while u and d

are the right-handed quark singlets of up and down type, respectively. Illustrative diagrams
that contribute to Zh production and involve an insertion of one of the operators in (2.1)
or (2.2) are displayed in Figure 1.
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Here ` and e denote a left-handed lepton doublet and right-handed lepton singlet field,
respectively. Notice that in writing (2.2) and (2.3) we have assumed that the full SMEFT
Lagrangian respects an approximate U(3)5 flavour symmetry which allows us to drop all
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and h ! bb̄ can be combined, while Section 7 contains our conclusions and an outlook.
The analytic formulae for the parameters and couplings that have been implemented into
our MC code are relegated to Appendix A. Details on our implementation of the gg ! Zh

process can be found in Appendix B. In Appendix C we finally discuss the impact of
NNLO QCD effects by comparing results for pp ! Zh ! `

+
`
�
h production obtained at

NLO+PS and NNLO+PS, respectively.

2 SMEFT operators

Throughout this work we neglect all light fermion masses in both the SM and SMEFT
corrections to the pp ! Zh and pp ! Wh processes. The full set of dimension-six SMEFT
operators has been presented in the so-called Warsaw basis in the article [6]. This basis
contains the following three independent operators
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that modify the couplings between the Higgs and two vector bosons at tree level. The SM
Higgs doublet is denoted by H, while Bµ⌫ and W

a
µ⌫ are the U(1)Y and SU(2)L gauge field

strength tensors and �
a are the Pauli matrices. In the case of the operators that result in
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usual covariant derivative. The symbol q denotes left-handed quark doublets, while u and d

are the right-handed quark singlets of up and down type, respectively. Illustrative diagrams
that contribute to Zh production and involve an insertion of one of the operators in (2.1)
or (2.2) are displayed in Figure 1.
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Here ` and e denote a left-handed lepton doublet and right-handed lepton singlet field,
respectively. Notice that in writing (2.2) and (2.3) we have assumed that the full SMEFT
Lagrangian respects an approximate U(3)5 flavour symmetry which allows us to drop all
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DµH)(ē�µe) . (2.3)

Here ` and e denote a left-handed lepton doublet and right-handed lepton singlet field,
respectively. Notice that in writing (2.2) and (2.3) we have assumed that the full SMEFT
Lagrangian respects an approximate U(3)5 flavour symmetry which allows us to drop all
flavour indices.

The final type of SMEFT corrections that change the Higgsstrahlungs processes indi-
rectly is provided by the Wilson coefficients of the operators that shift the Higgs kinetic
term and/or the EW SM input parameters. In order to fully describe these shifts the
following three additional operators are needed at tree level:

QH2 = (H†
H)2(H†

H) , QHD = (H†
DµH)⇤(H†

D
µ
H) , Q`` = (¯̀�µ`)(¯̀�

µ
`) . (2.4)

– 3 –

Input scheme corrections:

and h ! bb̄ can be combined, while Section 7 contains our conclusions and an outlook.
The analytic formulae for the parameters and couplings that have been implemented into
our MC code are relegated to Appendix A. Details on our implementation of the gg ! Zh

process can be found in Appendix B. In Appendix C we finally discuss the impact of
NNLO QCD effects by comparing results for pp ! Zh ! `

+
`
�
h production obtained at

NLO+PS and NNLO+PS, respectively.

2 SMEFT operators

Throughout this work we neglect all light fermion masses in both the SM and SMEFT
corrections to the pp ! Zh and pp ! Wh processes. The full set of dimension-six SMEFT
operators has been presented in the so-called Warsaw basis in the article [6]. This basis
contains the following three independent operators

QHB = H
†
HBµ⌫B

µ⌫
, QHW = H

†
HW

a

µ⌫W
a,µ⌫

, QHWB = H
†
�
a
HW

a

µ⌫B
µ⌫

, (2.1)

that modify the couplings between the Higgs and two vector bosons at tree level. The SM
Higgs doublet is denoted by H, while Bµ⌫ and W

a
µ⌫ are the U(1)Y and SU(2)L gauge field

strength tensors and �
a are the Pauli matrices. In the case of the operators that result in

couplings between the Higgs, a W or a Z boson, and light quarks, we consider the following
four effective interactions

Q
(1)
Hq

= (H†
i

$
DµH)(q̄�µq) , Q

(3)
Hq

= (H†
i

$
D

a

µH)(q̄�µ�a
q) ,

QHd = (H†
i

$
DµH)(d̄�µd) , QHu = (H†

i

$
DµH)(ū�µu) ,
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if each Wilson coefficient is treated independently and the limit on �g
d

L
as given in (3.13) is

used to constrain C
(1)
Hq

and C
(3)
Hq

. We emphasise that notably more stringent limits on the
Wilson coefficients in (3.14) would be obtained if one performs a complete EW fit including
heavy flavour measurements and assumes a SMEFT Lagrangian with an approximate U(3)5

symmetry. This is a simple consequence of the fact that in such a case one has �gb
L,R

= �g
d

L,R

(�gc
L,R

= �g
u

L,R
) and that the bottom (charm) couplings were significantly better determined

than the down (up) couplings at LEP and SLD — see for example Figure F.3 in [27]. The
limits (3.14) are relaxed because they assume flavour universality only for the down and
strange quark as far as quarks are concerned.

3.3 Higgs-boson observables

The Wilson coefficients of the operators (2.1) modify the Higgs signal strengths in final
states with two vector bosons. In the LEP scheme and including only the tree-level SMEFT
corrections due to CHB, CHW and CHWB the coupling modifiers relevant for h ! WW

and h ! ZZ can be written in the  framework as follows [28]

�WW ' �
v
2

⇤2

h
0.76CHW + 3.18CHWB

i
,

�ZZ '
v
2

⇤2

h
2.71CHB � 3.18CHW + 1.23CHWB

i
.

(3.15)

In the tree-level approximation the corresponding expressions for the h ! �� and h ! �Z

decays do not depend on the choice of the EW input scheme. One finds

��� '
1

gh��

v
2

⇤2

h
c
2
wCHB + s

2
wCHW � cwswCHWB

i
,

��Z ' �
1

gh�Z

v
2

⇤2

h
2cwsw (CHB � CHW ) +

�
c
2
w � s

2
w

�
CHWB

i
,

(3.16)

where gh�� ' �2.02 · 10�3 and gh�Z ' �7.23 · 10�3 parameterise the loop-induced h�� and
h�Z couplings within the SM. Explicit analytic formulas for gh�� and gh�Z can be found
for instance in [29].

Assuming that the ggF Higgs production cross section is SM-like and taking the SM
predictions for the total decay width of the Higgs and its branching ratios from [30], we
obtain for ⇤ = 1TeV the following linearised expressions for the relevant signal strenghts

µ
WW

ggF ' 1 + 0.074CHB � 0.0086CHW , µ
ZZ

ggF ' 1 + 0.40CHB � 0.30CHW ,

µ
��

ggF ' 1� 46.0CHB � 14.0CHW , µ
�Z

ggF ' 1 + 14.3CHB � 14.1CHW .

(3.17)

Notice that in view of (3.6) we have neglected the contributions of the Wilson coeffi-
cient CHWB in (3.17). The corresponding measured Higgs signal strenghts are

µ
WW

ggF = 1.18±0.13 , µ
ZZ

ggF = 0.96±0.08 , µ
��

ggF = 1.05±0.09 , µ
�Z

ggF = 2.2±0.7 . (3.18)
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Here the first three results represent unofficial weighted averages of the ATLAS [31] and
CMS [32] measurements, while the fourth result stems from an official combination per-
formed by the ATLAS and CMS collaborations in [33].

By comparing (3.17) and (3.18) it is evident that under the assumption of CHWB ' 0

the constraints on the Wilson coefficients CHB and CHW from h ! �� and h ! �Z are in
general more stringent than those that arise from h ! WW and h ! ZZ. In fact, since the
signal strength µ

��

ggF is at present significantly better measured than µ
�Z

ggF, all combinations
of Wilson coefficients that obey

CHB ' �
s
2
w

c2w
CHW ' �0.30CHW , (3.19)

are most weakly constrained by (3.18). Notice that for Wilson coefficients CHB and CWB

satisfying (3.19) and |CHW | sufficiently small the signal strengths µWW

ggF , µZZ

ggF and µ
��

ggF are
all predicted to be SM-like, while µ

�Z

ggF can at the same time be notably different from one.

3.4 Discussion

We are now in a position to identify simple benchmark scenarios of the full set of Wilson coef-
ficients of the operators defined in (2.1) to (2.4). As a common operator suppression scale we
hereafter take ⇤ = 1TeV. In view of the stringent constraints arising from (3.4), (3.5), (3.9)
and (3.10) we always employ

C
(1)
H`

= C
(3)
H`

= CHe = CH2 = CHD = C`` = 0 , (3.20)

when studying the numerical impact of the SMEFT dimension-six operators (2.1) to (2.4)
on Zh production at the LHC in Section 5.

In the case of the dimension-six operators that modify the couplings between the Higgs
and two vector bosons at tree level, we choose the following values for the Wilson coefficients

CHB = 0.015 , CHW = �0.05 , CHWB = 0 , (3.21)

where the choice of CHWB is motivated by (3.6). The values (3.21) lead to the following
Higgs signal strengths

µ
WW

ggF ' 1.00 , µ
ZZ

ggF ' 1.02 , µ
��

ggF ' 1.01 , µ
�Z

ggF ' 2.13 , (3.22)

if one assumes that the ggF Higgs production cross section in the SMEFT is equal to that
of the SM and sets to zero the Wilson coefficients of all the operators appearing in (2.2)
to (2.4). Notice that the predictions (3.22) are all SM-like apart from µ

�Z

ggF which is close
to the central value of the measured signal strength given in (3.18). When considering
the benchmark scenario (3.21) we will, besides employing (3.20), also set all the Wilson
coefficients of the operators (2.2) to zero.

In the case of the operators that result in couplings between the Higgs, a W or a Z

boson and light quarks, we consider the four benchmark scenarios

C
(3)
Hq

= 0.05 , C
(1)
Hq

= CHd = CHu = 0 , (3.23)
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Higgs signal strengths

µ
WW

ggF ' 1.00 , µ
ZZ

ggF ' 1.02 , µ
��

ggF ' 1.01 , µ
�Z

ggF ' 2.13 , (3.22)

if one assumes that the ggF Higgs production cross section in the SMEFT is equal to that
of the SM and sets to zero the Wilson coefficients of all the operators appearing in (2.2)
to (2.4). Notice that the predictions (3.22) are all SM-like apart from µ

�Z

ggF which is close
to the central value of the measured signal strength given in (3.18). When considering
the benchmark scenario (3.21) we will, besides employing (3.20), also set all the Wilson
coefficients of the operators (2.2) to zero.

In the case of the operators that result in couplings between the Higgs, a W or a Z

boson and light quarks, we consider the four benchmark scenarios

C
(3)
Hq

= 0.05 , C
(1)
Hq

= CHd = CHu = 0 , (3.23)
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if each Wilson coefficient is treated independently and the limit on �g
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as given in (3.13) is

used to constrain C
(1)
Hq

and C
(3)
Hq

. We emphasise that notably more stringent limits on the
Wilson coefficients in (3.14) would be obtained if one performs a complete EW fit including
heavy flavour measurements and assumes a SMEFT Lagrangian with an approximate U(3)5

symmetry. This is a simple consequence of the fact that in such a case one has �gb
L,R

= �g
d

L,R

(�gc
L,R

= �g
u

L,R
) and that the bottom (charm) couplings were significantly better determined

than the down (up) couplings at LEP and SLD — see for example Figure F.3 in [27]. The
limits (3.14) are relaxed because they assume flavour universality only for the down and
strange quark as far as quarks are concerned.

3.3 Higgs-boson observables

The Wilson coefficients of the operators (2.1) modify the Higgs signal strengths in final
states with two vector bosons. In the LEP scheme and including only the tree-level SMEFT
corrections due to CHB, CHW and CHWB the coupling modifiers relevant for h ! WW

and h ! ZZ can be written in the  framework as follows [28]
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i
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�ZZ '
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In the tree-level approximation the corresponding expressions for the h ! �� and h ! �Z

decays do not depend on the choice of the EW input scheme. One finds
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where gh�� ' �2.02 · 10�3 and gh�Z ' �7.23 · 10�3 parameterise the loop-induced h�� and
h�Z couplings within the SM. Explicit analytic formulas for gh�� and gh�Z can be found
for instance in [29].

Assuming that the ggF Higgs production cross section is SM-like and taking the SM
predictions for the total decay width of the Higgs and its branching ratios from [30], we
obtain for ⇤ = 1TeV the following linearised expressions for the relevant signal strenghts

µ
WW

ggF ' 1 + 0.074CHB � 0.0086CHW , µ
ZZ

ggF ' 1 + 0.40CHB � 0.30CHW ,

µ
��

ggF ' 1� 46.0CHB � 14.0CHW , µ
�Z

ggF ' 1 + 14.3CHB � 14.1CHW .

(3.17)

Notice that in view of (3.6) we have neglected the contributions of the Wilson coeffi-
cient CHWB in (3.17). The corresponding measured Higgs signal strenghts are

µ
WW

ggF = 1.18±0.13 , µ
ZZ

ggF = 0.96±0.08 , µ
��

ggF = 1.05±0.09 , µ
�Z

ggF = 2.2±0.7 . (3.18)
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Here the first three results represent unofficial weighted averages of the ATLAS [31] and
CMS [32] measurements, while the fourth result stems from an official combination per-
formed by the ATLAS and CMS collaborations in [33].

By comparing (3.17) and (3.18) it is evident that under the assumption of CHWB ' 0

the constraints on the Wilson coefficients CHB and CHW from h ! �� and h ! �Z are in
general more stringent than those that arise from h ! WW and h ! ZZ. In fact, since the
signal strength µ

��

ggF is at present significantly better measured than µ
�Z

ggF, all combinations
of Wilson coefficients that obey

CHB ' �
s
2
w

c2w
CHW ' �0.30CHW , (3.19)

are most weakly constrained by (3.18). Notice that for Wilson coefficients CHB and CWB

satisfying (3.19) and |CHW | sufficiently small the signal strengths µWW

ggF , µZZ

ggF and µ
��

ggF are
all predicted to be SM-like, while µ

�Z

ggF can at the same time be notably different from one.

3.4 Discussion

We are now in a position to identify simple benchmark scenarios of the full set of Wilson coef-
ficients of the operators defined in (2.1) to (2.4). As a common operator suppression scale we
hereafter take ⇤ = 1TeV. In view of the stringent constraints arising from (3.4), (3.5), (3.9)
and (3.10) we always employ

C
(1)
H`

= C
(3)
H`

= CHe = CH2 = CHD = C`` = 0 , (3.20)

when studying the numerical impact of the SMEFT dimension-six operators (2.1) to (2.4)
on Zh production at the LHC in Section 5.

In the case of the dimension-six operators that modify the couplings between the Higgs
and two vector bosons at tree level, we choose the following values for the Wilson coefficients

CHB = 0.015 , CHW = �0.05 , CHWB = 0 , (3.21)

where the choice of CHWB is motivated by (3.6). The values (3.21) lead to the following
Higgs signal strengths

µ
WW

ggF ' 1.00 , µ
ZZ

ggF ' 1.02 , µ
��

ggF ' 1.01 , µ
�Z

ggF ' 2.13 , (3.22)

if one assumes that the ggF Higgs production cross section in the SMEFT is equal to that
of the SM and sets to zero the Wilson coefficients of all the operators appearing in (2.2)
to (2.4). Notice that the predictions (3.22) are all SM-like apart from µ

�Z

ggF which is close
to the central value of the measured signal strength given in (3.18). When considering
the benchmark scenario (3.21) we will, besides employing (3.20), also set all the Wilson
coefficients of the operators (2.2) to zero.

In the case of the operators that result in couplings between the Higgs, a W or a Z

boson and light quarks, we consider the four benchmark scenarios

C
(3)
Hq

= 0.05 , C
(1)
Hq

= CHd = CHu = 0 , (3.23)
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The corresponding relative tree-level shift of mW induced in the U(3)5 symmetric SMEFT
is given by

�mW

mW

= �
cwsw

2 (c2w � s2w)

v
2

⇤2


2CHWB +

sw

cw

⇣
2C(3)

H`
� C``

⌘
+

cw

2sw
CHD

�

' �0.048CHWB � 0.027C(3)
H`

� 0.022CHD + 0.013C`` ,

(3.4)

where we have employed (3.1), (3.2) and assumed ⇤ = 1TeV for the energy scale that
suppresses the dimension-six operators to obtain the numerical results presented in the
second line. Employing the latest world average of the measured W -boson mass obtained
by the PDG [25] and the state-of-the-art SM prediction [26], we obtain the following 95%
confidence level (CL) limit

�mW

mW

2 [�0.9, 5.6] · 10�4
, (3.5)

on the allowed relative shift of mW . This result in general sets stringent constraints on the
Wilson coefficients entering (3.4). For instance, in the case of the operator QHWB we find
the bound

CHWB

⇤2
2 [�1.2, 0.2] · 10�2TeV�2

, (3.6)

if all other Wilson coefficients in (3.4) are set to zero. Similar though weaker limits also
apply in the case of CHD, C(3)

H`
and C`` if each of the Wilson coefficient is treated as the

only non-zero contribution.

3.2 Z-boson couplings

The linear combinations of Wilson coefficients that modify the couplings of the W and Z

boson to fermions at tree level are strongly constrained by the EW precision measurements
performed at LEP and SLD. In the case of the Z boson the shifts of the left- and right-
handed couplings to a fermion  = {e, ⌫, d, u} take the following form

�g
 

L
=

g2

cw

v
2

⇤2


g
T

3
 

T
3
 
� gQ Q �

1

2

⇣
C

(1)
H L

� 2T 3
 
C

(3)
H L

⌘�
,

�g
 

R
=

g2

cw

v
2

⇤2


�gQ Q �

1

2
(1� � ⌫)CH R

�
,

(3.7)

with
g
T

3
 

= �C
(3)
H`

�
CHD

4
+

C``

2
, gQ =

cwsw

c2w � s2w


CHWB �

sw

cw
g
T

3
 

�
. (3.8)

Here the coupling g2 is defined via (3.2),  L = {`, q} and  R = {e, d, u}, while T
3
 
= ±1/2

denotes the weak isospin eigenvalue, Q is the electric charge of the fermion  in units
of e =

p
4⇡↵. Notice that the expressions given in (3.8) correspond to the LEP scheme and

that we have assumed that the Wilson coefficients of the operators that involve fermionic
fields are flavour universal. Below we will assume that such a flavour universality holds for
all SM fermions apart from the charm, bottom and top quark.
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if each Wilson coefficient is treated independently and the limit on �g
d

L
as given in (3.13) is

used to constrain C
(1)
Hq

and C
(3)
Hq

. We emphasise that notably more stringent limits on the
Wilson coefficients in (3.14) would be obtained if one performs a complete EW fit including
heavy flavour measurements and assumes a SMEFT Lagrangian with an approximate U(3)5

symmetry. This is a simple consequence of the fact that in such a case one has �gb
L,R

= �g
d

L,R

(�gc
L,R

= �g
u

L,R
) and that the bottom (charm) couplings were significantly better determined

than the down (up) couplings at LEP and SLD — see for example Figure F.3 in [27]. The
limits (3.14) are relaxed because they assume flavour universality only for the down and
strange quark as far as quarks are concerned.

3.3 Higgs-boson observables

The Wilson coefficients of the operators (2.1) modify the Higgs signal strengths in final
states with two vector bosons. In the LEP scheme and including only the tree-level SMEFT
corrections due to CHB, CHW and CHWB the coupling modifiers relevant for h ! WW

and h ! ZZ can be written in the  framework as follows [28]
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i
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In the tree-level approximation the corresponding expressions for the h ! �� and h ! �Z

decays do not depend on the choice of the EW input scheme. One finds
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(3.16)

where gh�� ' �2.02 · 10�3 and gh�Z ' �7.23 · 10�3 parameterise the loop-induced h�� and
h�Z couplings within the SM. Explicit analytic formulas for gh�� and gh�Z can be found
for instance in [29].

Assuming that the ggF Higgs production cross section is SM-like and taking the SM
predictions for the total decay width of the Higgs and its branching ratios from [30], we
obtain for ⇤ = 1TeV the following linearised expressions for the relevant signal strenghts

µ
WW

ggF ' 1 + 0.074CHB � 0.0086CHW , µ
ZZ

ggF ' 1 + 0.40CHB � 0.30CHW ,

µ
��

ggF ' 1� 46.0CHB � 14.0CHW , µ
�Z

ggF ' 1 + 14.3CHB � 14.1CHW .

(3.17)

Notice that in view of (3.6) we have neglected the contributions of the Wilson coeffi-
cient CHWB in (3.17). The corresponding measured Higgs signal strenghts are

µ
WW

ggF = 1.18±0.13 , µ
ZZ

ggF = 0.96±0.08 , µ
��

ggF = 1.05±0.09 , µ
�Z

ggF = 2.2±0.7 . (3.18)
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predictions for the total decay width of the Higgs and its branching ratios from [30], we
obtain for ⇤ = 1TeV the following linearised expressions for the relevant signal strenghts

µ
WW

ggF ' 1 + 0.074CHB � 0.0086CHW , µ
ZZ

ggF ' 1 + 0.40CHB � 0.30CHW ,

µ
��

ggF ' 1� 46.0CHB � 14.0CHW , µ
�Z

ggF ' 1 + 14.3CHB � 14.1CHW .

(3.17)

Notice that in view of (3.6) we have neglected the contributions of the Wilson coeffi-
cient CHWB in (3.17). The corresponding measured Higgs signal strenghts are

µ
WW

ggF = 1.18±0.13 , µ
ZZ

ggF = 0.96±0.08 , µ
��

ggF = 1.05±0.09 , µ
�Z

ggF = 2.2±0.7 . (3.18)
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Here the first three results represent unofficial weighted averages of the ATLAS [31] and
CMS [32] measurements, while the fourth result stems from an official combination per-
formed by the ATLAS and CMS collaborations in [33].

By comparing (3.17) and (3.18) it is evident that under the assumption of CHWB ' 0

the constraints on the Wilson coefficients CHB and CHW from h ! �� and h ! �Z are in
general more stringent than those that arise from h ! WW and h ! ZZ. In fact, since the
signal strength µ

��

ggF is at present significantly better measured than µ
�Z

ggF, all combinations
of Wilson coefficients that obey

CHB ' �
s
2
w

c2w
CHW ' �0.30CHW , (3.19)

are most weakly constrained by (3.18). Notice that for Wilson coefficients CHB and CWB

satisfying (3.19) and |CHW | sufficiently small the signal strengths µWW

ggF , µZZ

ggF and µ
��

ggF are
all predicted to be SM-like, while µ

�Z

ggF can at the same time be notably different from one.

3.4 Discussion

We are now in a position to identify simple benchmark scenarios of the full set of Wilson coef-
ficients of the operators defined in (2.1) to (2.4). As a common operator suppression scale we
hereafter take ⇤ = 1TeV. In view of the stringent constraints arising from (3.4), (3.5), (3.9)
and (3.10) we always employ

C
(1)
H`

= C
(3)
H`

= CHe = CH2 = CHD = C`` = 0 , (3.20)

when studying the numerical impact of the SMEFT dimension-six operators (2.1) to (2.4)
on Zh production at the LHC in Section 5.

In the case of the dimension-six operators that modify the couplings between the Higgs
and two vector bosons at tree level, we choose the following values for the Wilson coefficients

CHB = 0.015 , CHW = �0.05 , CHWB = 0 , (3.21)

where the choice of CHWB is motivated by (3.6). The values (3.21) lead to the following
Higgs signal strengths

µ
WW

ggF ' 1.00 , µ
ZZ

ggF ' 1.02 , µ
��

ggF ' 1.01 , µ
�Z

ggF ' 2.13 , (3.22)

if one assumes that the ggF Higgs production cross section in the SMEFT is equal to that
of the SM and sets to zero the Wilson coefficients of all the operators appearing in (2.2)
to (2.4). Notice that the predictions (3.22) are all SM-like apart from µ

�Z

ggF which is close
to the central value of the measured signal strength given in (3.18). When considering
the benchmark scenario (3.21) we will, besides employing (3.20), also set all the Wilson
coefficients of the operators (2.2) to zero.

In the case of the operators that result in couplings between the Higgs, a W or a Z

boson and light quarks, we consider the four benchmark scenarios

C
(3)
Hq

= 0.05 , C
(1)
Hq

= CHd = CHu = 0 , (3.23)
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The corresponding relative tree-level shift of mW induced in the U(3)5 symmetric SMEFT
is given by
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⌘
+
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2sw
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�

' �0.048CHWB � 0.027C(3)
H`

� 0.022CHD + 0.013C`` ,

(3.4)

where we have employed (3.1), (3.2) and assumed ⇤ = 1TeV for the energy scale that
suppresses the dimension-six operators to obtain the numerical results presented in the
second line. Employing the latest world average of the measured W -boson mass obtained
by the PDG [25] and the state-of-the-art SM prediction [26], we obtain the following 95%
confidence level (CL) limit

�mW

mW

2 [�0.9, 5.6] · 10�4
, (3.5)

on the allowed relative shift of mW . This result in general sets stringent constraints on the
Wilson coefficients entering (3.4). For instance, in the case of the operator QHWB we find
the bound

CHWB

⇤2
2 [�1.2, 0.2] · 10�2TeV�2

, (3.6)

if all other Wilson coefficients in (3.4) are set to zero. Similar though weaker limits also
apply in the case of CHD, C(3)

H`
and C`` if each of the Wilson coefficient is treated as the

only non-zero contribution.

3.2 Z-boson couplings

The linear combinations of Wilson coefficients that modify the couplings of the W and Z

boson to fermions at tree level are strongly constrained by the EW precision measurements
performed at LEP and SLD. In the case of the Z boson the shifts of the left- and right-
handed couplings to a fermion  = {e, ⌫, d, u} take the following form

�g
 

L
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g2
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v
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g
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3
 

T
3
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R
=

g2
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v
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�gQ Q �

1

2
(1� � ⌫)CH R

�
,

(3.7)

with
g
T

3
 

= �C
(3)
H`

�
CHD

4
+

C``

2
, gQ =

cwsw

c2w � s2w


CHWB �

sw

cw
g
T

3
 

�
. (3.8)

Here the coupling g2 is defined via (3.2),  L = {`, q} and  R = {e, d, u}, while T
3
 
= ±1/2

denotes the weak isospin eigenvalue, Q is the electric charge of the fermion  in units
of e =

p
4⇡↵. Notice that the expressions given in (3.8) correspond to the LEP scheme and

that we have assumed that the Wilson coefficients of the operators that involve fermionic
fields are flavour universal. Below we will assume that such a flavour universality holds for
all SM fermions apart from the charm, bottom and top quark.
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if each Wilson coefficient is treated independently and the limit on �g
d

L
as given in (3.13) is

used to constrain C
(1)
Hq

and C
(3)
Hq

. We emphasise that notably more stringent limits on the
Wilson coefficients in (3.14) would be obtained if one performs a complete EW fit including
heavy flavour measurements and assumes a SMEFT Lagrangian with an approximate U(3)5

symmetry. This is a simple consequence of the fact that in such a case one has �gb
L,R

= �g
d

L,R

(�gc
L,R

= �g
u

L,R
) and that the bottom (charm) couplings were significantly better determined

than the down (up) couplings at LEP and SLD — see for example Figure F.3 in [27]. The
limits (3.14) are relaxed because they assume flavour universality only for the down and
strange quark as far as quarks are concerned.

3.3 Higgs-boson observables

The Wilson coefficients of the operators (2.1) modify the Higgs signal strengths in final
states with two vector bosons. In the LEP scheme and including only the tree-level SMEFT
corrections due to CHB, CHW and CHWB the coupling modifiers relevant for h ! WW

and h ! ZZ can be written in the  framework as follows [28]

�WW ' �
v
2

⇤2

h
0.76CHW + 3.18CHWB

i
,

�ZZ '
v
2

⇤2

h
2.71CHB � 3.18CHW + 1.23CHWB

i
.

(3.15)

In the tree-level approximation the corresponding expressions for the h ! �� and h ! �Z

decays do not depend on the choice of the EW input scheme. One finds

��� '
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gh��

v
2
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h
c
2
wCHB + s

2
wCHW � cwswCHWB

i
,

��Z ' �
1

gh�Z

v
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2cwsw (CHB � CHW ) +

�
c
2
w � s

2
w

�
CHWB

i
,

(3.16)

where gh�� ' �2.02 · 10�3 and gh�Z ' �7.23 · 10�3 parameterise the loop-induced h�� and
h�Z couplings within the SM. Explicit analytic formulas for gh�� and gh�Z can be found
for instance in [29].

Assuming that the ggF Higgs production cross section is SM-like and taking the SM
predictions for the total decay width of the Higgs and its branching ratios from [30], we
obtain for ⇤ = 1TeV the following linearised expressions for the relevant signal strenghts

µ
WW

ggF ' 1 + 0.074CHB � 0.0086CHW , µ
ZZ

ggF ' 1 + 0.40CHB � 0.30CHW ,

µ
��

ggF ' 1� 46.0CHB � 14.0CHW , µ
�Z

ggF ' 1 + 14.3CHB � 14.1CHW .

(3.17)

Notice that in view of (3.6) we have neglected the contributions of the Wilson coeffi-
cient CHWB in (3.17). The corresponding measured Higgs signal strenghts are

µ
WW

ggF = 1.18±0.13 , µ
ZZ

ggF = 0.96±0.08 , µ
��

ggF = 1.05±0.09 , µ
�Z

ggF = 2.2±0.7 . (3.18)
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where gh�� ' �2.02 · 10�3 and gh�Z ' �7.23 · 10�3 parameterise the loop-induced h�� and
h�Z couplings within the SM. Explicit analytic formulas for gh�� and gh�Z can be found
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Here the first three results represent unofficial weighted averages of the ATLAS [31] and
CMS [32] measurements, while the fourth result stems from an official combination per-
formed by the ATLAS and CMS collaborations in [33].

By comparing (3.17) and (3.18) it is evident that under the assumption of CHWB ' 0

the constraints on the Wilson coefficients CHB and CHW from h ! �� and h ! �Z are in
general more stringent than those that arise from h ! WW and h ! ZZ. In fact, since the
signal strength µ

��

ggF is at present significantly better measured than µ
�Z

ggF, all combinations
of Wilson coefficients that obey

CHB ' �
s
2
w

c2w
CHW ' �0.30CHW , (3.19)

are most weakly constrained by (3.18). Notice that for Wilson coefficients CHB and CWB

satisfying (3.19) and |CHW | sufficiently small the signal strengths µWW

ggF , µZZ

ggF and µ
��

ggF are
all predicted to be SM-like, while µ

�Z

ggF can at the same time be notably different from one.

3.4 Discussion

We are now in a position to identify simple benchmark scenarios of the full set of Wilson coef-
ficients of the operators defined in (2.1) to (2.4). As a common operator suppression scale we
hereafter take ⇤ = 1TeV. In view of the stringent constraints arising from (3.4), (3.5), (3.9)
and (3.10) we always employ

C
(1)
H`

= C
(3)
H`

= CHe = CH2 = CHD = C`` = 0 , (3.20)

when studying the numerical impact of the SMEFT dimension-six operators (2.1) to (2.4)
on Zh production at the LHC in Section 5.

In the case of the dimension-six operators that modify the couplings between the Higgs
and two vector bosons at tree level, we choose the following values for the Wilson coefficients

CHB = 0.015 , CHW = �0.05 , CHWB = 0 , (3.21)

where the choice of CHWB is motivated by (3.6). The values (3.21) lead to the following
Higgs signal strengths

µ
WW

ggF ' 1.00 , µ
ZZ

ggF ' 1.02 , µ
��

ggF ' 1.01 , µ
�Z

ggF ' 2.13 , (3.22)

if one assumes that the ggF Higgs production cross section in the SMEFT is equal to that
of the SM and sets to zero the Wilson coefficients of all the operators appearing in (2.2)
to (2.4). Notice that the predictions (3.22) are all SM-like apart from µ

�Z

ggF which is close
to the central value of the measured signal strength given in (3.18). When considering
the benchmark scenario (3.21) we will, besides employing (3.20), also set all the Wilson
coefficients of the operators (2.2) to zero.

In the case of the operators that result in couplings between the Higgs, a W or a Z

boson and light quarks, we consider the four benchmark scenarios

C
(3)
Hq

= 0.05 , C
(1)
Hq

= CHd = CHu = 0 , (3.23)
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In the case of the electron the formulas (3.7) and (3.8) lead to the following left- and
right-handed coupling shifts

�g
e

L ' 0.036CHWB � 0.022C(1)
H`

+ 0.020C(3)
H`

+ 0.011CHD � 0.021C`` ,

�g
e

R ' 0.036CHWB + 0.020C(3)
H`

� 0.022CHe + 0.005CHD � 0.010C`` ,

(3.9)

when (3.1), (3.2) and ⇤ = 1TeV is used as a numerical input. The EW precision measure-
ments performed by LEP and SLD [25, 27] imply that at 95% CL one has

�g
e

L 2 [�7.1, 2.0] · 10�4
, �g

e

R 2 [�7.0, 1.6] · 10�4
. (3.10)

Ignoring cancellations these limits again put severe constraints on the Wilson coefficients
that appear in (3.9). Numerically, we obtain for instance the bounds

C
(3)
H`

⇤2
2 [�3.6, 1.0] · 10�2TeV�2

,
CHe

⇤2
2 [�0.7, 3.1] · 10�2TeV�2

, (3.11)

from the constraint �g
e

L
and �g

e

R
, respectively, if we allow only the considered Wilson

coefficient to take a non-vanishing value. We add that the Wilson coefficients CHD, C(1)
H`

and C`` can also be constrained by the LEP and SLD measurements of the Z-boson coupling
to neutrinos. The obtained bounds, however, turn out to be weaker than those that derive
from (3.9) and (3.10).

Employing again (3.1), (3.2), (3.7) and (3.8) the left- and right-handed coupling shifts
in the case of the down and up quark take the following form

�g
d

L ' 0.012CHWB � 0.022
⇣
C

(1)
Hq

+ C
(3)
Hq

⌘
+ 0.029C(3)

H`
+ 0.007CHD � 0.015C`` ,

�g
d

R ' 0.012CHWB � 0.022CHd + 0.007C(3)
H`

+ 0.002CHD � 0.003C`` ,

�g
u

L ' �0.024CHWB � 0.022
⇣
C

(1)
Hq

� C
(3)
Hq

⌘
� 0.036C(3)

H`
� 0.009CHD + 0.018C`` ,

�g
u

R ' �0.024CHWB � 0.022CHu � 0.013C(3)
H`

� 0.003CHD + 0.007C`` ,

(3.12)

for a common operator suppression scale of ⇤ = 1TeV. The measurements by LEP and
SLD performed at the Z-pole lead to the following limits

�g
d

L 2 [�6.2, 2.0] · 10�2
, �g

d

R 2 [�4.8, 3.4] · 10�2
,

�g
u

L 2 [0.2, 6.8] · 10�2
, �g

u

R 2 [�1.3, 5.3] · 10�2
,

(3.13)

at 95% CL. These bounds translate into

C
(1)
Hq

⇤2
2 [�0.9, 2.8] TeV�2

,
C

(3)
Hq

⇤2
2 [�0.9, 2.8] TeV�2

,

CHd

⇤2
2 [�1.5, 2.1] TeV�2

,
CHu

⇤2
2 [�2.4, 0.6] TeV�2

,

(3.14)
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2. Anatomy of SMEFT Effects
2.1 Deviations from the SM
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The corresponding relative tree-level shift of mW induced in the U(3)5 symmetric SMEFT
is given by

�mW
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H`

� 0.022CHD + 0.013C`` ,

(3.4)

where we have employed (3.1), (3.2) and assumed ⇤ = 1TeV for the energy scale that
suppresses the dimension-six operators to obtain the numerical results presented in the
second line. Employing the latest world average of the measured W -boson mass obtained
by the PDG [25] and the state-of-the-art SM prediction [26], we obtain the following 95%
confidence level (CL) limit

�mW

mW

2 [�0.9, 5.6] · 10�4
, (3.5)

on the allowed relative shift of mW . This result in general sets stringent constraints on the
Wilson coefficients entering (3.4). For instance, in the case of the operator QHWB we find
the bound

CHWB

⇤2
2 [�1.2, 0.2] · 10�2TeV�2

, (3.6)

if all other Wilson coefficients in (3.4) are set to zero. Similar though weaker limits also
apply in the case of CHD, C(3)

H`
and C`` if each of the Wilson coefficient is treated as the

only non-zero contribution.

3.2 Z-boson couplings

The linear combinations of Wilson coefficients that modify the couplings of the W and Z

boson to fermions at tree level are strongly constrained by the EW precision measurements
performed at LEP and SLD. In the case of the Z boson the shifts of the left- and right-
handed couplings to a fermion  = {e, ⌫, d, u} take the following form
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=
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(3.7)
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g
T
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�
CHD

4
+

C``

2
, gQ =

cwsw

c2w � s2w
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sw
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g
T

3
 

�
. (3.8)

Here the coupling g2 is defined via (3.2),  L = {`, q} and  R = {e, d, u}, while T
3
 
= ±1/2

denotes the weak isospin eigenvalue, Q is the electric charge of the fermion  in units
of e =

p
4⇡↵. Notice that the expressions given in (3.8) correspond to the LEP scheme and

that we have assumed that the Wilson coefficients of the operators that involve fermionic
fields are flavour universal. Below we will assume that such a flavour universality holds for
all SM fermions apart from the charm, bottom and top quark.
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if each Wilson coefficient is treated independently and the limit on �g
d

L
as given in (3.13) is

used to constrain C
(1)
Hq

and C
(3)
Hq

. We emphasise that notably more stringent limits on the
Wilson coefficients in (3.14) would be obtained if one performs a complete EW fit including
heavy flavour measurements and assumes a SMEFT Lagrangian with an approximate U(3)5

symmetry. This is a simple consequence of the fact that in such a case one has �gb
L,R

= �g
d

L,R

(�gc
L,R

= �g
u

L,R
) and that the bottom (charm) couplings were significantly better determined

than the down (up) couplings at LEP and SLD — see for example Figure F.3 in [27]. The
limits (3.14) are relaxed because they assume flavour universality only for the down and
strange quark as far as quarks are concerned.

3.3 Higgs-boson observables

The Wilson coefficients of the operators (2.1) modify the Higgs signal strengths in final
states with two vector bosons. In the LEP scheme and including only the tree-level SMEFT
corrections due to CHB, CHW and CHWB the coupling modifiers relevant for h ! WW

and h ! ZZ can be written in the  framework as follows [28]

�WW ' �
v
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h
0.76CHW + 3.18CHWB

i
,

�ZZ '
v
2
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h
2.71CHB � 3.18CHW + 1.23CHWB

i
.

(3.15)

In the tree-level approximation the corresponding expressions for the h ! �� and h ! �Z

decays do not depend on the choice of the EW input scheme. One finds
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w � s

2
w
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CHWB

i
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(3.16)

where gh�� ' �2.02 · 10�3 and gh�Z ' �7.23 · 10�3 parameterise the loop-induced h�� and
h�Z couplings within the SM. Explicit analytic formulas for gh�� and gh�Z can be found
for instance in [29].

Assuming that the ggF Higgs production cross section is SM-like and taking the SM
predictions for the total decay width of the Higgs and its branching ratios from [30], we
obtain for ⇤ = 1TeV the following linearised expressions for the relevant signal strenghts

µ
WW

ggF ' 1 + 0.074CHB � 0.0086CHW , µ
ZZ

ggF ' 1 + 0.40CHB � 0.30CHW ,

µ
��

ggF ' 1� 46.0CHB � 14.0CHW , µ
�Z

ggF ' 1 + 14.3CHB � 14.1CHW .

(3.17)

Notice that in view of (3.6) we have neglected the contributions of the Wilson coeffi-
cient CHWB in (3.17). The corresponding measured Higgs signal strenghts are

µ
WW

ggF = 1.18±0.13 , µ
ZZ

ggF = 0.96±0.08 , µ
��

ggF = 1.05±0.09 , µ
�Z

ggF = 2.2±0.7 . (3.18)
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Here the first three results represent unofficial weighted averages of the ATLAS [31] and
CMS [32] measurements, while the fourth result stems from an official combination per-
formed by the ATLAS and CMS collaborations in [33].

By comparing (3.17) and (3.18) it is evident that under the assumption of CHWB ' 0

the constraints on the Wilson coefficients CHB and CHW from h ! �� and h ! �Z are in
general more stringent than those that arise from h ! WW and h ! ZZ. In fact, since the
signal strength µ

��

ggF is at present significantly better measured than µ
�Z

ggF, all combinations
of Wilson coefficients that obey

CHB ' �
s
2
w

c2w
CHW ' �0.30CHW , (3.19)

are most weakly constrained by (3.18). Notice that for Wilson coefficients CHB and CWB

satisfying (3.19) and |CHW | sufficiently small the signal strengths µWW

ggF , µZZ

ggF and µ
��

ggF are
all predicted to be SM-like, while µ

�Z

ggF can at the same time be notably different from one.

3.4 Discussion

We are now in a position to identify simple benchmark scenarios of the full set of Wilson coef-
ficients of the operators defined in (2.1) to (2.4). As a common operator suppression scale we
hereafter take ⇤ = 1TeV. In view of the stringent constraints arising from (3.4), (3.5), (3.9)
and (3.10) we always employ

C
(1)
H`

= C
(3)
H`

= CHe = CH2 = CHD = C`` = 0 , (3.20)

when studying the numerical impact of the SMEFT dimension-six operators (2.1) to (2.4)
on Zh production at the LHC in Section 5.

In the case of the dimension-six operators that modify the couplings between the Higgs
and two vector bosons at tree level, we choose the following values for the Wilson coefficients

CHB = 0.015 , CHW = �0.05 , CHWB = 0 , (3.21)

where the choice of CHWB is motivated by (3.6). The values (3.21) lead to the following
Higgs signal strengths

µ
WW

ggF ' 1.00 , µ
ZZ

ggF ' 1.02 , µ
��

ggF ' 1.01 , µ
�Z

ggF ' 2.13 , (3.22)

if one assumes that the ggF Higgs production cross section in the SMEFT is equal to that
of the SM and sets to zero the Wilson coefficients of all the operators appearing in (2.2)
to (2.4). Notice that the predictions (3.22) are all SM-like apart from µ

�Z

ggF which is close
to the central value of the measured signal strength given in (3.18). When considering
the benchmark scenario (3.21) we will, besides employing (3.20), also set all the Wilson
coefficients of the operators (2.2) to zero.

In the case of the operators that result in couplings between the Higgs, a W or a Z

boson and light quarks, we consider the four benchmark scenarios

C
(3)
Hq

= 0.05 , C
(1)
Hq

= CHd = CHu = 0 , (3.23)
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In the case of the electron the formulas (3.7) and (3.8) lead to the following left- and
right-handed coupling shifts

�g
e

L ' 0.036CHWB � 0.022C(1)
H`

+ 0.020C(3)
H`

+ 0.011CHD � 0.021C`` ,

�g
e

R ' 0.036CHWB + 0.020C(3)
H`

� 0.022CHe + 0.005CHD � 0.010C`` ,

(3.9)

when (3.1), (3.2) and ⇤ = 1TeV is used as a numerical input. The EW precision measure-
ments performed by LEP and SLD [25, 27] imply that at 95% CL one has

�g
e

L 2 [�7.1, 2.0] · 10�4
, �g

e

R 2 [�7.0, 1.6] · 10�4
. (3.10)

Ignoring cancellations these limits again put severe constraints on the Wilson coefficients
that appear in (3.9). Numerically, we obtain for instance the bounds

C
(3)
H`

⇤2
2 [�3.6, 1.0] · 10�2TeV�2

,
CHe

⇤2
2 [�0.7, 3.1] · 10�2TeV�2

, (3.11)

from the constraint �g
e

L
and �g

e

R
, respectively, if we allow only the considered Wilson

coefficient to take a non-vanishing value. We add that the Wilson coefficients CHD, C(1)
H`

and C`` can also be constrained by the LEP and SLD measurements of the Z-boson coupling
to neutrinos. The obtained bounds, however, turn out to be weaker than those that derive
from (3.9) and (3.10).

Employing again (3.1), (3.2), (3.7) and (3.8) the left- and right-handed coupling shifts
in the case of the down and up quark take the following form

�g
d

L ' 0.012CHWB � 0.022
⇣
C

(1)
Hq

+ C
(3)
Hq

⌘
+ 0.029C(3)

H`
+ 0.007CHD � 0.015C`` ,

�g
d

R ' 0.012CHWB � 0.022CHd + 0.007C(3)
H`

+ 0.002CHD � 0.003C`` ,

�g
u

L ' �0.024CHWB � 0.022
⇣
C

(1)
Hq

� C
(3)
Hq

⌘
� 0.036C(3)

H`
� 0.009CHD + 0.018C`` ,

�g
u

R ' �0.024CHWB � 0.022CHu � 0.013C(3)
H`

� 0.003CHD + 0.007C`` ,

(3.12)

for a common operator suppression scale of ⇤ = 1TeV. The measurements by LEP and
SLD performed at the Z-pole lead to the following limits

�g
d

L 2 [�6.2, 2.0] · 10�2
, �g

d

R 2 [�4.8, 3.4] · 10�2
,

�g
u

L 2 [0.2, 6.8] · 10�2
, �g

u

R 2 [�1.3, 5.3] · 10�2
,

(3.13)

at 95% CL. These bounds translate into

C
(1)
Hq

⇤2
2 [�0.9, 2.8] TeV�2

,
C

(3)
Hq

⇤2
2 [�0.9, 2.8] TeV�2

,

CHd

⇤2
2 [�1.5, 2.1] TeV�2

,
CHu

⇤2
2 [�2.4, 0.6] TeV�2

,

(3.14)

– 6 –

In the case of the electron the formulas (3.7) and (3.8) lead to the following left- and
right-handed coupling shifts

�g
e

L ' 0.036CHWB � 0.022C(1)
H`

+ 0.020C(3)
H`

+ 0.011CHD � 0.021C`` ,

�g
e

R ' 0.036CHWB + 0.020C(3)
H`

� 0.022CHe + 0.005CHD � 0.010C`` ,

(3.9)

when (3.1), (3.2) and ⇤ = 1TeV is used as a numerical input. The EW precision measure-
ments performed by LEP and SLD [25, 27] imply that at 95% CL one has

�g
e

L 2 [�7.1, 2.0] · 10�4
, �g

e

R 2 [�7.0, 1.6] · 10�4
. (3.10)

Ignoring cancellations these limits again put severe constraints on the Wilson coefficients
that appear in (3.9). Numerically, we obtain for instance the bounds

C
(3)
H`

⇤2
2 [�3.6, 1.0] · 10�2TeV�2

,
CHe

⇤2
2 [�0.7, 3.1] · 10�2TeV�2

, (3.11)

from the constraint �g
e

L
and �g

e

R
, respectively, if we allow only the considered Wilson

coefficient to take a non-vanishing value. We add that the Wilson coefficients CHD, C(1)
H`

and C`` can also be constrained by the LEP and SLD measurements of the Z-boson coupling
to neutrinos. The obtained bounds, however, turn out to be weaker than those that derive
from (3.9) and (3.10).

Employing again (3.1), (3.2), (3.7) and (3.8) the left- and right-handed coupling shifts
in the case of the down and up quark take the following form

�g
d

L ' 0.012CHWB � 0.022
⇣
C

(1)
Hq

+ C
(3)
Hq

⌘
+ 0.029C(3)

H`
+ 0.007CHD � 0.015C`` ,

�g
d

R ' 0.012CHWB � 0.022CHd + 0.007C(3)
H`

+ 0.002CHD � 0.003C`` ,

�g
u

L ' �0.024CHWB � 0.022
⇣
C

(1)
Hq

� C
(3)
Hq

⌘
� 0.036C(3)

H`
� 0.009CHD + 0.018C`` ,

�g
u

R ' �0.024CHWB � 0.022CHu � 0.013C(3)
H`

� 0.003CHD + 0.007C`` ,

(3.12)

for a common operator suppression scale of ⇤ = 1TeV. The measurements by LEP and
SLD performed at the Z-pole lead to the following limits

�g
d

L 2 [�6.2, 2.0] · 10�2
, �g

d

R 2 [�4.8, 3.4] · 10�2
,

�g
u

L 2 [0.2, 6.8] · 10�2
, �g

u

R 2 [�1.3, 5.3] · 10�2
,

(3.13)

at 95% CL. These bounds translate into

C
(1)
Hq

⇤2
2 [�0.9, 2.8] TeV�2

,
C

(3)
Hq

⇤2
2 [�0.9, 2.8] TeV�2

,

CHd

⇤2
2 [�1.5, 2.1] TeV�2

,
CHu

⇤2
2 [�2.4, 0.6] TeV�2

,

(3.14)

– 6 –

hep-ex/0509008 (SLD et al.)

2. Anatomy of SMEFT Effects
2.1 Deviations from the SM

-0.8

-0.4

0

0.4

0.8

-0.8 -0.4 0 0.4 0.8
gAf

g Vf

68 % CL

e,µ,τ

b

c

u

d=s

ν

Figure F.3: Comparison of the effective vector and axial-vector coupling constants for fermions.
For the light-quark contours (u and d=s), a second solution exists, mirroring the contour curves
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identical vector couplings and identical axial-vector couplings, is bounded by circles centred at
the origin since the invisible partial width constrains the sum of the squares of the effective
couplings only.
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where we have employed (3.1), (3.2) and assumed ⇤ = 1TeV for the energy scale that
suppresses the dimension-six operators to obtain the numerical results presented in the
second line. Employing the latest world average of the measured W -boson mass obtained
by the PDG [25] and the state-of-the-art SM prediction [26], we obtain the following 95%
confidence level (CL) limit

�mW

mW

2 [�0.9, 5.6] · 10�4
, (3.5)

on the allowed relative shift of mW . This result in general sets stringent constraints on the
Wilson coefficients entering (3.4). For instance, in the case of the operator QHWB we find
the bound

CHWB

⇤2
2 [�1.2, 0.2] · 10�2TeV�2

, (3.6)

if all other Wilson coefficients in (3.4) are set to zero. Similar though weaker limits also
apply in the case of CHD, C(3)

H`
and C`` if each of the Wilson coefficient is treated as the

only non-zero contribution.

3.2 Z-boson couplings

The linear combinations of Wilson coefficients that modify the couplings of the W and Z

boson to fermions at tree level are strongly constrained by the EW precision measurements
performed at LEP and SLD. In the case of the Z boson the shifts of the left- and right-
handed couplings to a fermion  = {e, ⌫, d, u} take the following form
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g2
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g
T
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T
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� gQ Q �
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2

⇣
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(1)
H L

� 2T 3
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(3)
H L

⌘�
,
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=

g2
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v
2

⇤2


�gQ Q �

1

2
(1� � ⌫)CH R

�
,

(3.7)

with
g
T

3
 

= �C
(3)
H`

�
CHD

4
+

C``

2
, gQ =

cwsw

c2w � s2w


CHWB �

sw

cw
g
T

3
 

�
. (3.8)

Here the coupling g2 is defined via (3.2),  L = {`, q} and  R = {e, d, u}, while T
3
 
= ±1/2

denotes the weak isospin eigenvalue, Q is the electric charge of the fermion  in units
of e =

p
4⇡↵. Notice that the expressions given in (3.8) correspond to the LEP scheme and

that we have assumed that the Wilson coefficients of the operators that involve fermionic
fields are flavour universal. Below we will assume that such a flavour universality holds for
all SM fermions apart from the charm, bottom and top quark.
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if each Wilson coefficient is treated independently and the limit on �g
d

L
as given in (3.13) is

used to constrain C
(1)
Hq

and C
(3)
Hq

. We emphasise that notably more stringent limits on the
Wilson coefficients in (3.14) would be obtained if one performs a complete EW fit including
heavy flavour measurements and assumes a SMEFT Lagrangian with an approximate U(3)5

symmetry. This is a simple consequence of the fact that in such a case one has �gb
L,R

= �g
d

L,R

(�gc
L,R

= �g
u

L,R
) and that the bottom (charm) couplings were significantly better determined

than the down (up) couplings at LEP and SLD — see for example Figure F.3 in [27]. The
limits (3.14) are relaxed because they assume flavour universality only for the down and
strange quark as far as quarks are concerned.

3.3 Higgs-boson observables

The Wilson coefficients of the operators (2.1) modify the Higgs signal strengths in final
states with two vector bosons. In the LEP scheme and including only the tree-level SMEFT
corrections due to CHB, CHW and CHWB the coupling modifiers relevant for h ! WW

and h ! ZZ can be written in the  framework as follows [28]

�WW ' �
v
2

⇤2

h
0.76CHW + 3.18CHWB

i
,

�ZZ '
v
2

⇤2

h
2.71CHB � 3.18CHW + 1.23CHWB

i
.

(3.15)

In the tree-level approximation the corresponding expressions for the h ! �� and h ! �Z

decays do not depend on the choice of the EW input scheme. One finds

��� '
1

gh��

v
2

⇤2

h
c
2
wCHB + s

2
wCHW � cwswCHWB

i
,

��Z ' �
1

gh�Z

v
2

⇤2

h
2cwsw (CHB � CHW ) +

�
c
2
w � s

2
w

�
CHWB

i
,

(3.16)

where gh�� ' �2.02 · 10�3 and gh�Z ' �7.23 · 10�3 parameterise the loop-induced h�� and
h�Z couplings within the SM. Explicit analytic formulas for gh�� and gh�Z can be found
for instance in [29].

Assuming that the ggF Higgs production cross section is SM-like and taking the SM
predictions for the total decay width of the Higgs and its branching ratios from [30], we
obtain for ⇤ = 1TeV the following linearised expressions for the relevant signal strenghts

µ
WW

ggF ' 1 + 0.074CHB � 0.0086CHW , µ
ZZ

ggF ' 1 + 0.40CHB � 0.30CHW ,

µ
��

ggF ' 1� 46.0CHB � 14.0CHW , µ
�Z

ggF ' 1 + 14.3CHB � 14.1CHW .

(3.17)

Notice that in view of (3.6) we have neglected the contributions of the Wilson coeffi-
cient CHWB in (3.17). The corresponding measured Higgs signal strenghts are

µ
WW

ggF = 1.18±0.13 , µ
ZZ

ggF = 0.96±0.08 , µ
��

ggF = 1.05±0.09 , µ
�Z

ggF = 2.2±0.7 . (3.18)
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Here the first three results represent unofficial weighted averages of the ATLAS [31] and
CMS [32] measurements, while the fourth result stems from an official combination per-
formed by the ATLAS and CMS collaborations in [33].

By comparing (3.17) and (3.18) it is evident that under the assumption of CHWB ' 0

the constraints on the Wilson coefficients CHB and CHW from h ! �� and h ! �Z are in
general more stringent than those that arise from h ! WW and h ! ZZ. In fact, since the
signal strength µ

��

ggF is at present significantly better measured than µ
�Z

ggF, all combinations
of Wilson coefficients that obey

CHB ' �
s
2
w

c2w
CHW ' �0.30CHW , (3.19)

are most weakly constrained by (3.18). Notice that for Wilson coefficients CHB and CWB

satisfying (3.19) and |CHW | sufficiently small the signal strengths µWW

ggF , µZZ

ggF and µ
��

ggF are
all predicted to be SM-like, while µ

�Z

ggF can at the same time be notably different from one.

3.4 Discussion

We are now in a position to identify simple benchmark scenarios of the full set of Wilson coef-
ficients of the operators defined in (2.1) to (2.4). As a common operator suppression scale we
hereafter take ⇤ = 1TeV. In view of the stringent constraints arising from (3.4), (3.5), (3.9)
and (3.10) we always employ

C
(1)
H`

= C
(3)
H`

= CHe = CH2 = CHD = C`` = 0 , (3.20)

when studying the numerical impact of the SMEFT dimension-six operators (2.1) to (2.4)
on Zh production at the LHC in Section 5.

In the case of the dimension-six operators that modify the couplings between the Higgs
and two vector bosons at tree level, we choose the following values for the Wilson coefficients

CHB = 0.015 , CHW = �0.05 , CHWB = 0 , (3.21)

where the choice of CHWB is motivated by (3.6). The values (3.21) lead to the following
Higgs signal strengths

µ
WW

ggF ' 1.00 , µ
ZZ

ggF ' 1.02 , µ
��

ggF ' 1.01 , µ
�Z

ggF ' 2.13 , (3.22)

if one assumes that the ggF Higgs production cross section in the SMEFT is equal to that
of the SM and sets to zero the Wilson coefficients of all the operators appearing in (2.2)
to (2.4). Notice that the predictions (3.22) are all SM-like apart from µ

�Z

ggF which is close
to the central value of the measured signal strength given in (3.18). When considering
the benchmark scenario (3.21) we will, besides employing (3.20), also set all the Wilson
coefficients of the operators (2.2) to zero.

In the case of the operators that result in couplings between the Higgs, a W or a Z

boson and light quarks, we consider the four benchmark scenarios

C
(3)
Hq

= 0.05 , C
(1)
Hq

= CHd = CHu = 0 , (3.23)
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In the case of the electron the formulas (3.7) and (3.8) lead to the following left- and
right-handed coupling shifts

�g
e

L ' 0.036CHWB � 0.022C(1)
H`

+ 0.020C(3)
H`

+ 0.011CHD � 0.021C`` ,

�g
e

R ' 0.036CHWB + 0.020C(3)
H`

� 0.022CHe + 0.005CHD � 0.010C`` ,

(3.9)

when (3.1), (3.2) and ⇤ = 1TeV is used as a numerical input. The EW precision measure-
ments performed by LEP and SLD [25, 27] imply that at 95% CL one has

�g
e

L 2 [�7.1, 2.0] · 10�4
, �g

e

R 2 [�7.0, 1.6] · 10�4
. (3.10)

Ignoring cancellations these limits again put severe constraints on the Wilson coefficients
that appear in (3.9). Numerically, we obtain for instance the bounds

C
(3)
H`

⇤2
2 [�3.6, 1.0] · 10�2TeV�2

,
CHe

⇤2
2 [�0.7, 3.1] · 10�2TeV�2

, (3.11)

from the constraint �g
e

L
and �g

e

R
, respectively, if we allow only the considered Wilson

coefficient to take a non-vanishing value. We add that the Wilson coefficients CHD, C(1)
H`

and C`` can also be constrained by the LEP and SLD measurements of the Z-boson coupling
to neutrinos. The obtained bounds, however, turn out to be weaker than those that derive
from (3.9) and (3.10).

Employing again (3.1), (3.2), (3.7) and (3.8) the left- and right-handed coupling shifts
in the case of the down and up quark take the following form

�g
d

L ' 0.012CHWB � 0.022
⇣
C

(1)
Hq

+ C
(3)
Hq

⌘
+ 0.029C(3)

H`
+ 0.007CHD � 0.015C`` ,

�g
d

R ' 0.012CHWB � 0.022CHd + 0.007C(3)
H`

+ 0.002CHD � 0.003C`` ,

�g
u

L ' �0.024CHWB � 0.022
⇣
C

(1)
Hq

� C
(3)
Hq

⌘
� 0.036C(3)

H`
� 0.009CHD + 0.018C`` ,

�g
u

R ' �0.024CHWB � 0.022CHu � 0.013C(3)
H`

� 0.003CHD + 0.007C`` ,

(3.12)

for a common operator suppression scale of ⇤ = 1TeV. The measurements by LEP and
SLD performed at the Z-pole lead to the following limits

�g
d

L 2 [�6.2, 2.0] · 10�2
, �g

d

R 2 [�4.8, 3.4] · 10�2
,

�g
u

L 2 [0.2, 6.8] · 10�2
, �g

u

R 2 [�1.3, 5.3] · 10�2
,

(3.13)

at 95% CL. These bounds translate into

C
(1)
Hq

⇤2
2 [�0.9, 2.8] TeV�2

,
C

(3)
Hq

⇤2
2 [�0.9, 2.8] TeV�2

,

CHd

⇤2
2 [�1.5, 2.1] TeV�2

,
CHu

⇤2
2 [�2.4, 0.6] TeV�2

,

(3.14)
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Figure F.3: Comparison of the effective vector and axial-vector coupling constants for fermions.
For the light-quark contours (u and d=s), a second solution exists, mirroring the contour curves
at the origin. The allowed area for neutrinos, assuming three generations of neutrinos with
identical vector couplings and identical axial-vector couplings, is bounded by circles centred at
the origin since the invisible partial width constrains the sum of the squares of the effective
couplings only.
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What are the current constraints?

V(h)qq:
, , , C(1)

Hq C(3)
Hq CHu

CHd

V(h)ll: , , C(1)
Hl C(3)

Hl
CHe

The corresponding relative tree-level shift of mW induced in the U(3)5 symmetric SMEFT
is given by

�mW

mW

= �
cwsw

2 (c2w � s2w)

v
2

⇤2


2CHWB +

sw

cw

⇣
2C(3)

H`
� C``

⌘
+

cw

2sw
CHD

�

' �0.048CHWB � 0.027C(3)
H`

� 0.022CHD + 0.013C`` ,

(3.4)

where we have employed (3.1), (3.2) and assumed ⇤ = 1TeV for the energy scale that
suppresses the dimension-six operators to obtain the numerical results presented in the
second line. Employing the latest world average of the measured W -boson mass obtained
by the PDG [25] and the state-of-the-art SM prediction [26], we obtain the following 95%
confidence level (CL) limit

�mW

mW

2 [�0.9, 5.6] · 10�4
, (3.5)

on the allowed relative shift of mW . This result in general sets stringent constraints on the
Wilson coefficients entering (3.4). For instance, in the case of the operator QHWB we find
the bound

CHWB

⇤2
2 [�1.2, 0.2] · 10�2TeV�2

, (3.6)

if all other Wilson coefficients in (3.4) are set to zero. Similar though weaker limits also
apply in the case of CHD, C(3)

H`
and C`` if each of the Wilson coefficient is treated as the

only non-zero contribution.

3.2 Z-boson couplings

The linear combinations of Wilson coefficients that modify the couplings of the W and Z

boson to fermions at tree level are strongly constrained by the EW precision measurements
performed at LEP and SLD. In the case of the Z boson the shifts of the left- and right-
handed couplings to a fermion  = {e, ⌫, d, u} take the following form

�g
 

L
=

g2

cw

v
2

⇤2


g
T

3
 

T
3
 
� gQ Q �

1

2

⇣
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H L

� 2T 3
 
C

(3)
H L
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,
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R
=

g2

cw

v
2
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�gQ Q �

1

2
(1� � ⌫)CH R

�
,

(3.7)

with
g
T

3
 

= �C
(3)
H`

�
CHD

4
+

C``

2
, gQ =

cwsw

c2w � s2w


CHWB �

sw

cw
g
T

3
 

�
. (3.8)

Here the coupling g2 is defined via (3.2),  L = {`, q} and  R = {e, d, u}, while T
3
 
= ±1/2

denotes the weak isospin eigenvalue, Q is the electric charge of the fermion  in units
of e =

p
4⇡↵. Notice that the expressions given in (3.8) correspond to the LEP scheme and

that we have assumed that the Wilson coefficients of the operators that involve fermionic
fields are flavour universal. Below we will assume that such a flavour universality holds for
all SM fermions apart from the charm, bottom and top quark.
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if each Wilson coefficient is treated independently and the limit on �g
d

L
as given in (3.13) is

used to constrain C
(1)
Hq

and C
(3)
Hq

. We emphasise that notably more stringent limits on the
Wilson coefficients in (3.14) would be obtained if one performs a complete EW fit including
heavy flavour measurements and assumes a SMEFT Lagrangian with an approximate U(3)5

symmetry. This is a simple consequence of the fact that in such a case one has �gb
L,R

= �g
d

L,R

(�gc
L,R

= �g
u

L,R
) and that the bottom (charm) couplings were significantly better determined

than the down (up) couplings at LEP and SLD — see for example Figure F.3 in [27]. The
limits (3.14) are relaxed because they assume flavour universality only for the down and
strange quark as far as quarks are concerned.

3.3 Higgs-boson observables

The Wilson coefficients of the operators (2.1) modify the Higgs signal strengths in final
states with two vector bosons. In the LEP scheme and including only the tree-level SMEFT
corrections due to CHB, CHW and CHWB the coupling modifiers relevant for h ! WW

and h ! ZZ can be written in the  framework as follows [28]

�WW ' �
v
2

⇤2

h
0.76CHW + 3.18CHWB

i
,

�ZZ '
v
2

⇤2

h
2.71CHB � 3.18CHW + 1.23CHWB

i
.

(3.15)

In the tree-level approximation the corresponding expressions for the h ! �� and h ! �Z

decays do not depend on the choice of the EW input scheme. One finds

��� '
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gh��

v
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⇤2

h
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2
wCHB + s

2
wCHW � cwswCHWB

i
,

��Z ' �
1

gh�Z
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2
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2cwsw (CHB � CHW ) +

�
c
2
w � s

2
w

�
CHWB

i
,

(3.16)

where gh�� ' �2.02 · 10�3 and gh�Z ' �7.23 · 10�3 parameterise the loop-induced h�� and
h�Z couplings within the SM. Explicit analytic formulas for gh�� and gh�Z can be found
for instance in [29].

Assuming that the ggF Higgs production cross section is SM-like and taking the SM
predictions for the total decay width of the Higgs and its branching ratios from [30], we
obtain for ⇤ = 1TeV the following linearised expressions for the relevant signal strenghts

µ
WW

ggF ' 1 + 0.074CHB � 0.0086CHW , µ
ZZ

ggF ' 1 + 0.40CHB � 0.30CHW ,

µ
��

ggF ' 1� 46.0CHB � 14.0CHW , µ
�Z

ggF ' 1 + 14.3CHB � 14.1CHW .

(3.17)

Notice that in view of (3.6) we have neglected the contributions of the Wilson coeffi-
cient CHWB in (3.17). The corresponding measured Higgs signal strenghts are

µ
WW

ggF = 1.18±0.13 , µ
ZZ

ggF = 0.96±0.08 , µ
��

ggF = 1.05±0.09 , µ
�Z

ggF = 2.2±0.7 . (3.18)
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Here the first three results represent unofficial weighted averages of the ATLAS [31] and
CMS [32] measurements, while the fourth result stems from an official combination per-
formed by the ATLAS and CMS collaborations in [33].

By comparing (3.17) and (3.18) it is evident that under the assumption of CHWB ' 0

the constraints on the Wilson coefficients CHB and CHW from h ! �� and h ! �Z are in
general more stringent than those that arise from h ! WW and h ! ZZ. In fact, since the
signal strength µ

��

ggF is at present significantly better measured than µ
�Z

ggF, all combinations
of Wilson coefficients that obey

CHB ' �
s
2
w

c2w
CHW ' �0.30CHW , (3.19)

are most weakly constrained by (3.18). Notice that for Wilson coefficients CHB and CWB

satisfying (3.19) and |CHW | sufficiently small the signal strengths µWW

ggF , µZZ

ggF and µ
��

ggF are
all predicted to be SM-like, while µ

�Z

ggF can at the same time be notably different from one.

3.4 Discussion

We are now in a position to identify simple benchmark scenarios of the full set of Wilson coef-
ficients of the operators defined in (2.1) to (2.4). As a common operator suppression scale we
hereafter take ⇤ = 1TeV. In view of the stringent constraints arising from (3.4), (3.5), (3.9)
and (3.10) we always employ

C
(1)
H`

= C
(3)
H`

= CHe = CH2 = CHD = C`` = 0 , (3.20)

when studying the numerical impact of the SMEFT dimension-six operators (2.1) to (2.4)
on Zh production at the LHC in Section 5.

In the case of the dimension-six operators that modify the couplings between the Higgs
and two vector bosons at tree level, we choose the following values for the Wilson coefficients

CHB = 0.015 , CHW = �0.05 , CHWB = 0 , (3.21)

where the choice of CHWB is motivated by (3.6). The values (3.21) lead to the following
Higgs signal strengths

µ
WW

ggF ' 1.00 , µ
ZZ

ggF ' 1.02 , µ
��

ggF ' 1.01 , µ
�Z

ggF ' 2.13 , (3.22)

if one assumes that the ggF Higgs production cross section in the SMEFT is equal to that
of the SM and sets to zero the Wilson coefficients of all the operators appearing in (2.2)
to (2.4). Notice that the predictions (3.22) are all SM-like apart from µ

�Z

ggF which is close
to the central value of the measured signal strength given in (3.18). When considering
the benchmark scenario (3.21) we will, besides employing (3.20), also set all the Wilson
coefficients of the operators (2.2) to zero.

In the case of the operators that result in couplings between the Higgs, a W or a Z

boson and light quarks, we consider the four benchmark scenarios

C
(3)
Hq

= 0.05 , C
(1)
Hq

= CHd = CHu = 0 , (3.23)
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In the case of the electron the formulas (3.7) and (3.8) lead to the following left- and
right-handed coupling shifts

�g
e

L ' 0.036CHWB � 0.022C(1)
H`

+ 0.020C(3)
H`

+ 0.011CHD � 0.021C`` ,

�g
e

R ' 0.036CHWB + 0.020C(3)
H`

� 0.022CHe + 0.005CHD � 0.010C`` ,

(3.9)

when (3.1), (3.2) and ⇤ = 1TeV is used as a numerical input. The EW precision measure-
ments performed by LEP and SLD [25, 27] imply that at 95% CL one has

�g
e

L 2 [�7.1, 2.0] · 10�4
, �g

e

R 2 [�7.0, 1.6] · 10�4
. (3.10)

Ignoring cancellations these limits again put severe constraints on the Wilson coefficients
that appear in (3.9). Numerically, we obtain for instance the bounds

C
(3)
H`

⇤2
2 [�3.6, 1.0] · 10�2TeV�2

,
CHe

⇤2
2 [�0.7, 3.1] · 10�2TeV�2

, (3.11)

from the constraint �g
e

L
and �g

e

R
, respectively, if we allow only the considered Wilson

coefficient to take a non-vanishing value. We add that the Wilson coefficients CHD, C(1)
H`

and C`` can also be constrained by the LEP and SLD measurements of the Z-boson coupling
to neutrinos. The obtained bounds, however, turn out to be weaker than those that derive
from (3.9) and (3.10).

Employing again (3.1), (3.2), (3.7) and (3.8) the left- and right-handed coupling shifts
in the case of the down and up quark take the following form

�g
d

L ' 0.012CHWB � 0.022
⇣
C

(1)
Hq

+ C
(3)
Hq

⌘
+ 0.029C(3)

H`
+ 0.007CHD � 0.015C`` ,

�g
d

R ' 0.012CHWB � 0.022CHd + 0.007C(3)
H`

+ 0.002CHD � 0.003C`` ,

�g
u

L ' �0.024CHWB � 0.022
⇣
C

(1)
Hq

� C
(3)
Hq

⌘
� 0.036C(3)

H`
� 0.009CHD + 0.018C`` ,

�g
u

R ' �0.024CHWB � 0.022CHu � 0.013C(3)
H`

� 0.003CHD + 0.007C`` ,

(3.12)

for a common operator suppression scale of ⇤ = 1TeV. The measurements by LEP and
SLD performed at the Z-pole lead to the following limits

�g
d

L 2 [�6.2, 2.0] · 10�2
, �g

d

R 2 [�4.8, 3.4] · 10�2
,

�g
u

L 2 [0.2, 6.8] · 10�2
, �g

u

R 2 [�1.3, 5.3] · 10�2
,

(3.13)

at 95% CL. These bounds translate into

C
(1)
Hq

⇤2
2 [�0.9, 2.8] TeV�2

,
C

(3)
Hq

⇤2
2 [�0.9, 2.8] TeV�2

,

CHd

⇤2
2 [�1.5, 2.1] TeV�2

,
CHu

⇤2
2 [�2.4, 0.6] TeV�2

,

(3.14)
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What are the current constraints?

V(h)qq:
, , , C(1)

Hq C(3)
Hq CHu

CHd

V(h)ll: , , C(1)
Hl C(3)

Hl
CHe

The corresponding relative tree-level shift of mW induced in the U(3)5 symmetric SMEFT
is given by

�mW

mW

= �
cwsw

2 (c2w � s2w)

v
2

⇤2


2CHWB +

sw

cw

⇣
2C(3)

H`
� C``

⌘
+

cw

2sw
CHD

�

' �0.048CHWB � 0.027C(3)
H`

� 0.022CHD + 0.013C`` ,

(3.4)

where we have employed (3.1), (3.2) and assumed ⇤ = 1TeV for the energy scale that
suppresses the dimension-six operators to obtain the numerical results presented in the
second line. Employing the latest world average of the measured W -boson mass obtained
by the PDG [25] and the state-of-the-art SM prediction [26], we obtain the following 95%
confidence level (CL) limit

�mW

mW

2 [�0.9, 5.6] · 10�4
, (3.5)

on the allowed relative shift of mW . This result in general sets stringent constraints on the
Wilson coefficients entering (3.4). For instance, in the case of the operator QHWB we find
the bound

CHWB

⇤2
2 [�1.2, 0.2] · 10�2TeV�2

, (3.6)

if all other Wilson coefficients in (3.4) are set to zero. Similar though weaker limits also
apply in the case of CHD, C(3)

H`
and C`` if each of the Wilson coefficient is treated as the

only non-zero contribution.

3.2 Z-boson couplings

The linear combinations of Wilson coefficients that modify the couplings of the W and Z

boson to fermions at tree level are strongly constrained by the EW precision measurements
performed at LEP and SLD. In the case of the Z boson the shifts of the left- and right-
handed couplings to a fermion  = {e, ⌫, d, u} take the following form

�g
 

L
=

g2

cw

v
2

⇤2


g
T

3
 

T
3
 
� gQ Q �

1

2

⇣
C

(1)
H L

� 2T 3
 
C

(3)
H L

⌘�
,

�g
 

R
=

g2

cw

v
2

⇤2


�gQ Q �

1

2
(1� � ⌫)CH R

�
,

(3.7)

with
g
T

3
 

= �C
(3)
H`

�
CHD

4
+

C``

2
, gQ =

cwsw

c2w � s2w


CHWB �

sw

cw
g
T

3
 

�
. (3.8)

Here the coupling g2 is defined via (3.2),  L = {`, q} and  R = {e, d, u}, while T
3
 
= ±1/2

denotes the weak isospin eigenvalue, Q is the electric charge of the fermion  in units
of e =

p
4⇡↵. Notice that the expressions given in (3.8) correspond to the LEP scheme and

that we have assumed that the Wilson coefficients of the operators that involve fermionic
fields are flavour universal. Below we will assume that such a flavour universality holds for
all SM fermions apart from the charm, bottom and top quark.
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where gh�� ' �2.02 · 10�3 and gh�Z ' �7.23 · 10�3 parameterise the loop-induced h�� and
h�Z couplings within the SM. Explicit analytic formulas for gh�� and gh�Z can be found
for instance in [29].

Assuming that the ggF Higgs production cross section is SM-like and taking the SM
predictions for the total decay width of the Higgs and its branching ratios from [30], we
obtain for ⇤ = 1TeV the following linearised expressions for the relevant signal strenghts
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Notice that in view of (3.6) we have neglected the contributions of the Wilson coeffi-
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) and that the bottom (charm) couplings were significantly better determined

than the down (up) couplings at LEP and SLD — see for example Figure F.3 in [27]. The
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Here the first three results represent unofficial weighted averages of the ATLAS [31] and
CMS [32] measurements, while the fourth result stems from an official combination per-
formed by the ATLAS and CMS collaborations in [33].

By comparing (3.17) and (3.18) it is evident that under the assumption of CHWB ' 0

the constraints on the Wilson coefficients CHB and CHW from h ! �� and h ! �Z are in
general more stringent than those that arise from h ! WW and h ! ZZ. In fact, since the
signal strength µ

��

ggF is at present significantly better measured than µ
�Z

ggF, all combinations
of Wilson coefficients that obey

CHB ' �
s
2
w

c2w
CHW ' �0.30CHW , (3.19)

are most weakly constrained by (3.18). Notice that for Wilson coefficients CHB and CWB

satisfying (3.19) and |CHW | sufficiently small the signal strengths µWW

ggF , µZZ

ggF and µ
��

ggF are
all predicted to be SM-like, while µ

�Z

ggF can at the same time be notably different from one.

3.4 Discussion

We are now in a position to identify simple benchmark scenarios of the full set of Wilson coef-
ficients of the operators defined in (2.1) to (2.4). As a common operator suppression scale we
hereafter take ⇤ = 1TeV. In view of the stringent constraints arising from (3.4), (3.5), (3.9)
and (3.10) we always employ

C
(1)
H`

= C
(3)
H`

= CHe = CH2 = CHD = C`` = 0 , (3.20)

when studying the numerical impact of the SMEFT dimension-six operators (2.1) to (2.4)
on Zh production at the LHC in Section 5.

In the case of the dimension-six operators that modify the couplings between the Higgs
and two vector bosons at tree level, we choose the following values for the Wilson coefficients

CHB = 0.015 , CHW = �0.05 , CHWB = 0 , (3.21)

where the choice of CHWB is motivated by (3.6). The values (3.21) lead to the following
Higgs signal strengths

µ
WW

ggF ' 1.00 , µ
ZZ

ggF ' 1.02 , µ
��

ggF ' 1.01 , µ
�Z

ggF ' 2.13 , (3.22)

if one assumes that the ggF Higgs production cross section in the SMEFT is equal to that
of the SM and sets to zero the Wilson coefficients of all the operators appearing in (2.2)
to (2.4). Notice that the predictions (3.22) are all SM-like apart from µ

�Z

ggF which is close
to the central value of the measured signal strength given in (3.18). When considering
the benchmark scenario (3.21) we will, besides employing (3.20), also set all the Wilson
coefficients of the operators (2.2) to zero.

In the case of the operators that result in couplings between the Higgs, a W or a Z

boson and light quarks, we consider the four benchmark scenarios

C
(3)
Hq

= 0.05 , C
(1)
Hq

= CHd = CHu = 0 , (3.23)
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In the case of the electron the formulas (3.7) and (3.8) lead to the following left- and
right-handed coupling shifts

�g
e

L ' 0.036CHWB � 0.022C(1)
H`

+ 0.020C(3)
H`

+ 0.011CHD � 0.021C`` ,

�g
e

R ' 0.036CHWB + 0.020C(3)
H`

� 0.022CHe + 0.005CHD � 0.010C`` ,

(3.9)

when (3.1), (3.2) and ⇤ = 1TeV is used as a numerical input. The EW precision measure-
ments performed by LEP and SLD [25, 27] imply that at 95% CL one has

�g
e

L 2 [�7.1, 2.0] · 10�4
, �g

e

R 2 [�7.0, 1.6] · 10�4
. (3.10)

Ignoring cancellations these limits again put severe constraints on the Wilson coefficients
that appear in (3.9). Numerically, we obtain for instance the bounds

C
(3)
H`

⇤2
2 [�3.6, 1.0] · 10�2TeV�2

,
CHe

⇤2
2 [�0.7, 3.1] · 10�2TeV�2

, (3.11)

from the constraint �g
e

L
and �g

e

R
, respectively, if we allow only the considered Wilson

coefficient to take a non-vanishing value. We add that the Wilson coefficients CHD, C(1)
H`

and C`` can also be constrained by the LEP and SLD measurements of the Z-boson coupling
to neutrinos. The obtained bounds, however, turn out to be weaker than those that derive
from (3.9) and (3.10).

Employing again (3.1), (3.2), (3.7) and (3.8) the left- and right-handed coupling shifts
in the case of the down and up quark take the following form

�g
d

L ' 0.012CHWB � 0.022
⇣
C

(1)
Hq

+ C
(3)
Hq

⌘
+ 0.029C(3)

H`
+ 0.007CHD � 0.015C`` ,

�g
d

R ' 0.012CHWB � 0.022CHd + 0.007C(3)
H`

+ 0.002CHD � 0.003C`` ,

�g
u

L ' �0.024CHWB � 0.022
⇣
C

(1)
Hq

� C
(3)
Hq

⌘
� 0.036C(3)

H`
� 0.009CHD + 0.018C`` ,

�g
u

R ' �0.024CHWB � 0.022CHu � 0.013C(3)
H`

� 0.003CHD + 0.007C`` ,

(3.12)

for a common operator suppression scale of ⇤ = 1TeV. The measurements by LEP and
SLD performed at the Z-pole lead to the following limits

�g
d

L 2 [�6.2, 2.0] · 10�2
, �g

d

R 2 [�4.8, 3.4] · 10�2
,

�g
u

L 2 [0.2, 6.8] · 10�2
, �g

u

R 2 [�1.3, 5.3] · 10�2
,

(3.13)

at 95% CL. These bounds translate into

C
(1)
Hq

⇤2
2 [�0.9, 2.8] TeV�2

,
C

(3)
Hq

⇤2
2 [�0.9, 2.8] TeV�2

,

CHd

⇤2
2 [�1.5, 2.1] TeV�2

,
CHu

⇤2
2 [�2.4, 0.6] TeV�2

,

(3.14)
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What are the current constraints?

V(h)qq:
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Hq CHu

CHd

V(h)ll: , , C(1)
Hl C(3)

Hl
CHe

The corresponding relative tree-level shift of mW induced in the U(3)5 symmetric SMEFT
is given by

�mW

mW

= �
cwsw

2 (c2w � s2w)

v
2

⇤2


2CHWB +

sw

cw

⇣
2C(3)

H`
� C``

⌘
+

cw

2sw
CHD

�

' �0.048CHWB � 0.027C(3)
H`

� 0.022CHD + 0.013C`` ,

(3.4)

where we have employed (3.1), (3.2) and assumed ⇤ = 1TeV for the energy scale that
suppresses the dimension-six operators to obtain the numerical results presented in the
second line. Employing the latest world average of the measured W -boson mass obtained
by the PDG [25] and the state-of-the-art SM prediction [26], we obtain the following 95%
confidence level (CL) limit

�mW

mW

2 [�0.9, 5.6] · 10�4
, (3.5)

on the allowed relative shift of mW . This result in general sets stringent constraints on the
Wilson coefficients entering (3.4). For instance, in the case of the operator QHWB we find
the bound

CHWB

⇤2
2 [�1.2, 0.2] · 10�2TeV�2

, (3.6)

if all other Wilson coefficients in (3.4) are set to zero. Similar though weaker limits also
apply in the case of CHD, C(3)

H`
and C`` if each of the Wilson coefficient is treated as the

only non-zero contribution.

3.2 Z-boson couplings

The linear combinations of Wilson coefficients that modify the couplings of the W and Z

boson to fermions at tree level are strongly constrained by the EW precision measurements
performed at LEP and SLD. In the case of the Z boson the shifts of the left- and right-
handed couplings to a fermion  = {e, ⌫, d, u} take the following form

�g
 

L
=

g2

cw

v
2

⇤2


g
T

3
 

T
3
 
� gQ Q �

1

2

⇣
C

(1)
H L

� 2T 3
 
C

(3)
H L

⌘�
,

�g
 

R
=

g2

cw

v
2

⇤2


�gQ Q �

1

2
(1� � ⌫)CH R

�
,

(3.7)

with
g
T

3
 

= �C
(3)
H`

�
CHD

4
+

C``

2
, gQ =

cwsw

c2w � s2w


CHWB �

sw

cw
g
T

3
 

�
. (3.8)

Here the coupling g2 is defined via (3.2),  L = {`, q} and  R = {e, d, u}, while T
3
 
= ±1/2

denotes the weak isospin eigenvalue, Q is the electric charge of the fermion  in units
of e =

p
4⇡↵. Notice that the expressions given in (3.8) correspond to the LEP scheme and

that we have assumed that the Wilson coefficients of the operators that involve fermionic
fields are flavour universal. Below we will assume that such a flavour universality holds for
all SM fermions apart from the charm, bottom and top quark.
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if each Wilson coefficient is treated independently and the limit on �g
d

L
as given in (3.13) is

used to constrain C
(1)
Hq

and C
(3)
Hq

. We emphasise that notably more stringent limits on the
Wilson coefficients in (3.14) would be obtained if one performs a complete EW fit including
heavy flavour measurements and assumes a SMEFT Lagrangian with an approximate U(3)5

symmetry. This is a simple consequence of the fact that in such a case one has �gb
L,R

= �g
d

L,R

(�gc
L,R

= �g
u

L,R
) and that the bottom (charm) couplings were significantly better determined

than the down (up) couplings at LEP and SLD — see for example Figure F.3 in [27]. The
limits (3.14) are relaxed because they assume flavour universality only for the down and
strange quark as far as quarks are concerned.

3.3 Higgs-boson observables

The Wilson coefficients of the operators (2.1) modify the Higgs signal strengths in final
states with two vector bosons. In the LEP scheme and including only the tree-level SMEFT
corrections due to CHB, CHW and CHWB the coupling modifiers relevant for h ! WW

and h ! ZZ can be written in the  framework as follows [28]
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In the tree-level approximation the corresponding expressions for the h ! �� and h ! �Z

decays do not depend on the choice of the EW input scheme. One finds
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c
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w � s

2
w

�
CHWB

i
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(3.16)

where gh�� ' �2.02 · 10�3 and gh�Z ' �7.23 · 10�3 parameterise the loop-induced h�� and
h�Z couplings within the SM. Explicit analytic formulas for gh�� and gh�Z can be found
for instance in [29].

Assuming that the ggF Higgs production cross section is SM-like and taking the SM
predictions for the total decay width of the Higgs and its branching ratios from [30], we
obtain for ⇤ = 1TeV the following linearised expressions for the relevant signal strenghts

µ
WW

ggF ' 1 + 0.074CHB � 0.0086CHW , µ
ZZ

ggF ' 1 + 0.40CHB � 0.30CHW ,

µ
��

ggF ' 1� 46.0CHB � 14.0CHW , µ
�Z

ggF ' 1 + 14.3CHB � 14.1CHW .

(3.17)

Notice that in view of (3.6) we have neglected the contributions of the Wilson coeffi-
cient CHWB in (3.17). The corresponding measured Higgs signal strenghts are

µ
WW

ggF = 1.18±0.13 , µ
ZZ

ggF = 0.96±0.08 , µ
��

ggF = 1.05±0.09 , µ
�Z

ggF = 2.2±0.7 . (3.18)
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where gh�� ' �2.02 · 10�3 and gh�Z ' �7.23 · 10�3 parameterise the loop-induced h�� and
h�Z couplings within the SM. Explicit analytic formulas for gh�� and gh�Z can be found
for instance in [29].

Assuming that the ggF Higgs production cross section is SM-like and taking the SM
predictions for the total decay width of the Higgs and its branching ratios from [30], we
obtain for ⇤ = 1TeV the following linearised expressions for the relevant signal strenghts
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ZZ
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Notice that in view of (3.6) we have neglected the contributions of the Wilson coeffi-
cient CHWB in (3.17). The corresponding measured Higgs signal strenghts are
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WW

ggF = 1.18±0.13 , µ
ZZ

ggF = 0.96±0.08 , µ
��

ggF = 1.05±0.09 , µ
�Z

ggF = 2.2±0.7 . (3.18)
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d

L
as given in (3.13) is

used to constrain C
(1)
Hq

and C
(3)
Hq

. We emphasise that notably more stringent limits on the
Wilson coefficients in (3.14) would be obtained if one performs a complete EW fit including
heavy flavour measurements and assumes a SMEFT Lagrangian with an approximate U(3)5

symmetry. This is a simple consequence of the fact that in such a case one has �gb
L,R

= �g
d
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(�gc
L,R

= �g
u

L,R
) and that the bottom (charm) couplings were significantly better determined

than the down (up) couplings at LEP and SLD — see for example Figure F.3 in [27]. The
limits (3.14) are relaxed because they assume flavour universality only for the down and
strange quark as far as quarks are concerned.
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Here the first three results represent unofficial weighted averages of the ATLAS [31] and
CMS [32] measurements, while the fourth result stems from an official combination per-
formed by the ATLAS and CMS collaborations in [33].

By comparing (3.17) and (3.18) it is evident that under the assumption of CHWB ' 0

the constraints on the Wilson coefficients CHB and CHW from h ! �� and h ! �Z are in
general more stringent than those that arise from h ! WW and h ! ZZ. In fact, since the
signal strength µ

��

ggF is at present significantly better measured than µ
�Z

ggF, all combinations
of Wilson coefficients that obey

CHB ' �
s
2
w

c2w
CHW ' �0.30CHW , (3.19)

are most weakly constrained by (3.18). Notice that for Wilson coefficients CHB and CWB

satisfying (3.19) and |CHW | sufficiently small the signal strengths µWW

ggF , µZZ

ggF and µ
��

ggF are
all predicted to be SM-like, while µ

�Z

ggF can at the same time be notably different from one.

3.4 Discussion

We are now in a position to identify simple benchmark scenarios of the full set of Wilson coef-
ficients of the operators defined in (2.1) to (2.4). As a common operator suppression scale we
hereafter take ⇤ = 1TeV. In view of the stringent constraints arising from (3.4), (3.5), (3.9)
and (3.10) we always employ

C
(1)
H`

= C
(3)
H`

= CHe = CH2 = CHD = C`` = 0 , (3.20)

when studying the numerical impact of the SMEFT dimension-six operators (2.1) to (2.4)
on Zh production at the LHC in Section 5.

In the case of the dimension-six operators that modify the couplings between the Higgs
and two vector bosons at tree level, we choose the following values for the Wilson coefficients

CHB = 0.015 , CHW = �0.05 , CHWB = 0 , (3.21)

where the choice of CHWB is motivated by (3.6). The values (3.21) lead to the following
Higgs signal strengths

µ
WW

ggF ' 1.00 , µ
ZZ

ggF ' 1.02 , µ
��

ggF ' 1.01 , µ
�Z

ggF ' 2.13 , (3.22)

if one assumes that the ggF Higgs production cross section in the SMEFT is equal to that
of the SM and sets to zero the Wilson coefficients of all the operators appearing in (2.2)
to (2.4). Notice that the predictions (3.22) are all SM-like apart from µ

�Z

ggF which is close
to the central value of the measured signal strength given in (3.18). When considering
the benchmark scenario (3.21) we will, besides employing (3.20), also set all the Wilson
coefficients of the operators (2.2) to zero.

In the case of the operators that result in couplings between the Higgs, a W or a Z

boson and light quarks, we consider the four benchmark scenarios

C
(3)
Hq

= 0.05 , C
(1)
Hq

= CHd = CHu = 0 , (3.23)
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In the case of the electron the formulas (3.7) and (3.8) lead to the following left- and
right-handed coupling shifts

�g
e

L ' 0.036CHWB � 0.022C(1)
H`

+ 0.020C(3)
H`

+ 0.011CHD � 0.021C`` ,

�g
e

R ' 0.036CHWB + 0.020C(3)
H`

� 0.022CHe + 0.005CHD � 0.010C`` ,

(3.9)

when (3.1), (3.2) and ⇤ = 1TeV is used as a numerical input. The EW precision measure-
ments performed by LEP and SLD [25, 27] imply that at 95% CL one has

�g
e

L 2 [�7.1, 2.0] · 10�4
, �g

e

R 2 [�7.0, 1.6] · 10�4
. (3.10)

Ignoring cancellations these limits again put severe constraints on the Wilson coefficients
that appear in (3.9). Numerically, we obtain for instance the bounds

C
(3)
H`

⇤2
2 [�3.6, 1.0] · 10�2TeV�2

,
CHe

⇤2
2 [�0.7, 3.1] · 10�2TeV�2

, (3.11)

from the constraint �g
e

L
and �g

e

R
, respectively, if we allow only the considered Wilson

coefficient to take a non-vanishing value. We add that the Wilson coefficients CHD, C(1)
H`

and C`` can also be constrained by the LEP and SLD measurements of the Z-boson coupling
to neutrinos. The obtained bounds, however, turn out to be weaker than those that derive
from (3.9) and (3.10).

Employing again (3.1), (3.2), (3.7) and (3.8) the left- and right-handed coupling shifts
in the case of the down and up quark take the following form

�g
d

L ' 0.012CHWB � 0.022
⇣
C

(1)
Hq

+ C
(3)
Hq

⌘
+ 0.029C(3)

H`
+ 0.007CHD � 0.015C`` ,

�g
d

R ' 0.012CHWB � 0.022CHd + 0.007C(3)
H`

+ 0.002CHD � 0.003C`` ,

�g
u

L ' �0.024CHWB � 0.022
⇣
C

(1)
Hq

� C
(3)
Hq

⌘
� 0.036C(3)

H`
� 0.009CHD + 0.018C`` ,

�g
u

R ' �0.024CHWB � 0.022CHu � 0.013C(3)
H`

� 0.003CHD + 0.007C`` ,

(3.12)

for a common operator suppression scale of ⇤ = 1TeV. The measurements by LEP and
SLD performed at the Z-pole lead to the following limits

�g
d

L 2 [�6.2, 2.0] · 10�2
, �g

d

R 2 [�4.8, 3.4] · 10�2
,

�g
u

L 2 [0.2, 6.8] · 10�2
, �g

u

R 2 [�1.3, 5.3] · 10�2
,

(3.13)

at 95% CL. These bounds translate into

C
(1)
Hq

⇤2
2 [�0.9, 2.8] TeV�2

,
C

(3)
Hq

⇤2
2 [�0.9, 2.8] TeV�2

,

CHd

⇤2
2 [�1.5, 2.1] TeV�2

,
CHu

⇤2
2 [�2.4, 0.6] TeV�2

,

(3.14)
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What are the current constraints?

V(h)qq:
, , , C(1)

Hq C(3)
Hq CHu

CHd

V(h)ll: , , C(1)
Hl C(3)

Hl
CHe

The corresponding relative tree-level shift of mW induced in the U(3)5 symmetric SMEFT
is given by

�mW

mW

= �
cwsw

2 (c2w � s2w)

v
2

⇤2


2CHWB +

sw

cw

⇣
2C(3)

H`
� C``

⌘
+

cw

2sw
CHD

�

' �0.048CHWB � 0.027C(3)
H`

� 0.022CHD + 0.013C`` ,

(3.4)

where we have employed (3.1), (3.2) and assumed ⇤ = 1TeV for the energy scale that
suppresses the dimension-six operators to obtain the numerical results presented in the
second line. Employing the latest world average of the measured W -boson mass obtained
by the PDG [25] and the state-of-the-art SM prediction [26], we obtain the following 95%
confidence level (CL) limit

�mW

mW

2 [�0.9, 5.6] · 10�4
, (3.5)

on the allowed relative shift of mW . This result in general sets stringent constraints on the
Wilson coefficients entering (3.4). For instance, in the case of the operator QHWB we find
the bound

CHWB

⇤2
2 [�1.2, 0.2] · 10�2TeV�2

, (3.6)

if all other Wilson coefficients in (3.4) are set to zero. Similar though weaker limits also
apply in the case of CHD, C(3)

H`
and C`` if each of the Wilson coefficient is treated as the

only non-zero contribution.

3.2 Z-boson couplings

The linear combinations of Wilson coefficients that modify the couplings of the W and Z

boson to fermions at tree level are strongly constrained by the EW precision measurements
performed at LEP and SLD. In the case of the Z boson the shifts of the left- and right-
handed couplings to a fermion  = {e, ⌫, d, u} take the following form

�g
 

L
=

g2

cw

v
2

⇤2


g
T

3
 

T
3
 
� gQ Q �

1

2

⇣
C

(1)
H L

� 2T 3
 
C

(3)
H L

⌘�
,

�g
 

R
=

g2

cw

v
2

⇤2


�gQ Q �

1

2
(1� � ⌫)CH R

�
,

(3.7)

with
g
T

3
 

= �C
(3)
H`

�
CHD

4
+

C``

2
, gQ =

cwsw

c2w � s2w


CHWB �

sw

cw
g
T

3
 

�
. (3.8)

Here the coupling g2 is defined via (3.2),  L = {`, q} and  R = {e, d, u}, while T
3
 
= ±1/2

denotes the weak isospin eigenvalue, Q is the electric charge of the fermion  in units
of e =

p
4⇡↵. Notice that the expressions given in (3.8) correspond to the LEP scheme and

that we have assumed that the Wilson coefficients of the operators that involve fermionic
fields are flavour universal. Below we will assume that such a flavour universality holds for
all SM fermions apart from the charm, bottom and top quark.
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if each Wilson coefficient is treated independently and the limit on �g
d

L
as given in (3.13) is

used to constrain C
(1)
Hq

and C
(3)
Hq

. We emphasise that notably more stringent limits on the
Wilson coefficients in (3.14) would be obtained if one performs a complete EW fit including
heavy flavour measurements and assumes a SMEFT Lagrangian with an approximate U(3)5

symmetry. This is a simple consequence of the fact that in such a case one has �gb
L,R

= �g
d

L,R

(�gc
L,R

= �g
u

L,R
) and that the bottom (charm) couplings were significantly better determined

than the down (up) couplings at LEP and SLD — see for example Figure F.3 in [27]. The
limits (3.14) are relaxed because they assume flavour universality only for the down and
strange quark as far as quarks are concerned.

3.3 Higgs-boson observables

The Wilson coefficients of the operators (2.1) modify the Higgs signal strengths in final
states with two vector bosons. In the LEP scheme and including only the tree-level SMEFT
corrections due to CHB, CHW and CHWB the coupling modifiers relevant for h ! WW

and h ! ZZ can be written in the  framework as follows [28]

�WW ' �
v
2

⇤2

h
0.76CHW + 3.18CHWB

i
,

�ZZ '
v
2

⇤2

h
2.71CHB � 3.18CHW + 1.23CHWB

i
.

(3.15)

In the tree-level approximation the corresponding expressions for the h ! �� and h ! �Z

decays do not depend on the choice of the EW input scheme. One finds

��� '
1

gh��

v
2

⇤2

h
c
2
wCHB + s

2
wCHW � cwswCHWB

i
,

��Z ' �
1

gh�Z

v
2

⇤2

h
2cwsw (CHB � CHW ) +

�
c
2
w � s

2
w

�
CHWB

i
,

(3.16)

where gh�� ' �2.02 · 10�3 and gh�Z ' �7.23 · 10�3 parameterise the loop-induced h�� and
h�Z couplings within the SM. Explicit analytic formulas for gh�� and gh�Z can be found
for instance in [29].

Assuming that the ggF Higgs production cross section is SM-like and taking the SM
predictions for the total decay width of the Higgs and its branching ratios from [30], we
obtain for ⇤ = 1TeV the following linearised expressions for the relevant signal strenghts

µ
WW

ggF ' 1 + 0.074CHB � 0.0086CHW , µ
ZZ

ggF ' 1 + 0.40CHB � 0.30CHW ,

µ
��

ggF ' 1� 46.0CHB � 14.0CHW , µ
�Z

ggF ' 1 + 14.3CHB � 14.1CHW .

(3.17)

Notice that in view of (3.6) we have neglected the contributions of the Wilson coeffi-
cient CHWB in (3.17). The corresponding measured Higgs signal strenghts are

µ
WW

ggF = 1.18±0.13 , µ
ZZ

ggF = 0.96±0.08 , µ
��

ggF = 1.05±0.09 , µ
�Z

ggF = 2.2±0.7 . (3.18)
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In the tree-level approximation the corresponding expressions for the h ! �� and h ! �Z

decays do not depend on the choice of the EW input scheme. One finds

��� '
1

gh��

v
2

⇤2

h
c
2
wCHB + s

2
wCHW � cwswCHWB

i
,

��Z ' �
1

gh�Z

v
2

⇤2

h
2cwsw (CHB � CHW ) +

�
c
2
w � s

2
w

�
CHWB

i
,

(3.16)

where gh�� ' �2.02 · 10�3 and gh�Z ' �7.23 · 10�3 parameterise the loop-induced h�� and
h�Z couplings within the SM. Explicit analytic formulas for gh�� and gh�Z can be found
for instance in [29].

Assuming that the ggF Higgs production cross section is SM-like and taking the SM
predictions for the total decay width of the Higgs and its branching ratios from [30], we
obtain for ⇤ = 1TeV the following linearised expressions for the relevant signal strenghts

µ
WW

ggF ' 1 + 0.074CHB � 0.0086CHW , µ
ZZ

ggF ' 1 + 0.40CHB � 0.30CHW ,

µ
��

ggF ' 1� 46.0CHB � 14.0CHW , µ
�Z

ggF ' 1 + 14.3CHB � 14.1CHW .

(3.17)

Notice that in view of (3.6) we have neglected the contributions of the Wilson coeffi-
cient CHWB in (3.17). The corresponding measured Higgs signal strenghts are

µ
WW

ggF = 1.18±0.13 , µ
ZZ

ggF = 0.96±0.08 , µ
��

ggF = 1.05±0.09 , µ
�Z

ggF = 2.2±0.7 . (3.18)
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Here the first three results represent unofficial weighted averages of the ATLAS [31] and
CMS [32] measurements, while the fourth result stems from an official combination per-
formed by the ATLAS and CMS collaborations in [33].

By comparing (3.17) and (3.18) it is evident that under the assumption of CHWB ' 0

the constraints on the Wilson coefficients CHB and CHW from h ! �� and h ! �Z are in
general more stringent than those that arise from h ! WW and h ! ZZ. In fact, since the
signal strength µ

��

ggF is at present significantly better measured than µ
�Z

ggF, all combinations
of Wilson coefficients that obey

CHB ' �
s
2
w

c2w
CHW ' �0.30CHW , (3.19)

are most weakly constrained by (3.18). Notice that for Wilson coefficients CHB and CWB

satisfying (3.19) and |CHW | sufficiently small the signal strengths µWW

ggF , µZZ

ggF and µ
��

ggF are
all predicted to be SM-like, while µ

�Z

ggF can at the same time be notably different from one.

3.4 Discussion

We are now in a position to identify simple benchmark scenarios of the full set of Wilson coef-
ficients of the operators defined in (2.1) to (2.4). As a common operator suppression scale we
hereafter take ⇤ = 1TeV. In view of the stringent constraints arising from (3.4), (3.5), (3.9)
and (3.10) we always employ

C
(1)
H`

= C
(3)
H`

= CHe = CH2 = CHD = C`` = 0 , (3.20)

when studying the numerical impact of the SMEFT dimension-six operators (2.1) to (2.4)
on Zh production at the LHC in Section 5.

In the case of the dimension-six operators that modify the couplings between the Higgs
and two vector bosons at tree level, we choose the following values for the Wilson coefficients

CHB = 0.015 , CHW = �0.05 , CHWB = 0 , (3.21)

where the choice of CHWB is motivated by (3.6). The values (3.21) lead to the following
Higgs signal strengths

µ
WW

ggF ' 1.00 , µ
ZZ

ggF ' 1.02 , µ
��

ggF ' 1.01 , µ
�Z

ggF ' 2.13 , (3.22)

if one assumes that the ggF Higgs production cross section in the SMEFT is equal to that
of the SM and sets to zero the Wilson coefficients of all the operators appearing in (2.2)
to (2.4). Notice that the predictions (3.22) are all SM-like apart from µ

�Z

ggF which is close
to the central value of the measured signal strength given in (3.18). When considering
the benchmark scenario (3.21) we will, besides employing (3.20), also set all the Wilson
coefficients of the operators (2.2) to zero.

In the case of the operators that result in couplings between the Higgs, a W or a Z

boson and light quarks, we consider the four benchmark scenarios

C
(3)
Hq

= 0.05 , C
(1)
Hq

= CHd = CHu = 0 , (3.23)
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In the case of the electron the formulas (3.7) and (3.8) lead to the following left- and
right-handed coupling shifts

�g
e

L ' 0.036CHWB � 0.022C(1)
H`

+ 0.020C(3)
H`

+ 0.011CHD � 0.021C`` ,

�g
e

R ' 0.036CHWB + 0.020C(3)
H`

� 0.022CHe + 0.005CHD � 0.010C`` ,

(3.9)

when (3.1), (3.2) and ⇤ = 1TeV is used as a numerical input. The EW precision measure-
ments performed by LEP and SLD [25, 27] imply that at 95% CL one has

�g
e

L 2 [�7.1, 2.0] · 10�4
, �g

e

R 2 [�7.0, 1.6] · 10�4
. (3.10)

Ignoring cancellations these limits again put severe constraints on the Wilson coefficients
that appear in (3.9). Numerically, we obtain for instance the bounds

C
(3)
H`

⇤2
2 [�3.6, 1.0] · 10�2TeV�2

,
CHe

⇤2
2 [�0.7, 3.1] · 10�2TeV�2

, (3.11)

from the constraint �g
e

L
and �g

e

R
, respectively, if we allow only the considered Wilson

coefficient to take a non-vanishing value. We add that the Wilson coefficients CHD, C(1)
H`

and C`` can also be constrained by the LEP and SLD measurements of the Z-boson coupling
to neutrinos. The obtained bounds, however, turn out to be weaker than those that derive
from (3.9) and (3.10).

Employing again (3.1), (3.2), (3.7) and (3.8) the left- and right-handed coupling shifts
in the case of the down and up quark take the following form

�g
d

L ' 0.012CHWB � 0.022
⇣
C

(1)
Hq

+ C
(3)
Hq

⌘
+ 0.029C(3)

H`
+ 0.007CHD � 0.015C`` ,

�g
d

R ' 0.012CHWB � 0.022CHd + 0.007C(3)
H`

+ 0.002CHD � 0.003C`` ,

�g
u

L ' �0.024CHWB � 0.022
⇣
C

(1)
Hq

� C
(3)
Hq

⌘
� 0.036C(3)

H`
� 0.009CHD + 0.018C`` ,

�g
u

R ' �0.024CHWB � 0.022CHu � 0.013C(3)
H`

� 0.003CHD + 0.007C`` ,

(3.12)

for a common operator suppression scale of ⇤ = 1TeV. The measurements by LEP and
SLD performed at the Z-pole lead to the following limits

�g
d

L 2 [�6.2, 2.0] · 10�2
, �g

d

R 2 [�4.8, 3.4] · 10�2
,

�g
u

L 2 [0.2, 6.8] · 10�2
, �g

u

R 2 [�1.3, 5.3] · 10�2
,

(3.13)

at 95% CL. These bounds translate into

C
(1)
Hq

⇤2
2 [�0.9, 2.8] TeV�2

,
C

(3)
Hq

⇤2
2 [�0.9, 2.8] TeV�2

,

CHd

⇤2
2 [�1.5, 2.1] TeV�2

,
CHu

⇤2
2 [�2.4, 0.6] TeV�2

,

(3.14)
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(1)
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What are the current constraints?

V(h)qq:
, , , C(1)

Hq C(3)
Hq CHu

CHd

V(h)ll: , , C(1)
Hl C(3)

Hl
CHe

The corresponding relative tree-level shift of mW induced in the U(3)5 symmetric SMEFT
is given by

�mW

mW

= �
cwsw

2 (c2w � s2w)

v
2

⇤2


2CHWB +

sw

cw

⇣
2C(3)

H`
� C``

⌘
+

cw

2sw
CHD

�

' �0.048CHWB � 0.027C(3)
H`

� 0.022CHD + 0.013C`` ,

(3.4)

where we have employed (3.1), (3.2) and assumed ⇤ = 1TeV for the energy scale that
suppresses the dimension-six operators to obtain the numerical results presented in the
second line. Employing the latest world average of the measured W -boson mass obtained
by the PDG [25] and the state-of-the-art SM prediction [26], we obtain the following 95%
confidence level (CL) limit

�mW

mW

2 [�0.9, 5.6] · 10�4
, (3.5)

on the allowed relative shift of mW . This result in general sets stringent constraints on the
Wilson coefficients entering (3.4). For instance, in the case of the operator QHWB we find
the bound

CHWB

⇤2
2 [�1.2, 0.2] · 10�2TeV�2

, (3.6)

if all other Wilson coefficients in (3.4) are set to zero. Similar though weaker limits also
apply in the case of CHD, C(3)

H`
and C`` if each of the Wilson coefficient is treated as the

only non-zero contribution.

3.2 Z-boson couplings

The linear combinations of Wilson coefficients that modify the couplings of the W and Z

boson to fermions at tree level are strongly constrained by the EW precision measurements
performed at LEP and SLD. In the case of the Z boson the shifts of the left- and right-
handed couplings to a fermion  = {e, ⌫, d, u} take the following form

�g
 

L
=

g2

cw

v
2

⇤2


g
T

3
 

T
3
 
� gQ Q �

1

2

⇣
C

(1)
H L

� 2T 3
 
C

(3)
H L

⌘�
,

�g
 

R
=

g2

cw

v
2

⇤2


�gQ Q �

1

2
(1� � ⌫)CH R

�
,

(3.7)

with
g
T

3
 

= �C
(3)
H`

�
CHD

4
+

C``

2
, gQ =

cwsw

c2w � s2w


CHWB �

sw

cw
g
T

3
 

�
. (3.8)

Here the coupling g2 is defined via (3.2),  L = {`, q} and  R = {e, d, u}, while T
3
 
= ±1/2

denotes the weak isospin eigenvalue, Q is the electric charge of the fermion  in units
of e =

p
4⇡↵. Notice that the expressions given in (3.8) correspond to the LEP scheme and

that we have assumed that the Wilson coefficients of the operators that involve fermionic
fields are flavour universal. Below we will assume that such a flavour universality holds for
all SM fermions apart from the charm, bottom and top quark.
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if each Wilson coefficient is treated independently and the limit on �g
d

L
as given in (3.13) is

used to constrain C
(1)
Hq

and C
(3)
Hq

. We emphasise that notably more stringent limits on the
Wilson coefficients in (3.14) would be obtained if one performs a complete EW fit including
heavy flavour measurements and assumes a SMEFT Lagrangian with an approximate U(3)5

symmetry. This is a simple consequence of the fact that in such a case one has �gb
L,R

= �g
d

L,R

(�gc
L,R

= �g
u

L,R
) and that the bottom (charm) couplings were significantly better determined

than the down (up) couplings at LEP and SLD — see for example Figure F.3 in [27]. The
limits (3.14) are relaxed because they assume flavour universality only for the down and
strange quark as far as quarks are concerned.

3.3 Higgs-boson observables

The Wilson coefficients of the operators (2.1) modify the Higgs signal strengths in final
states with two vector bosons. In the LEP scheme and including only the tree-level SMEFT
corrections due to CHB, CHW and CHWB the coupling modifiers relevant for h ! WW

and h ! ZZ can be written in the  framework as follows [28]

�WW ' �
v
2

⇤2

h
0.76CHW + 3.18CHWB

i
,

�ZZ '
v
2

⇤2

h
2.71CHB � 3.18CHW + 1.23CHWB

i
.

(3.15)

In the tree-level approximation the corresponding expressions for the h ! �� and h ! �Z

decays do not depend on the choice of the EW input scheme. One finds

��� '
1

gh��

v
2

⇤2

h
c
2
wCHB + s

2
wCHW � cwswCHWB

i
,

��Z ' �
1

gh�Z

v
2

⇤2

h
2cwsw (CHB � CHW ) +

�
c
2
w � s

2
w

�
CHWB

i
,

(3.16)

where gh�� ' �2.02 · 10�3 and gh�Z ' �7.23 · 10�3 parameterise the loop-induced h�� and
h�Z couplings within the SM. Explicit analytic formulas for gh�� and gh�Z can be found
for instance in [29].

Assuming that the ggF Higgs production cross section is SM-like and taking the SM
predictions for the total decay width of the Higgs and its branching ratios from [30], we
obtain for ⇤ = 1TeV the following linearised expressions for the relevant signal strenghts

µ
WW

ggF ' 1 + 0.074CHB � 0.0086CHW , µ
ZZ

ggF ' 1 + 0.40CHB � 0.30CHW ,

µ
��

ggF ' 1� 46.0CHB � 14.0CHW , µ
�Z

ggF ' 1 + 14.3CHB � 14.1CHW .

(3.17)

Notice that in view of (3.6) we have neglected the contributions of the Wilson coeffi-
cient CHWB in (3.17). The corresponding measured Higgs signal strenghts are

µ
WW

ggF = 1.18±0.13 , µ
ZZ

ggF = 0.96±0.08 , µ
��

ggF = 1.05±0.09 , µ
�Z

ggF = 2.2±0.7 . (3.18)
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Here the first three results represent unofficial weighted averages of the ATLAS [31] and
CMS [32] measurements, while the fourth result stems from an official combination per-
formed by the ATLAS and CMS collaborations in [33].

By comparing (3.17) and (3.18) it is evident that under the assumption of CHWB ' 0

the constraints on the Wilson coefficients CHB and CHW from h ! �� and h ! �Z are in
general more stringent than those that arise from h ! WW and h ! ZZ. In fact, since the
signal strength µ

��

ggF is at present significantly better measured than µ
�Z

ggF, all combinations
of Wilson coefficients that obey

CHB ' �
s
2
w

c2w
CHW ' �0.30CHW , (3.19)

are most weakly constrained by (3.18). Notice that for Wilson coefficients CHB and CWB

satisfying (3.19) and |CHW | sufficiently small the signal strengths µWW

ggF , µZZ

ggF and µ
��

ggF are
all predicted to be SM-like, while µ

�Z

ggF can at the same time be notably different from one.

3.4 Discussion

We are now in a position to identify simple benchmark scenarios of the full set of Wilson coef-
ficients of the operators defined in (2.1) to (2.4). As a common operator suppression scale we
hereafter take ⇤ = 1TeV. In view of the stringent constraints arising from (3.4), (3.5), (3.9)
and (3.10) we always employ

C
(1)
H`

= C
(3)
H`

= CHe = CH2 = CHD = C`` = 0 , (3.20)

when studying the numerical impact of the SMEFT dimension-six operators (2.1) to (2.4)
on Zh production at the LHC in Section 5.

In the case of the dimension-six operators that modify the couplings between the Higgs
and two vector bosons at tree level, we choose the following values for the Wilson coefficients

CHB = 0.015 , CHW = �0.05 , CHWB = 0 , (3.21)

where the choice of CHWB is motivated by (3.6). The values (3.21) lead to the following
Higgs signal strengths

µ
WW

ggF ' 1.00 , µ
ZZ

ggF ' 1.02 , µ
��

ggF ' 1.01 , µ
�Z

ggF ' 2.13 , (3.22)

if one assumes that the ggF Higgs production cross section in the SMEFT is equal to that
of the SM and sets to zero the Wilson coefficients of all the operators appearing in (2.2)
to (2.4). Notice that the predictions (3.22) are all SM-like apart from µ

�Z

ggF which is close
to the central value of the measured signal strength given in (3.18). When considering
the benchmark scenario (3.21) we will, besides employing (3.20), also set all the Wilson
coefficients of the operators (2.2) to zero.

In the case of the operators that result in couplings between the Higgs, a W or a Z

boson and light quarks, we consider the four benchmark scenarios

C
(3)
Hq

= 0.05 , C
(1)
Hq

= CHd = CHu = 0 , (3.23)
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Input scheme:

duced in (2.1) to (2.4). In this discussion the choice of an EW input scheme is an impor-
tant ingredient. While in our POWHEG-BOX implementation the user can choose between the
↵, ↵µ, and LEP schemes (see Appendix A for a brief discussion of EW input schemes in
the SMEFT) the following discussion is based on the LEP scheme which uses as inputs
{↵, GF ,mZ}. Here ↵ is the fine-structure constant, GF is the Fermi constant as extracted
from muon decay and mZ is the mass of the Z boson in the on-shell scheme.

In the LEP scheme, the weak mixing angle ✓w, the U(1)Y and SU(2)L couplings g1

and g2 and the VEV of the Higgs boson v can all be written in terms of the EW input
parameters {↵, GF ,mZ}. One finds the following relations

s
2
w =

1

2

2

41�

s

1�
2
p
2⇡↵

GFm
2
Z

3

5 ' 0.23 , (4.1)

and

g1 =

p
4⇡↵

cw
' 0.36 , g2 =

p
4⇡↵

sw
' 0.65 , v =

1
4
p
2
p
GF

' 246.22GeV , (4.2)

where the given numerical values correspond to ↵ = 1/127.951, GF = 1.1663788·10�5GeV�2

and mZ = 91.1876GeV [35]. Notice that in (4.1) and (4.2) we have used the abbrevia-
tions sw and cw to denote the sine and cosine of the weak mixing angle, respectively.

4.1 W -boson mass

The on-shell mass of the W boson is a predicted quantity in the LEP scheme as well. In
terms of the results (4.1) and (4.2) one has

mW = cwmZ ' 79.83GeV . (4.3)

The corresponding relative tree-level shift of mW induced in the U(3)5 symmetric SMEFT
is given by

�mW

mW

= �
cwsw

2 (c2w � s2w)

v
2

⇤2


2CHWB +

sw

cw

⇣
2C(3)

H`
� C``

⌘
+

cw

2sw
CHD

�

' �0.048CHWB � 0.027C(3)
H`

� 0.022CHD + 0.013C`` ,

(4.4)

where we have employed (4.1), (4.2) and assumed ⇤ = 1TeV for the energy scale that
suppresses the dimension-six operators to obtain the numerical results presented in the
second line. Employing the latest world average of the measured W -boson mass obtained
by the PDG [35] and the state-of-the-art SM prediction [55], we obtain the following 95%
confidence level (CL) limit

�mW

mW

2 [�0.9, 5.6] · 10�4
, (4.5)

on the allowed relative shift of mW . This result in general sets stringent constraints on the
Wilson coefficients entering (4.4). For instance, in the case of the operator QHWB we find
the bound

CHWB

⇤2
2 [�1.2, 0.2] · 10�2TeV�2

, (4.6)
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LEP/SLD: 

In the case of the electron the formulas (3.7) and (3.8) lead to the following left- and
right-handed coupling shifts

�g
e

L ' 0.036CHWB � 0.022C(1)
H`

+ 0.020C(3)
H`

+ 0.011CHD � 0.021C`` ,

�g
e

R ' 0.036CHWB + 0.020C(3)
H`

� 0.022CHe + 0.005CHD � 0.010C`` ,

(3.9)

when (3.1), (3.2) and ⇤ = 1TeV is used as a numerical input. The EW precision measure-
ments performed by LEP and SLD [25, 27] imply that at 95% CL one has

�g
e

L 2 [�7.1, 2.0] · 10�4
, �g

e

R 2 [�7.0, 1.6] · 10�4
. (3.10)

Ignoring cancellations these limits again put severe constraints on the Wilson coefficients
that appear in (3.9). Numerically, we obtain for instance the bounds

C
(3)
H`

⇤2
2 [�3.6, 1.0] · 10�2TeV�2

,
CHe

⇤2
2 [�0.7, 3.1] · 10�2TeV�2

, (3.11)

from the constraint �g
e

L
and �g

e

R
, respectively, if we allow only the considered Wilson

coefficient to take a non-vanishing value. We add that the Wilson coefficients CHD, C(1)
H`

and C`` can also be constrained by the LEP and SLD measurements of the Z-boson coupling
to neutrinos. The obtained bounds, however, turn out to be weaker than those that derive
from (3.9) and (3.10).

Employing again (3.1), (3.2), (3.7) and (3.8) the left- and right-handed coupling shifts
in the case of the down and up quark take the following form

�g
d

L ' 0.012CHWB � 0.022
⇣
C

(1)
Hq

+ C
(3)
Hq

⌘
+ 0.029C(3)

H`
+ 0.007CHD � 0.015C`` ,

�g
d

R ' 0.012CHWB � 0.022CHd + 0.007C(3)
H`

+ 0.002CHD � 0.003C`` ,

�g
u

L ' �0.024CHWB � 0.022
⇣
C

(1)
Hq

� C
(3)
Hq

⌘
� 0.036C(3)

H`
� 0.009CHD + 0.018C`` ,

�g
u

R ' �0.024CHWB � 0.022CHu � 0.013C(3)
H`

� 0.003CHD + 0.007C`` ,

(3.12)

for a common operator suppression scale of ⇤ = 1TeV. The measurements by LEP and
SLD performed at the Z-pole lead to the following limits

�g
d

L 2 [�6.2, 2.0] · 10�2
, �g

d

R 2 [�4.8, 3.4] · 10�2
,

�g
u

L 2 [0.2, 6.8] · 10�2
, �g

u

R 2 [�1.3, 5.3] · 10�2
,

(3.13)

at 95% CL. These bounds translate into

C
(1)
Hq

⇤2
2 [�0.9, 2.8] TeV�2

,
C

(3)
Hq

⇤2
2 [�0.9, 2.8] TeV�2

,

CHd

⇤2
2 [�1.5, 2.1] TeV�2

,
CHu

⇤2
2 [�2.4, 0.6] TeV�2

,

(3.14)
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at 95% CL. These bounds translate into

C
(1)
Hq

⇤2
2 [�0.9, 2.8] TeV�2
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C

(3)
Hq

⇤2
2 [�0.9, 2.8] TeV�2
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CHd

⇤2
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⇤2
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,

(3.14)
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2. Anatomy of SMEFT Effects
2.1 Deviations from the SM
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What are the current constraints?

V(h)qq:
, , , C(1)

Hq C(3)
Hq CHu

CHd

V(h)ll: , , C(1)
Hl C(3)

Hl
CHe

The corresponding relative tree-level shift of mW induced in the U(3)5 symmetric SMEFT
is given by

�mW

mW

= �
cwsw

2 (c2w � s2w)

v
2

⇤2


2CHWB +

sw

cw

⇣
2C(3)

H`
� C``

⌘
+

cw

2sw
CHD

�

' �0.048CHWB � 0.027C(3)
H`

� 0.022CHD + 0.013C`` ,

(3.4)

where we have employed (3.1), (3.2) and assumed ⇤ = 1TeV for the energy scale that
suppresses the dimension-six operators to obtain the numerical results presented in the
second line. Employing the latest world average of the measured W -boson mass obtained
by the PDG [25] and the state-of-the-art SM prediction [26], we obtain the following 95%
confidence level (CL) limit

�mW

mW

2 [�0.9, 5.6] · 10�4
, (3.5)

on the allowed relative shift of mW . This result in general sets stringent constraints on the
Wilson coefficients entering (3.4). For instance, in the case of the operator QHWB we find
the bound

CHWB

⇤2
2 [�1.2, 0.2] · 10�2TeV�2

, (3.6)

if all other Wilson coefficients in (3.4) are set to zero. Similar though weaker limits also
apply in the case of CHD, C(3)

H`
and C`` if each of the Wilson coefficient is treated as the

only non-zero contribution.

3.2 Z-boson couplings

The linear combinations of Wilson coefficients that modify the couplings of the W and Z

boson to fermions at tree level are strongly constrained by the EW precision measurements
performed at LEP and SLD. In the case of the Z boson the shifts of the left- and right-
handed couplings to a fermion  = {e, ⌫, d, u} take the following form

�g
 

L
=

g2

cw

v
2

⇤2


g
T

3
 

T
3
 
� gQ Q �

1

2

⇣
C

(1)
H L

� 2T 3
 
C

(3)
H L

⌘�
,

�g
 

R
=

g2

cw

v
2

⇤2


�gQ Q �

1

2
(1� � ⌫)CH R

�
,

(3.7)

with
g
T

3
 

= �C
(3)
H`

�
CHD

4
+

C``

2
, gQ =

cwsw

c2w � s2w


CHWB �

sw

cw
g
T

3
 

�
. (3.8)

Here the coupling g2 is defined via (3.2),  L = {`, q} and  R = {e, d, u}, while T
3
 
= ±1/2

denotes the weak isospin eigenvalue, Q is the electric charge of the fermion  in units
of e =

p
4⇡↵. Notice that the expressions given in (3.8) correspond to the LEP scheme and

that we have assumed that the Wilson coefficients of the operators that involve fermionic
fields are flavour universal. Below we will assume that such a flavour universality holds for
all SM fermions apart from the charm, bottom and top quark.

– 5 –

if each Wilson coefficient is treated independently and the limit on �g
d

L
as given in (3.13) is

used to constrain C
(1)
Hq

and C
(3)
Hq

. We emphasise that notably more stringent limits on the
Wilson coefficients in (3.14) would be obtained if one performs a complete EW fit including
heavy flavour measurements and assumes a SMEFT Lagrangian with an approximate U(3)5

symmetry. This is a simple consequence of the fact that in such a case one has �gb
L,R

= �g
d

L,R

(�gc
L,R

= �g
u

L,R
) and that the bottom (charm) couplings were significantly better determined

than the down (up) couplings at LEP and SLD — see for example Figure F.3 in [27]. The
limits (3.14) are relaxed because they assume flavour universality only for the down and
strange quark as far as quarks are concerned.

3.3 Higgs-boson observables

The Wilson coefficients of the operators (2.1) modify the Higgs signal strengths in final
states with two vector bosons. In the LEP scheme and including only the tree-level SMEFT
corrections due to CHB, CHW and CHWB the coupling modifiers relevant for h ! WW

and h ! ZZ can be written in the  framework as follows [28]

�WW ' �
v
2

⇤2

h
0.76CHW + 3.18CHWB

i
,

�ZZ '
v
2

⇤2

h
2.71CHB � 3.18CHW + 1.23CHWB

i
.

(3.15)

In the tree-level approximation the corresponding expressions for the h ! �� and h ! �Z

decays do not depend on the choice of the EW input scheme. One finds

��� '
1

gh��

v
2

⇤2

h
c
2
wCHB + s

2
wCHW � cwswCHWB

i
,

��Z ' �
1

gh�Z

v
2

⇤2

h
2cwsw (CHB � CHW ) +

�
c
2
w � s

2
w

�
CHWB

i
,

(3.16)

where gh�� ' �2.02 · 10�3 and gh�Z ' �7.23 · 10�3 parameterise the loop-induced h�� and
h�Z couplings within the SM. Explicit analytic formulas for gh�� and gh�Z can be found
for instance in [29].

Assuming that the ggF Higgs production cross section is SM-like and taking the SM
predictions for the total decay width of the Higgs and its branching ratios from [30], we
obtain for ⇤ = 1TeV the following linearised expressions for the relevant signal strenghts

µ
WW

ggF ' 1 + 0.074CHB � 0.0086CHW , µ
ZZ

ggF ' 1 + 0.40CHB � 0.30CHW ,

µ
��

ggF ' 1� 46.0CHB � 14.0CHW , µ
�Z

ggF ' 1 + 14.3CHB � 14.1CHW .

(3.17)

Notice that in view of (3.6) we have neglected the contributions of the Wilson coeffi-
cient CHWB in (3.17). The corresponding measured Higgs signal strenghts are

µ
WW

ggF = 1.18±0.13 , µ
ZZ

ggF = 0.96±0.08 , µ
��

ggF = 1.05±0.09 , µ
�Z

ggF = 2.2±0.7 . (3.18)
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Here the first three results represent unofficial weighted averages of the ATLAS [31] and
CMS [32] measurements, while the fourth result stems from an official combination per-
formed by the ATLAS and CMS collaborations in [33].

By comparing (3.17) and (3.18) it is evident that under the assumption of CHWB ' 0

the constraints on the Wilson coefficients CHB and CHW from h ! �� and h ! �Z are in
general more stringent than those that arise from h ! WW and h ! ZZ. In fact, since the
signal strength µ

��

ggF is at present significantly better measured than µ
�Z

ggF, all combinations
of Wilson coefficients that obey

CHB ' �
s
2
w

c2w
CHW ' �0.30CHW , (3.19)

are most weakly constrained by (3.18). Notice that for Wilson coefficients CHB and CWB

satisfying (3.19) and |CHW | sufficiently small the signal strengths µWW

ggF , µZZ

ggF and µ
��

ggF are
all predicted to be SM-like, while µ

�Z

ggF can at the same time be notably different from one.
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(1)
H`

= C
(3)
H`

= CHe = CH2 = CHD = C`` = 0 , (3.20)
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WW
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ZZ
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��

ggF ' 1.01 , µ
�Z

ggF ' 2.13 , (3.22)

if one assumes that the ggF Higgs production cross section in the SMEFT is equal to that
of the SM and sets to zero the Wilson coefficients of all the operators appearing in (2.2)
to (2.4). Notice that the predictions (3.22) are all SM-like apart from µ

�Z

ggF which is close
to the central value of the measured signal strength given in (3.18). When considering
the benchmark scenario (3.21) we will, besides employing (3.20), also set all the Wilson
coefficients of the operators (2.2) to zero.

In the case of the operators that result in couplings between the Higgs, a W or a Z

boson and light quarks, we consider the four benchmark scenarios

C
(3)
Hq

= 0.05 , C
(1)
Hq

= CHd = CHu = 0 , (3.23)
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Input scheme:

duced in (2.1) to (2.4). In this discussion the choice of an EW input scheme is an impor-
tant ingredient. While in our POWHEG-BOX implementation the user can choose between the
↵, ↵µ, and LEP schemes (see Appendix A for a brief discussion of EW input schemes in
the SMEFT) the following discussion is based on the LEP scheme which uses as inputs
{↵, GF ,mZ}. Here ↵ is the fine-structure constant, GF is the Fermi constant as extracted
from muon decay and mZ is the mass of the Z boson in the on-shell scheme.

In the LEP scheme, the weak mixing angle ✓w, the U(1)Y and SU(2)L couplings g1

and g2 and the VEV of the Higgs boson v can all be written in terms of the EW input
parameters {↵, GF ,mZ}. One finds the following relations

s
2
w =

1

2

2

41�

s

1�
2
p
2⇡↵

GFm
2
Z

3

5 ' 0.23 , (4.1)

and

g1 =

p
4⇡↵

cw
' 0.36 , g2 =

p
4⇡↵

sw
' 0.65 , v =

1
4
p
2
p
GF

' 246.22GeV , (4.2)

where the given numerical values correspond to ↵ = 1/127.951, GF = 1.1663788·10�5GeV�2

and mZ = 91.1876GeV [35]. Notice that in (4.1) and (4.2) we have used the abbrevia-
tions sw and cw to denote the sine and cosine of the weak mixing angle, respectively.

4.1 W -boson mass

The on-shell mass of the W boson is a predicted quantity in the LEP scheme as well. In
terms of the results (4.1) and (4.2) one has

mW = cwmZ ' 79.83GeV . (4.3)

The corresponding relative tree-level shift of mW induced in the U(3)5 symmetric SMEFT
is given by

�mW

mW

= �
cwsw

2 (c2w � s2w)

v
2

⇤2


2CHWB +

sw

cw

⇣
2C(3)

H`
� C``

⌘
+

cw

2sw
CHD

�

' �0.048CHWB � 0.027C(3)
H`

� 0.022CHD + 0.013C`` ,

(4.4)

where we have employed (4.1), (4.2) and assumed ⇤ = 1TeV for the energy scale that
suppresses the dimension-six operators to obtain the numerical results presented in the
second line. Employing the latest world average of the measured W -boson mass obtained
by the PDG [35] and the state-of-the-art SM prediction [55], we obtain the following 95%
confidence level (CL) limit

�mW

mW

2 [�0.9, 5.6] · 10�4
, (4.5)

on the allowed relative shift of mW . This result in general sets stringent constraints on the
Wilson coefficients entering (4.4). For instance, in the case of the operator QHWB we find
the bound

CHWB

⇤2
2 [�1.2, 0.2] · 10�2TeV�2

, (4.6)
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LEP/SLD: 

In the case of the electron the formulas (3.7) and (3.8) lead to the following left- and
right-handed coupling shifts

�g
e

L ' 0.036CHWB � 0.022C(1)
H`

+ 0.020C(3)
H`

+ 0.011CHD � 0.021C`` ,

�g
e

R ' 0.036CHWB + 0.020C(3)
H`

� 0.022CHe + 0.005CHD � 0.010C`` ,

(3.9)

when (3.1), (3.2) and ⇤ = 1TeV is used as a numerical input. The EW precision measure-
ments performed by LEP and SLD [25, 27] imply that at 95% CL one has

�g
e

L 2 [�7.1, 2.0] · 10�4
, �g

e

R 2 [�7.0, 1.6] · 10�4
. (3.10)

Ignoring cancellations these limits again put severe constraints on the Wilson coefficients
that appear in (3.9). Numerically, we obtain for instance the bounds

C
(3)
H`

⇤2
2 [�3.6, 1.0] · 10�2TeV�2

,
CHe

⇤2
2 [�0.7, 3.1] · 10�2TeV�2

, (3.11)

from the constraint �g
e

L
and �g

e

R
, respectively, if we allow only the considered Wilson

coefficient to take a non-vanishing value. We add that the Wilson coefficients CHD, C(1)
H`

and C`` can also be constrained by the LEP and SLD measurements of the Z-boson coupling
to neutrinos. The obtained bounds, however, turn out to be weaker than those that derive
from (3.9) and (3.10).

Employing again (3.1), (3.2), (3.7) and (3.8) the left- and right-handed coupling shifts
in the case of the down and up quark take the following form

�g
d

L ' 0.012CHWB � 0.022
⇣
C

(1)
Hq

+ C
(3)
Hq

⌘
+ 0.029C(3)

H`
+ 0.007CHD � 0.015C`` ,

�g
d

R ' 0.012CHWB � 0.022CHd + 0.007C(3)
H`

+ 0.002CHD � 0.003C`` ,

�g
u

L ' �0.024CHWB � 0.022
⇣
C

(1)
Hq

� C
(3)
Hq

⌘
� 0.036C(3)

H`
� 0.009CHD + 0.018C`` ,

�g
u

R ' �0.024CHWB � 0.022CHu � 0.013C(3)
H`

� 0.003CHD + 0.007C`` ,

(3.12)

for a common operator suppression scale of ⇤ = 1TeV. The measurements by LEP and
SLD performed at the Z-pole lead to the following limits

�g
d

L 2 [�6.2, 2.0] · 10�2
, �g

d

R 2 [�4.8, 3.4] · 10�2
,

�g
u

L 2 [0.2, 6.8] · 10�2
, �g

u

R 2 [�1.3, 5.3] · 10�2
,

(3.13)

at 95% CL. These bounds translate into

C
(1)
Hq

⇤2
2 [�0.9, 2.8] TeV�2

,
C

(3)
Hq

⇤2
2 [�0.9, 2.8] TeV�2

,

CHd

⇤2
2 [�1.5, 2.1] TeV�2

,
CHu

⇤2
2 [�2.4, 0.6] TeV�2

,

(3.14)
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2. Anatomy of SMEFT Effects
2.1 Deviations from the SM
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VVh: 

What are the current constraints?

V(h)qq:
, , , C(1)

Hq C(3)
Hq CHu

CHd

V(h)ll: , , C(1)
Hl C(3)

Hl
CHe

The corresponding relative tree-level shift of mW induced in the U(3)5 symmetric SMEFT
is given by

�mW

mW

= �
cwsw

2 (c2w � s2w)

v
2

⇤2


2CHWB +

sw

cw

⇣
2C(3)

H`
� C``

⌘
+

cw

2sw
CHD

�

' �0.048CHWB � 0.027C(3)
H`

� 0.022CHD + 0.013C`` ,

(3.4)

where we have employed (3.1), (3.2) and assumed ⇤ = 1TeV for the energy scale that
suppresses the dimension-six operators to obtain the numerical results presented in the
second line. Employing the latest world average of the measured W -boson mass obtained
by the PDG [25] and the state-of-the-art SM prediction [26], we obtain the following 95%
confidence level (CL) limit

�mW

mW

2 [�0.9, 5.6] · 10�4
, (3.5)

on the allowed relative shift of mW . This result in general sets stringent constraints on the
Wilson coefficients entering (3.4). For instance, in the case of the operator QHWB we find
the bound

CHWB

⇤2
2 [�1.2, 0.2] · 10�2TeV�2

, (3.6)

if all other Wilson coefficients in (3.4) are set to zero. Similar though weaker limits also
apply in the case of CHD, C(3)

H`
and C`` if each of the Wilson coefficient is treated as the

only non-zero contribution.

3.2 Z-boson couplings

The linear combinations of Wilson coefficients that modify the couplings of the W and Z

boson to fermions at tree level are strongly constrained by the EW precision measurements
performed at LEP and SLD. In the case of the Z boson the shifts of the left- and right-
handed couplings to a fermion  = {e, ⌫, d, u} take the following form

�g
 

L
=

g2

cw

v
2

⇤2


g
T

3
 

T
3
 
� gQ Q �

1

2

⇣
C

(1)
H L

� 2T 3
 
C

(3)
H L

⌘�
,

�g
 

R
=

g2

cw

v
2

⇤2


�gQ Q �

1

2
(1� � ⌫)CH R

�
,

(3.7)

with
g
T

3
 

= �C
(3)
H`

�
CHD

4
+

C``

2
, gQ =

cwsw

c2w � s2w


CHWB �

sw

cw
g
T

3
 

�
. (3.8)

Here the coupling g2 is defined via (3.2),  L = {`, q} and  R = {e, d, u}, while T
3
 
= ±1/2

denotes the weak isospin eigenvalue, Q is the electric charge of the fermion  in units
of e =

p
4⇡↵. Notice that the expressions given in (3.8) correspond to the LEP scheme and

that we have assumed that the Wilson coefficients of the operators that involve fermionic
fields are flavour universal. Below we will assume that such a flavour universality holds for
all SM fermions apart from the charm, bottom and top quark.
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if each Wilson coefficient is treated independently and the limit on �g
d

L
as given in (3.13) is

used to constrain C
(1)
Hq

and C
(3)
Hq

. We emphasise that notably more stringent limits on the
Wilson coefficients in (3.14) would be obtained if one performs a complete EW fit including
heavy flavour measurements and assumes a SMEFT Lagrangian with an approximate U(3)5

symmetry. This is a simple consequence of the fact that in such a case one has �gb
L,R

= �g
d

L,R

(�gc
L,R

= �g
u

L,R
) and that the bottom (charm) couplings were significantly better determined

than the down (up) couplings at LEP and SLD — see for example Figure F.3 in [27]. The
limits (3.14) are relaxed because they assume flavour universality only for the down and
strange quark as far as quarks are concerned.

3.3 Higgs-boson observables

The Wilson coefficients of the operators (2.1) modify the Higgs signal strengths in final
states with two vector bosons. In the LEP scheme and including only the tree-level SMEFT
corrections due to CHB, CHW and CHWB the coupling modifiers relevant for h ! WW

and h ! ZZ can be written in the  framework as follows [28]

�WW ' �
v
2

⇤2

h
0.76CHW + 3.18CHWB

i
,

�ZZ '
v
2

⇤2

h
2.71CHB � 3.18CHW + 1.23CHWB

i
.

(3.15)

In the tree-level approximation the corresponding expressions for the h ! �� and h ! �Z

decays do not depend on the choice of the EW input scheme. One finds

��� '
1

gh��

v
2

⇤2

h
c
2
wCHB + s

2
wCHW � cwswCHWB

i
,

��Z ' �
1

gh�Z

v
2

⇤2

h
2cwsw (CHB � CHW ) +

�
c
2
w � s

2
w

�
CHWB

i
,

(3.16)

where gh�� ' �2.02 · 10�3 and gh�Z ' �7.23 · 10�3 parameterise the loop-induced h�� and
h�Z couplings within the SM. Explicit analytic formulas for gh�� and gh�Z can be found
for instance in [29].

Assuming that the ggF Higgs production cross section is SM-like and taking the SM
predictions for the total decay width of the Higgs and its branching ratios from [30], we
obtain for ⇤ = 1TeV the following linearised expressions for the relevant signal strenghts

µ
WW

ggF ' 1 + 0.074CHB � 0.0086CHW , µ
ZZ

ggF ' 1 + 0.40CHB � 0.30CHW ,

µ
��

ggF ' 1� 46.0CHB � 14.0CHW , µ
�Z

ggF ' 1 + 14.3CHB � 14.1CHW .

(3.17)

Notice that in view of (3.6) we have neglected the contributions of the Wilson coeffi-
cient CHWB in (3.17). The corresponding measured Higgs signal strenghts are

µ
WW

ggF = 1.18±0.13 , µ
ZZ

ggF = 0.96±0.08 , µ
��

ggF = 1.05±0.09 , µ
�Z

ggF = 2.2±0.7 . (3.18)
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strange quark as far as quarks are concerned.

3.3 Higgs-boson observables

The Wilson coefficients of the operators (2.1) modify the Higgs signal strengths in final
states with two vector bosons. In the LEP scheme and including only the tree-level SMEFT
corrections due to CHB, CHW and CHWB the coupling modifiers relevant for h ! WW

and h ! ZZ can be written in the  framework as follows [28]

�WW ' �
v
2

⇤2

h
0.76CHW + 3.18CHWB

i
,

�ZZ '
v
2

⇤2

h
2.71CHB � 3.18CHW + 1.23CHWB

i
.

(3.15)

In the tree-level approximation the corresponding expressions for the h ! �� and h ! �Z

decays do not depend on the choice of the EW input scheme. One finds

��� '
1

gh��

v
2

⇤2

h
c
2
wCHB + s

2
wCHW � cwswCHWB

i
,

��Z ' �
1

gh�Z

v
2

⇤2

h
2cwsw (CHB � CHW ) +

�
c
2
w � s

2
w

�
CHWB

i
,

(3.16)

where gh�� ' �2.02 · 10�3 and gh�Z ' �7.23 · 10�3 parameterise the loop-induced h�� and
h�Z couplings within the SM. Explicit analytic formulas for gh�� and gh�Z can be found
for instance in [29].

Assuming that the ggF Higgs production cross section is SM-like and taking the SM
predictions for the total decay width of the Higgs and its branching ratios from [30], we
obtain for ⇤ = 1TeV the following linearised expressions for the relevant signal strenghts

µ
WW

ggF ' 1 + 0.074CHB � 0.0086CHW , µ
ZZ

ggF ' 1 + 0.40CHB � 0.30CHW ,

µ
��

ggF ' 1� 46.0CHB � 14.0CHW , µ
�Z

ggF ' 1 + 14.3CHB � 14.1CHW .

(3.17)

Notice that in view of (3.6) we have neglected the contributions of the Wilson coeffi-
cient CHWB in (3.17). The corresponding measured Higgs signal strenghts are

µ
WW

ggF = 1.18±0.13 , µ
ZZ

ggF = 0.96±0.08 , µ
��

ggF = 1.05±0.09 , µ
�Z

ggF = 2.2±0.7 . (3.18)
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Here the first three results represent unofficial weighted averages of the ATLAS [31] and
CMS [32] measurements, while the fourth result stems from an official combination per-
formed by the ATLAS and CMS collaborations in [33].

By comparing (3.17) and (3.18) it is evident that under the assumption of CHWB ' 0

the constraints on the Wilson coefficients CHB and CHW from h ! �� and h ! �Z are in
general more stringent than those that arise from h ! WW and h ! ZZ. In fact, since the
signal strength µ

��

ggF is at present significantly better measured than µ
�Z

ggF, all combinations
of Wilson coefficients that obey

CHB ' �
s
2
w

c2w
CHW ' �0.30CHW , (3.19)

are most weakly constrained by (3.18). Notice that for Wilson coefficients CHB and CWB

satisfying (3.19) and |CHW | sufficiently small the signal strengths µWW

ggF , µZZ

ggF and µ
��

ggF are
all predicted to be SM-like, while µ

�Z

ggF can at the same time be notably different from one.

3.4 Discussion

We are now in a position to identify simple benchmark scenarios of the full set of Wilson coef-
ficients of the operators defined in (2.1) to (2.4). As a common operator suppression scale we
hereafter take ⇤ = 1TeV. In view of the stringent constraints arising from (3.4), (3.5), (3.9)
and (3.10) we always employ

C
(1)
H`

= C
(3)
H`

= CHe = CH2 = CHD = C`` = 0 , (3.20)

when studying the numerical impact of the SMEFT dimension-six operators (2.1) to (2.4)
on Zh production at the LHC in Section 5.

In the case of the dimension-six operators that modify the couplings between the Higgs
and two vector bosons at tree level, we choose the following values for the Wilson coefficients

CHB = 0.015 , CHW = �0.05 , CHWB = 0 , (3.21)

where the choice of CHWB is motivated by (3.6). The values (3.21) lead to the following
Higgs signal strengths

µ
WW

ggF ' 1.00 , µ
ZZ

ggF ' 1.02 , µ
��

ggF ' 1.01 , µ
�Z

ggF ' 2.13 , (3.22)

if one assumes that the ggF Higgs production cross section in the SMEFT is equal to that
of the SM and sets to zero the Wilson coefficients of all the operators appearing in (2.2)
to (2.4). Notice that the predictions (3.22) are all SM-like apart from µ

�Z

ggF which is close
to the central value of the measured signal strength given in (3.18). When considering
the benchmark scenario (3.21) we will, besides employing (3.20), also set all the Wilson
coefficients of the operators (2.2) to zero.

In the case of the operators that result in couplings between the Higgs, a W or a Z

boson and light quarks, we consider the four benchmark scenarios

C
(3)
Hq

= 0.05 , C
(1)
Hq

= CHd = CHu = 0 , (3.23)
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Input scheme:

duced in (2.1) to (2.4). In this discussion the choice of an EW input scheme is an impor-
tant ingredient. While in our POWHEG-BOX implementation the user can choose between the
↵, ↵µ, and LEP schemes (see Appendix A for a brief discussion of EW input schemes in
the SMEFT) the following discussion is based on the LEP scheme which uses as inputs
{↵, GF ,mZ}. Here ↵ is the fine-structure constant, GF is the Fermi constant as extracted
from muon decay and mZ is the mass of the Z boson in the on-shell scheme.

In the LEP scheme, the weak mixing angle ✓w, the U(1)Y and SU(2)L couplings g1

and g2 and the VEV of the Higgs boson v can all be written in terms of the EW input
parameters {↵, GF ,mZ}. One finds the following relations

s
2
w =

1

2

2

41�

s

1�
2
p
2⇡↵

GFm
2
Z

3

5 ' 0.23 , (4.1)

and

g1 =

p
4⇡↵

cw
' 0.36 , g2 =

p
4⇡↵

sw
' 0.65 , v =

1
4
p
2
p
GF

' 246.22GeV , (4.2)

where the given numerical values correspond to ↵ = 1/127.951, GF = 1.1663788·10�5GeV�2

and mZ = 91.1876GeV [35]. Notice that in (4.1) and (4.2) we have used the abbrevia-
tions sw and cw to denote the sine and cosine of the weak mixing angle, respectively.

4.1 W -boson mass

The on-shell mass of the W boson is a predicted quantity in the LEP scheme as well. In
terms of the results (4.1) and (4.2) one has

mW = cwmZ ' 79.83GeV . (4.3)

The corresponding relative tree-level shift of mW induced in the U(3)5 symmetric SMEFT
is given by

�mW

mW

= �
cwsw

2 (c2w � s2w)

v
2

⇤2


2CHWB +

sw

cw

⇣
2C(3)

H`
� C``

⌘
+

cw

2sw
CHD

�

' �0.048CHWB � 0.027C(3)
H`

� 0.022CHD + 0.013C`` ,

(4.4)

where we have employed (4.1), (4.2) and assumed ⇤ = 1TeV for the energy scale that
suppresses the dimension-six operators to obtain the numerical results presented in the
second line. Employing the latest world average of the measured W -boson mass obtained
by the PDG [35] and the state-of-the-art SM prediction [55], we obtain the following 95%
confidence level (CL) limit

�mW

mW

2 [�0.9, 5.6] · 10�4
, (4.5)

on the allowed relative shift of mW . This result in general sets stringent constraints on the
Wilson coefficients entering (4.4). For instance, in the case of the operator QHWB we find
the bound

CHWB

⇤2
2 [�1.2, 0.2] · 10�2TeV�2

, (4.6)
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tions sw and cw to denote the sine and cosine of the weak mixing angle, respectively.

4.1 W -boson mass

The on-shell mass of the W boson is a predicted quantity in the LEP scheme as well. In
terms of the results (4.1) and (4.2) one has
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The corresponding relative tree-level shift of mW induced in the U(3)5 symmetric SMEFT
is given by

�mW

mW
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cwsw
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2
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2CHWB +

sw

cw

⇣
2C(3)

H`
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2sw
CHD
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' �0.048CHWB � 0.027C(3)
H`

� 0.022CHD + 0.013C`` ,

(4.4)

where we have employed (4.1), (4.2) and assumed ⇤ = 1TeV for the energy scale that
suppresses the dimension-six operators to obtain the numerical results presented in the
second line. Employing the latest world average of the measured W -boson mass obtained
by the PDG [35] and the state-of-the-art SM prediction [55], we obtain the following 95%
confidence level (CL) limit

�mW

mW

2 [�0.9, 5.6] · 10�4
, (4.5)

on the allowed relative shift of mW . This result in general sets stringent constraints on the
Wilson coefficients entering (4.4). For instance, in the case of the operator QHWB we find
the bound

CHWB

⇤2
2 [�1.2, 0.2] · 10�2TeV�2

, (4.6)
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LEP/SLD: 

In the case of the electron the formulas (3.7) and (3.8) lead to the following left- and
right-handed coupling shifts

�g
e

L ' 0.036CHWB � 0.022C(1)
H`

+ 0.020C(3)
H`

+ 0.011CHD � 0.021C`` ,

�g
e

R ' 0.036CHWB + 0.020C(3)
H`

� 0.022CHe + 0.005CHD � 0.010C`` ,

(3.9)

when (3.1), (3.2) and ⇤ = 1TeV is used as a numerical input. The EW precision measure-
ments performed by LEP and SLD [25, 27] imply that at 95% CL one has

�g
e

L 2 [�7.1, 2.0] · 10�4
, �g

e

R 2 [�7.0, 1.6] · 10�4
. (3.10)

Ignoring cancellations these limits again put severe constraints on the Wilson coefficients
that appear in (3.9). Numerically, we obtain for instance the bounds

C
(3)
H`

⇤2
2 [�3.6, 1.0] · 10�2TeV�2

,
CHe

⇤2
2 [�0.7, 3.1] · 10�2TeV�2

, (3.11)

from the constraint �g
e

L
and �g

e

R
, respectively, if we allow only the considered Wilson

coefficient to take a non-vanishing value. We add that the Wilson coefficients CHD, C(1)
H`

and C`` can also be constrained by the LEP and SLD measurements of the Z-boson coupling
to neutrinos. The obtained bounds, however, turn out to be weaker than those that derive
from (3.9) and (3.10).

Employing again (3.1), (3.2), (3.7) and (3.8) the left- and right-handed coupling shifts
in the case of the down and up quark take the following form

�g
d

L ' 0.012CHWB � 0.022
⇣
C

(1)
Hq

+ C
(3)
Hq

⌘
+ 0.029C(3)

H`
+ 0.007CHD � 0.015C`` ,

�g
d

R ' 0.012CHWB � 0.022CHd + 0.007C(3)
H`

+ 0.002CHD � 0.003C`` ,

�g
u

L ' �0.024CHWB � 0.022
⇣
C

(1)
Hq

� C
(3)
Hq

⌘
� 0.036C(3)

H`
� 0.009CHD + 0.018C`` ,

�g
u

R ' �0.024CHWB � 0.022CHu � 0.013C(3)
H`

� 0.003CHD + 0.007C`` ,

(3.12)

for a common operator suppression scale of ⇤ = 1TeV. The measurements by LEP and
SLD performed at the Z-pole lead to the following limits

�g
d

L 2 [�6.2, 2.0] · 10�2
, �g

d

R 2 [�4.8, 3.4] · 10�2
,

�g
u

L 2 [0.2, 6.8] · 10�2
, �g

u

R 2 [�1.3, 5.3] · 10�2
,

(3.13)

at 95% CL. These bounds translate into

C
(1)
Hq

⇤2
2 [�0.9, 2.8] TeV�2

,
C

(3)
Hq

⇤2
2 [�0.9, 2.8] TeV�2

,

CHd

⇤2
2 [�1.5, 2.1] TeV�2

,
CHu

⇤2
2 [�2.4, 0.6] TeV�2

,

(3.14)
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Ignoring cancellations these limits again put severe constraints on the Wilson coefficients
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and C`` can also be constrained by the LEP and SLD measurements of the Z-boson coupling
to neutrinos. The obtained bounds, however, turn out to be weaker than those that derive
from (3.9) and (3.10).

Employing again (3.1), (3.2), (3.7) and (3.8) the left- and right-handed coupling shifts
in the case of the down and up quark take the following form
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for a common operator suppression scale of ⇤ = 1TeV. The measurements by LEP and
SLD performed at the Z-pole lead to the following limits

�g
d

L 2 [�6.2, 2.0] · 10�2
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d
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�g
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at 95% CL. These bounds translate into

C
(1)
Hq

⇤2
2 [�0.9, 2.8] TeV�2

,
C

(3)
Hq

⇤2
2 [�0.9, 2.8] TeV�2

,

CHd

⇤2
2 [�1.5, 2.1] TeV�2

,
CHu

⇤2
2 [�2.4, 0.6] TeV�2

,

(3.14)
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2. Anatomy of SMEFT Effects
2.1 Deviations from the SM
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CHWB

VVh: 

What are the current constraints?

V(h)qq:
, , , C(1)

Hq C(3)
Hq CHu

CHd

V(h)ll: , , C(1)
Hl C(3)

Hl
CHe

The corresponding relative tree-level shift of mW induced in the U(3)5 symmetric SMEFT
is given by

�mW

mW

= �
cwsw

2 (c2w � s2w)

v
2

⇤2


2CHWB +

sw

cw

⇣
2C(3)

H`
� C``

⌘
+

cw

2sw
CHD

�

' �0.048CHWB � 0.027C(3)
H`

� 0.022CHD + 0.013C`` ,

(3.4)

where we have employed (3.1), (3.2) and assumed ⇤ = 1TeV for the energy scale that
suppresses the dimension-six operators to obtain the numerical results presented in the
second line. Employing the latest world average of the measured W -boson mass obtained
by the PDG [25] and the state-of-the-art SM prediction [26], we obtain the following 95%
confidence level (CL) limit

�mW

mW

2 [�0.9, 5.6] · 10�4
, (3.5)

on the allowed relative shift of mW . This result in general sets stringent constraints on the
Wilson coefficients entering (3.4). For instance, in the case of the operator QHWB we find
the bound

CHWB

⇤2
2 [�1.2, 0.2] · 10�2TeV�2

, (3.6)

if all other Wilson coefficients in (3.4) are set to zero. Similar though weaker limits also
apply in the case of CHD, C(3)

H`
and C`` if each of the Wilson coefficient is treated as the

only non-zero contribution.

3.2 Z-boson couplings

The linear combinations of Wilson coefficients that modify the couplings of the W and Z

boson to fermions at tree level are strongly constrained by the EW precision measurements
performed at LEP and SLD. In the case of the Z boson the shifts of the left- and right-
handed couplings to a fermion  = {e, ⌫, d, u} take the following form

�g
 

L
=

g2

cw

v
2

⇤2


g
T

3
 

T
3
 
� gQ Q �

1

2

⇣
C

(1)
H L

� 2T 3
 
C

(3)
H L

⌘�
,

�g
 

R
=

g2

cw

v
2

⇤2


�gQ Q �

1

2
(1� � ⌫)CH R

�
,

(3.7)

with
g
T

3
 

= �C
(3)
H`

�
CHD

4
+

C``

2
, gQ =

cwsw

c2w � s2w


CHWB �

sw

cw
g
T

3
 

�
. (3.8)

Here the coupling g2 is defined via (3.2),  L = {`, q} and  R = {e, d, u}, while T
3
 
= ±1/2

denotes the weak isospin eigenvalue, Q is the electric charge of the fermion  in units
of e =

p
4⇡↵. Notice that the expressions given in (3.8) correspond to the LEP scheme and

that we have assumed that the Wilson coefficients of the operators that involve fermionic
fields are flavour universal. Below we will assume that such a flavour universality holds for
all SM fermions apart from the charm, bottom and top quark.
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if each Wilson coefficient is treated independently and the limit on �g
d

L
as given in (3.13) is

used to constrain C
(1)
Hq

and C
(3)
Hq

. We emphasise that notably more stringent limits on the
Wilson coefficients in (3.14) would be obtained if one performs a complete EW fit including
heavy flavour measurements and assumes a SMEFT Lagrangian with an approximate U(3)5

symmetry. This is a simple consequence of the fact that in such a case one has �gb
L,R

= �g
d

L,R

(�gc
L,R

= �g
u

L,R
) and that the bottom (charm) couplings were significantly better determined

than the down (up) couplings at LEP and SLD — see for example Figure F.3 in [27]. The
limits (3.14) are relaxed because they assume flavour universality only for the down and
strange quark as far as quarks are concerned.

3.3 Higgs-boson observables

The Wilson coefficients of the operators (2.1) modify the Higgs signal strengths in final
states with two vector bosons. In the LEP scheme and including only the tree-level SMEFT
corrections due to CHB, CHW and CHWB the coupling modifiers relevant for h ! WW

and h ! ZZ can be written in the  framework as follows [28]

�WW ' �
v
2

⇤2

h
0.76CHW + 3.18CHWB

i
,

�ZZ '
v
2

⇤2

h
2.71CHB � 3.18CHW + 1.23CHWB

i
.

(3.15)

In the tree-level approximation the corresponding expressions for the h ! �� and h ! �Z

decays do not depend on the choice of the EW input scheme. One finds

��� '
1

gh��

v
2

⇤2

h
c
2
wCHB + s

2
wCHW � cwswCHWB

i
,

��Z ' �
1

gh�Z

v
2

⇤2

h
2cwsw (CHB � CHW ) +

�
c
2
w � s

2
w

�
CHWB

i
,

(3.16)

where gh�� ' �2.02 · 10�3 and gh�Z ' �7.23 · 10�3 parameterise the loop-induced h�� and
h�Z couplings within the SM. Explicit analytic formulas for gh�� and gh�Z can be found
for instance in [29].

Assuming that the ggF Higgs production cross section is SM-like and taking the SM
predictions for the total decay width of the Higgs and its branching ratios from [30], we
obtain for ⇤ = 1TeV the following linearised expressions for the relevant signal strenghts

µ
WW

ggF ' 1 + 0.074CHB � 0.0086CHW , µ
ZZ

ggF ' 1 + 0.40CHB � 0.30CHW ,

µ
��

ggF ' 1� 46.0CHB � 14.0CHW , µ
�Z

ggF ' 1 + 14.3CHB � 14.1CHW .

(3.17)

Notice that in view of (3.6) we have neglected the contributions of the Wilson coeffi-
cient CHWB in (3.17). The corresponding measured Higgs signal strenghts are

µ
WW

ggF = 1.18±0.13 , µ
ZZ

ggF = 0.96±0.08 , µ
��

ggF = 1.05±0.09 , µ
�Z

ggF = 2.2±0.7 . (3.18)
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than the down (up) couplings at LEP and SLD — see for example Figure F.3 in [27]. The
limits (3.14) are relaxed because they assume flavour universality only for the down and
strange quark as far as quarks are concerned.

3.3 Higgs-boson observables

The Wilson coefficients of the operators (2.1) modify the Higgs signal strengths in final
states with two vector bosons. In the LEP scheme and including only the tree-level SMEFT
corrections due to CHB, CHW and CHWB the coupling modifiers relevant for h ! WW

and h ! ZZ can be written in the  framework as follows [28]

�WW ' �
v
2

⇤2

h
0.76CHW + 3.18CHWB

i
,

�ZZ '
v
2

⇤2

h
2.71CHB � 3.18CHW + 1.23CHWB

i
.

(3.15)

In the tree-level approximation the corresponding expressions for the h ! �� and h ! �Z

decays do not depend on the choice of the EW input scheme. One finds

��� '
1

gh��

v
2

⇤2

h
c
2
wCHB + s

2
wCHW � cwswCHWB

i
,

��Z ' �
1

gh�Z

v
2

⇤2

h
2cwsw (CHB � CHW ) +

�
c
2
w � s

2
w

�
CHWB

i
,

(3.16)

where gh�� ' �2.02 · 10�3 and gh�Z ' �7.23 · 10�3 parameterise the loop-induced h�� and
h�Z couplings within the SM. Explicit analytic formulas for gh�� and gh�Z can be found
for instance in [29].

Assuming that the ggF Higgs production cross section is SM-like and taking the SM
predictions for the total decay width of the Higgs and its branching ratios from [30], we
obtain for ⇤ = 1TeV the following linearised expressions for the relevant signal strenghts

µ
WW

ggF ' 1 + 0.074CHB � 0.0086CHW , µ
ZZ

ggF ' 1 + 0.40CHB � 0.30CHW ,

µ
��

ggF ' 1� 46.0CHB � 14.0CHW , µ
�Z

ggF ' 1 + 14.3CHB � 14.1CHW .

(3.17)

Notice that in view of (3.6) we have neglected the contributions of the Wilson coeffi-
cient CHWB in (3.17). The corresponding measured Higgs signal strenghts are

µ
WW

ggF = 1.18±0.13 , µ
ZZ

ggF = 0.96±0.08 , µ
��

ggF = 1.05±0.09 , µ
�Z

ggF = 2.2±0.7 . (3.18)
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Here the first three results represent unofficial weighted averages of the ATLAS [31] and
CMS [32] measurements, while the fourth result stems from an official combination per-
formed by the ATLAS and CMS collaborations in [33].

By comparing (3.17) and (3.18) it is evident that under the assumption of CHWB ' 0

the constraints on the Wilson coefficients CHB and CHW from h ! �� and h ! �Z are in
general more stringent than those that arise from h ! WW and h ! ZZ. In fact, since the
signal strength µ

��

ggF is at present significantly better measured than µ
�Z

ggF, all combinations
of Wilson coefficients that obey

CHB ' �
s
2
w

c2w
CHW ' �0.30CHW , (3.19)

are most weakly constrained by (3.18). Notice that for Wilson coefficients CHB and CWB

satisfying (3.19) and |CHW | sufficiently small the signal strengths µWW

ggF , µZZ

ggF and µ
��

ggF are
all predicted to be SM-like, while µ

�Z

ggF can at the same time be notably different from one.

3.4 Discussion

We are now in a position to identify simple benchmark scenarios of the full set of Wilson coef-
ficients of the operators defined in (2.1) to (2.4). As a common operator suppression scale we
hereafter take ⇤ = 1TeV. In view of the stringent constraints arising from (3.4), (3.5), (3.9)
and (3.10) we always employ

C
(1)
H`

= C
(3)
H`

= CHe = CH2 = CHD = C`` = 0 , (3.20)

when studying the numerical impact of the SMEFT dimension-six operators (2.1) to (2.4)
on Zh production at the LHC in Section 5.

In the case of the dimension-six operators that modify the couplings between the Higgs
and two vector bosons at tree level, we choose the following values for the Wilson coefficients

CHB = 0.015 , CHW = �0.05 , CHWB = 0 , (3.21)

where the choice of CHWB is motivated by (3.6). The values (3.21) lead to the following
Higgs signal strengths

µ
WW

ggF ' 1.00 , µ
ZZ

ggF ' 1.02 , µ
��

ggF ' 1.01 , µ
�Z

ggF ' 2.13 , (3.22)

if one assumes that the ggF Higgs production cross section in the SMEFT is equal to that
of the SM and sets to zero the Wilson coefficients of all the operators appearing in (2.2)
to (2.4). Notice that the predictions (3.22) are all SM-like apart from µ

�Z

ggF which is close
to the central value of the measured signal strength given in (3.18). When considering
the benchmark scenario (3.21) we will, besides employing (3.20), also set all the Wilson
coefficients of the operators (2.2) to zero.

In the case of the operators that result in couplings between the Higgs, a W or a Z

boson and light quarks, we consider the four benchmark scenarios

C
(3)
Hq

= 0.05 , C
(1)
Hq

= CHd = CHu = 0 , (3.23)
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, , CH□ CHD
Cll

Input scheme:

duced in (2.1) to (2.4). In this discussion the choice of an EW input scheme is an impor-
tant ingredient. While in our POWHEG-BOX implementation the user can choose between the
↵, ↵µ, and LEP schemes (see Appendix A for a brief discussion of EW input schemes in
the SMEFT) the following discussion is based on the LEP scheme which uses as inputs
{↵, GF ,mZ}. Here ↵ is the fine-structure constant, GF is the Fermi constant as extracted
from muon decay and mZ is the mass of the Z boson in the on-shell scheme.

In the LEP scheme, the weak mixing angle ✓w, the U(1)Y and SU(2)L couplings g1

and g2 and the VEV of the Higgs boson v can all be written in terms of the EW input
parameters {↵, GF ,mZ}. One finds the following relations

s
2
w =

1

2

2

41�

s

1�
2
p
2⇡↵

GFm
2
Z

3

5 ' 0.23 , (4.1)

and

g1 =

p
4⇡↵

cw
' 0.36 , g2 =

p
4⇡↵

sw
' 0.65 , v =

1
4
p
2
p
GF

' 246.22GeV , (4.2)

where the given numerical values correspond to ↵ = 1/127.951, GF = 1.1663788·10�5GeV�2

and mZ = 91.1876GeV [35]. Notice that in (4.1) and (4.2) we have used the abbrevia-
tions sw and cw to denote the sine and cosine of the weak mixing angle, respectively.

4.1 W -boson mass

The on-shell mass of the W boson is a predicted quantity in the LEP scheme as well. In
terms of the results (4.1) and (4.2) one has

mW = cwmZ ' 79.83GeV . (4.3)

The corresponding relative tree-level shift of mW induced in the U(3)5 symmetric SMEFT
is given by

�mW

mW

= �
cwsw

2 (c2w � s2w)

v
2

⇤2


2CHWB +

sw

cw

⇣
2C(3)

H`
� C``

⌘
+

cw

2sw
CHD

�

' �0.048CHWB � 0.027C(3)
H`

� 0.022CHD + 0.013C`` ,

(4.4)

where we have employed (4.1), (4.2) and assumed ⇤ = 1TeV for the energy scale that
suppresses the dimension-six operators to obtain the numerical results presented in the
second line. Employing the latest world average of the measured W -boson mass obtained
by the PDG [35] and the state-of-the-art SM prediction [55], we obtain the following 95%
confidence level (CL) limit

�mW

mW

2 [�0.9, 5.6] · 10�4
, (4.5)

on the allowed relative shift of mW . This result in general sets stringent constraints on the
Wilson coefficients entering (4.4). For instance, in the case of the operator QHWB we find
the bound

CHWB

⇤2
2 [�1.2, 0.2] · 10�2TeV�2

, (4.6)
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LEP/SLD: 

In the case of the electron the formulas (3.7) and (3.8) lead to the following left- and
right-handed coupling shifts

�g
e

L ' 0.036CHWB � 0.022C(1)
H`

+ 0.020C(3)
H`

+ 0.011CHD � 0.021C`` ,

�g
e

R ' 0.036CHWB + 0.020C(3)
H`

� 0.022CHe + 0.005CHD � 0.010C`` ,

(3.9)

when (3.1), (3.2) and ⇤ = 1TeV is used as a numerical input. The EW precision measure-
ments performed by LEP and SLD [25, 27] imply that at 95% CL one has

�g
e

L 2 [�7.1, 2.0] · 10�4
, �g

e

R 2 [�7.0, 1.6] · 10�4
. (3.10)

Ignoring cancellations these limits again put severe constraints on the Wilson coefficients
that appear in (3.9). Numerically, we obtain for instance the bounds

C
(3)
H`

⇤2
2 [�3.6, 1.0] · 10�2TeV�2

,
CHe

⇤2
2 [�0.7, 3.1] · 10�2TeV�2

, (3.11)

from the constraint �g
e

L
and �g

e

R
, respectively, if we allow only the considered Wilson

coefficient to take a non-vanishing value. We add that the Wilson coefficients CHD, C(1)
H`

and C`` can also be constrained by the LEP and SLD measurements of the Z-boson coupling
to neutrinos. The obtained bounds, however, turn out to be weaker than those that derive
from (3.9) and (3.10).

Employing again (3.1), (3.2), (3.7) and (3.8) the left- and right-handed coupling shifts
in the case of the down and up quark take the following form

�g
d

L ' 0.012CHWB � 0.022
⇣
C

(1)
Hq

+ C
(3)
Hq

⌘
+ 0.029C(3)

H`
+ 0.007CHD � 0.015C`` ,

�g
d

R ' 0.012CHWB � 0.022CHd + 0.007C(3)
H`

+ 0.002CHD � 0.003C`` ,

�g
u

L ' �0.024CHWB � 0.022
⇣
C

(1)
Hq

� C
(3)
Hq

⌘
� 0.036C(3)

H`
� 0.009CHD + 0.018C`` ,

�g
u

R ' �0.024CHWB � 0.022CHu � 0.013C(3)
H`

� 0.003CHD + 0.007C`` ,

(3.12)

for a common operator suppression scale of ⇤ = 1TeV. The measurements by LEP and
SLD performed at the Z-pole lead to the following limits

�g
d

L 2 [�6.2, 2.0] · 10�2
, �g

d

R 2 [�4.8, 3.4] · 10�2
,

�g
u

L 2 [0.2, 6.8] · 10�2
, �g

u

R 2 [�1.3, 5.3] · 10�2
,

(3.13)

at 95% CL. These bounds translate into

C
(1)
Hq

⇤2
2 [�0.9, 2.8] TeV�2

,
C

(3)
Hq

⇤2
2 [�0.9, 2.8] TeV�2

,

CHd

⇤2
2 [�1.5, 2.1] TeV�2

,
CHu

⇤2
2 [�2.4, 0.6] TeV�2

,

(3.14)
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2. Anatomy of SMEFT Effects
2.1 Deviations from the SM

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-053
https://cds.cern.ch/record/2706103
https://arxiv.org/pdf/hep-ex/0509008.pdf
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In the SM, the higher-order QCD corrections to Vh at NNLO+PS are well-known. 

(B-type) (C,D-type) (A-type)Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

where
sij = (pi + pj)

2
, sijk = sij + sjk + ski , (4.4)

are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�M
2
Z + iMZ�Z , (4.5)

with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
of the initial vector boson V1 into the outgoing vector boson V2 and the Higgs boson h [8].
If the initial-state quarks and final-state leptons are left-handed the relevant generalised
neutral currents are given by

ZZhµ(p123, 4�` , 5
+
¯̀ ) =

g
�
Zq

g
�
Z`

DZ(s123)DZ(s45)

(
h4|�µ|5]

⇣
ghZZ + �g

(2)
hZZ

(s123 + s34) + �g
(3)
hZZ

⌘

� �g
(2)
hZZ

p
µ

123h4|/p123|5] +
�g

(1)
hZZ

2

⇣
h4|�µ/p123|4i[45] + h45i[5|/p123�

µ
|5]

⌘)
,

AZhµ(p123, 4�` , 5
+
¯̀ ) =

g
�
�q g

�
Z`

s123D(s45)

(
�g

(1)
h�Z

2

✓
h4|�µ|5]

⇣
h4|/p123|4] + h5|/p123|5]

⌘

� 2 (pµ4 + p
µ

5 ) h4|/p123|5]

◆
+ �g

(2)
h�Z

⇣
h4|�µ|5] s123 � p

µ

123 h4|/p123|5]
⌘)

,

(4.6)
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

where
sij = (pi + pj)

2
, sijk = sij + sjk + ski , (4.4)

are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�M
2
Z + iMZ�Z , (4.5)

with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
of the initial vector boson V1 into the outgoing vector boson V2 and the Higgs boson h [8].
If the initial-state quarks and final-state leptons are left-handed the relevant generalised
neutral currents are given by

ZZhµ(p123, 4�` , 5
+
¯̀ ) =

g
�
Zq

g
�
Z`

DZ(s123)DZ(s45)

(
h4|�µ|5]

⇣
ghZZ + �g

(2)
hZZ

(s123 + s34) + �g
(3)
hZZ

⌘

� �g
(2)
hZZ

p
µ

123h4|/p123|5] +
�g

(1)
hZZ

2

⇣
h4|�µ/p123|4i[45] + h45i[5|/p123�

µ
|5]

⌘)
,

AZhµ(p123, 4�` , 5
+
¯̀ ) =

g
�
�q g

�
Z`

s123D(s45)

(
�g

(1)
h�Z

2

✓
h4|�µ|5]

⇣
h4|/p123|4] + h5|/p123|5]

⌘

� 2 (pµ4 + p
µ

5 ) h4|/p123|5]

◆
+ �g

(2)
h�Z

⇣
h4|�µ|5] s123 � p

µ

123 h4|/p123|5]
⌘)

,

(4.6)

– 10 –

[1107.1164] (G. Ferrera, M. Grazzini, F. Tramontano)

[1705.10304] (G. Ferrera, G. Somogyi, F. Tramotano)
[1601.00658] (J.M. Campbell, R.K. Ellis, C. Williams)

[1712.06954] (F. Caola, G. Luisoni, K. Melnikov, R. Röntsch)
[1907.05836] (R. Gauld, A. Gehrmann-De Ridder, E.W.N. Glover, et al.)
[2112.04168] (S. Zanoli, M. Chiesa, E. Re, M. Wiesemann, G. Zanderighi)

Luc Schnell
EFT in Multiboson Production

June 20243. Higher-Order Corrections
3.1 Amplitudes

https://arxiv.org/abs/1705.10304
https://arxiv.org/abs/1601.00658
https://arxiv.org/abs/1712.06954
https://arxiv.org/abs/1907.05836
https://arxiv.org/abs/2112.04168
https://arxiv.org/abs/1107.1164


7

In the SM, the higher-order QCD corrections to Vh at NNLO+PS are well-known. 

(B-type) (C,D-type) (A-type)Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�M
2
Z + iMZ�Z , (4.5)

with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g
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and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V
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included at the level of (4.1) by means of generalised currents that describe the splitting
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 3: Example graphs that contribute to the B1g0Z matrix elements. The diagram
on the left shows a SM contribution. On the right we instead depict a SMEFT correction
that receives contributions from the generalised ZZh and �Zh currents introduced in (4.6).
The four-momentum flow is indicated by the grey arrows and labels. See the main text for
additional explanations.

describes the contribution from Q
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Hq

, Q(3)
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, QHu and QHd, while the second term is induced
by Q

(1)
H`

, Q(3)
H`

and QHe. Notice that compared to the corresponding SM contribution in (4.3)
the SMEFT correction proportional to �g

(1)hq

hZq
in (4.12) is missing the Z-boson propagator

depending on s123. This feature explains the high-energy growth [11–13] of the SMEFT
pp ! V h amplitudes involving the Wilson coefficients C

(1)
Hq

, C(3)
Hq

, CHu and CHd.
The last type of SMEFT corrections to the matrix element B1g0Z is associated to the

tree-level shifts of the SM parameters and couplings. EW input scheme corrections from
CHD, CHWB, C

(3)
H`

and C`` lead to the shifts �g1, �g2 and �v of the U(1)Y and SU(2)L

gauge coupling and the Higgs VEV, respectively, that in turn induce the shifts �g
(0)
hZZ

and
�g

(0)hf

Zf
in the respective couplings of the Z boson. The expressions for these shifts are listed

in Appendix A. In practice, the input scheme corrections can be accounted for by applying
the replacements ghZZ ! ghZZ + �g

(0)
hZZ

and �g
(0)hf

Zf
! �g

(0)hf

Zf
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Zf
to (4.3). Similarly,

the Wilson coefficients C
(1)
Hq

, C(3)
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, CHu, CHd, C
(1)
H`

, C(3)
H`

and CHe lead to direct shifts in

the Zff̄ couplings that we include through the shifts g
(1)hf

Zf
! g

(1)hf

Zf
+ �g

(1)hf

Zf
in (4.3).

The expressions for the latter shifts are again given in Appendix A.
While we have used in this section the matrix element B1g0Z as an example to illus-

trate the general approach that we have employed in our SMEFT calculation of pp ! V h

at NNLO in QCD, it is important to realise that the computation of all other matrix
elements proceeds in an analogous manner. In the case of the SMEFT corrections aris-
ing from the choice of EW input scheme as well as those associated to insertions of the
operators (2.2) and (2.3) this is clear in view of the factorisation properties of these contri-
butions

�
cf. (4.12)

�
. Likewise, since the spinor-helicity structure of the partonic part of a

given SMEFT amplitude remains the same as in the SM, it can simply be extracted from the
SM expressions and contracted with the part of the SMEFT amplitude that does change.
It follows that an explicit calculation of the full partonic structures for the higher-order cor-
rections to pp ! V h in the SMEFT can always be avoided, because the relevant amplitudes
can be obtained from those in the SM by applying relations a la (4.8) and (4.10) which
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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furthermore introduced
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with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g
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and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
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Figure 3: Example graphs that contribute to the B1g0Z matrix elements. The diagram
on the left shows a SM contribution. On the right we instead depict a SMEFT correction
that receives contributions from the generalised ZZh and �Zh currents introduced in (4.6).
The four-momentum flow is indicated by the grey arrows and labels. See the main text for
additional explanations.
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operators (2.2) and (2.3) this is clear in view of the factorisation properties of these contri-
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
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As an example for the calculation of the SMEFT matrix elements, we consider the case
of B1g0Z where an additional gluon is radiated off the initial-state quark line. While contain-
ing all the main ingredients, the expressions for B1g0Z are concise enough to be stated here.
The corresponding SM Feynman diagram is displayed on the left-hand side in Figure 3.
Note that we consider the leptons (quarks) to be outgoing (incoming). The corresponding
spinor-helicity amplitude with left-handed fermion chiralities and a physical gluon with a
negative helicity reads
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⌘
, (3.1)

where hiji and [ij] denote the usual spinor products — see for example [32] for a review of
the spinor-helicity formalism. Notice that the semicolon in the expression on the left-hand
side of (3.1) separates the particles with incoming and outgoing convention, respectively.
The amplitudes for the remaining helicity combinations can be obtained via the following
parity and charge conjugation relations
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The resulting spin-averaged matrix element B1g0Z then takes the form
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where
sij = (pi + pj)

2
, sijk = sij + sjk + ski , (3.4)
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

where
sij = (pi + pj)

2
, sijk = sij + sjk + ski , (4.4)

are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�M
2
Z + iMZ�Z , (4.5)

with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
of the initial vector boson V1 into the outgoing vector boson V2 and the Higgs boson h [8].
If the initial-state quarks and final-state leptons are left-handed the relevant generalised
neutral currents are given by
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Figure 3: Example graphs that contribute to the B1g0Z matrix elements. The diagram
on the left shows a SM contribution. On the right we instead depict a SMEFT correction
that receives contributions from the generalised ZZh and �Zh currents introduced in (4.6).
The four-momentum flow is indicated by the grey arrows and labels. See the main text for
additional explanations.

describes the contribution from Q
(1)
Hq

, Q(3)
Hq

, QHu and QHd, while the second term is induced
by Q

(1)
H`

, Q(3)
H`

and QHe. Notice that compared to the corresponding SM contribution in (4.3)
the SMEFT correction proportional to �g

(1)hq

hZq
in (4.12) is missing the Z-boson propagator

depending on s123. This feature explains the high-energy growth [11–13] of the SMEFT
pp ! V h amplitudes involving the Wilson coefficients C

(1)
Hq

, C(3)
Hq

, CHu and CHd.
The last type of SMEFT corrections to the matrix element B1g0Z is associated to the

tree-level shifts of the SM parameters and couplings. EW input scheme corrections from
CHD, CHWB, C

(3)
H`

and C`` lead to the shifts �g1, �g2 and �v of the U(1)Y and SU(2)L

gauge coupling and the Higgs VEV, respectively, that in turn induce the shifts �g
(0)
hZZ

and
�g

(0)hf

Zf
in the respective couplings of the Z boson. The expressions for these shifts are listed

in Appendix A. In practice, the input scheme corrections can be accounted for by applying
the replacements ghZZ ! ghZZ + �g

(0)
hZZ

and �g
(0)hf

Zf
! �g

(0)hf

Zf
+ �g

(0)hf

Zf
to (4.3). Similarly,

the Wilson coefficients C
(1)
Hq

, C(3)
Hq

, CHu, CHd, C
(1)
H`

, C(3)
H`

and CHe lead to direct shifts in

the Zff̄ couplings that we include through the shifts g
(1)hf

Zf
! g

(1)hf

Zf
+ �g

(1)hf

Zf
in (4.3).

The expressions for the latter shifts are again given in Appendix A.
While we have used in this section the matrix element B1g0Z as an example to illus-

trate the general approach that we have employed in our SMEFT calculation of pp ! V h

at NNLO in QCD, it is important to realise that the computation of all other matrix
elements proceeds in an analogous manner. In the case of the SMEFT corrections aris-
ing from the choice of EW input scheme as well as those associated to insertions of the
operators (2.2) and (2.3) this is clear in view of the factorisation properties of these contri-
butions

�
cf. (4.12)

�
. Likewise, since the spinor-helicity structure of the partonic part of a

given SMEFT amplitude remains the same as in the SM, it can simply be extracted from the
SM expressions and contracted with the part of the SMEFT amplitude that does change.
It follows that an explicit calculation of the full partonic structures for the higher-order cor-
rections to pp ! V h in the SMEFT can always be avoided, because the relevant amplitudes
can be obtained from those in the SM by applying relations a la (4.8) and (4.10) which

– 12 –

(B1g0Z)

Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
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As an example for the calculation of the SMEFT matrix elements, we consider the case
of B1g0Z where an additional gluon is radiated off the initial-state quark line. While contain-
ing all the main ingredients, the expressions for B1g0Z are concise enough to be stated here.
The corresponding SM Feynman diagram is displayed on the left-hand side in Figure 3.
Note that we consider the leptons (quarks) to be outgoing (incoming). The corresponding
spinor-helicity amplitude with left-handed fermion chiralities and a physical gluon with a
negative helicity reads
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where hiji and [ij] denote the usual spinor products — see for example [32] for a review of
the spinor-helicity formalism. Notice that the semicolon in the expression on the left-hand
side of (3.1) separates the particles with incoming and outgoing convention, respectively.
The amplitudes for the remaining helicity combinations can be obtained via the following
parity and charge conjugation relations
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The resulting spin-averaged matrix element B1g0Z then takes the form
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

where
sij = (pi + pj)

2
, sijk = sij + sjk + ski , (4.4)

are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�M
2
Z + iMZ�Z , (4.5)

with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
of the initial vector boson V1 into the outgoing vector boson V2 and the Higgs boson h [8].
If the initial-state quarks and final-state leptons are left-handed the relevant generalised
neutral currents are given by
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(4.6)
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diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
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are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�m
2
Z + imZ�Z , (3.5)

with �Z denoting the total decay width of the Z boson. In (3.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
To compute the SMEFT contributions that involve modified couplings between the

Higgs and two vector bosons, it is important to notice that by using the spinor identity

hiji[kl] =
1

2
hj|�

µ
|k]hi|�µ|l] , (3.6)

the result (3.1) can be rewritten as
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µ
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g , 3

+
q̄ ) . (3.7)

Here the spinor-helicity amplitude corresponding to the qq̄g subprocess with the indi-
cated helicities is given by

A
µ

qgq(1
�
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�
g , 3

+
q̄ ) =

h13ih3|�µ|1] + h23ih3|�µ|2]

2h12ih23i
. (3.8)

3.2 SMEFT calculation

The technically most involved part of the SMEFT calculation results from insertions of the
three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the one present in the SM, i.e. the spinor
chain h4|�µ|5] in (3.7). These modifications can be included at the level of (3.1) by means
of generalised currents that describe the splitting of the initial vector boson V1 into the
outgoing vector boson V2 and the Higgs boson h [8]. If the initial-state quarks and final-
state leptons are left-handed the relevant generalised neutral currents are given by
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123 h4|/p123|5]
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,

(3.9)

where the structures A
µ

hZZ
and A

µ

h�Z
encode the modified hZZ and h�Z vertices, respec-

tively, and p123 denotes the four-momentum of the incoming vector boson. The symbols ghq

�q
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8
Figure 3: Example graphs that contribute to the B1g0Z matrix elements. The diagram
on the left shows a SM contribution. On the right we instead depict a SMEFT correction
that receives contributions from the generalised ZZh and �Zh currents introduced in (4.6).
The four-momentum flow is indicated by the grey arrows and labels. See the main text for
additional explanations.

describes the contribution from Q
(1)
Hq

, Q(3)
Hq

, QHu and QHd, while the second term is induced
by Q

(1)
H`

, Q(3)
H`

and QHe. Notice that compared to the corresponding SM contribution in (4.3)
the SMEFT correction proportional to �g

(1)hq

hZq
in (4.12) is missing the Z-boson propagator

depending on s123. This feature explains the high-energy growth [11–13] of the SMEFT
pp ! V h amplitudes involving the Wilson coefficients C

(1)
Hq

, C(3)
Hq

, CHu and CHd.
The last type of SMEFT corrections to the matrix element B1g0Z is associated to the

tree-level shifts of the SM parameters and couplings. EW input scheme corrections from
CHD, CHWB, C

(3)
H`

and C`` lead to the shifts �g1, �g2 and �v of the U(1)Y and SU(2)L

gauge coupling and the Higgs VEV, respectively, that in turn induce the shifts �g
(0)
hZZ

and
�g

(0)hf

Zf
in the respective couplings of the Z boson. The expressions for these shifts are listed

in Appendix A. In practice, the input scheme corrections can be accounted for by applying
the replacements ghZZ ! ghZZ + �g

(0)
hZZ

and �g
(0)hf

Zf
! �g

(0)hf

Zf
+ �g

(0)hf

Zf
to (4.3). Similarly,

the Wilson coefficients C
(1)
Hq

, C(3)
Hq

, CHu, CHd, C
(1)
H`

, C(3)
H`

and CHe lead to direct shifts in

the Zff̄ couplings that we include through the shifts g
(1)hf

Zf
! g

(1)hf

Zf
+ �g

(1)hf

Zf
in (4.3).

The expressions for the latter shifts are again given in Appendix A.
While we have used in this section the matrix element B1g0Z as an example to illus-

trate the general approach that we have employed in our SMEFT calculation of pp ! V h

at NNLO in QCD, it is important to realise that the computation of all other matrix
elements proceeds in an analogous manner. In the case of the SMEFT corrections aris-
ing from the choice of EW input scheme as well as those associated to insertions of the
operators (2.2) and (2.3) this is clear in view of the factorisation properties of these contri-
butions

�
cf. (4.12)

�
. Likewise, since the spinor-helicity structure of the partonic part of a

given SMEFT amplitude remains the same as in the SM, it can simply be extracted from the
SM expressions and contracted with the part of the SMEFT amplitude that does change.
It follows that an explicit calculation of the full partonic structures for the higher-order cor-
rections to pp ! V h in the SMEFT can always be avoided, because the relevant amplitudes
can be obtained from those in the SM by applying relations a la (4.8) and (4.10) which
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

As an example for the calculation of the SMEFT matrix elements, we consider the case
of B1g0Z where an additional gluon is radiated off the initial-state quark line. While contain-
ing all the main ingredients, the expressions for B1g0Z are concise enough to be stated here.
The corresponding SM Feynman diagram is displayed on the left-hand side in Figure 3.
Note that we consider the leptons (quarks) to be outgoing (incoming). The corresponding
spinor-helicity amplitude with left-handed fermion chiralities and a physical gluon with a
negative helicity reads
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where hiji and [ij] denote the usual spinor products — see for example [32] for a review of
the spinor-helicity formalism. Notice that the semicolon in the expression on the left-hand
side of (3.1) separates the particles with incoming and outgoing convention, respectively.
The amplitudes for the remaining helicity combinations can be obtained via the following
parity and charge conjugation relations
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The resulting spin-averaged matrix element B1g0Z then takes the form
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SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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ing all the main ingredients, the expressions for B1g0Z are concise enough to be stated here.
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SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
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are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�M
2
Z + iMZ�Z , (4.5)

with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
of the initial vector boson V1 into the outgoing vector boson V2 and the Higgs boson h [8].
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are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�m
2
Z + imZ�Z , (3.5)

with �Z denoting the total decay width of the Z boson. In (3.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
To compute the SMEFT contributions that involve modified couplings between the

Higgs and two vector bosons, it is important to notice that by using the spinor identity

hiji[kl] =
1

2
hj|�

µ
|k]hi|�µ|l] , (3.6)

the result (3.1) can be rewritten as
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⇣
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�
`
, 5+¯̀

⌘
= h4|�µ|5]A
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qgq(1
�
q , 2

�
g , 3

+
q̄ ) . (3.7)

Here the spinor-helicity amplitude corresponding to the qq̄g subprocess with the indi-
cated helicities is given by

A
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qgq(1
�
q , 2

�
g , 3

+
q̄ ) =

h13ih3|�µ|1] + h23ih3|�µ|2]

2h12ih23i
. (3.8)

3.2 SMEFT calculation

The technically most involved part of the SMEFT calculation results from insertions of the
three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the one present in the SM, i.e. the spinor
chain h4|�µ|5] in (3.7). These modifications can be included at the level of (3.1) by means
of generalised currents that describe the splitting of the initial vector boson V1 into the
outgoing vector boson V2 and the Higgs boson h [8]. If the initial-state quarks and final-
state leptons are left-handed the relevant generalised neutral currents are given by
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123 h4|/p123|5]
⌘)

,

(3.9)

where the structures A
µ

hZZ
and A

µ

h�Z
encode the modified hZZ and h�Z vertices, respec-

tively, and p123 denotes the four-momentum of the incoming vector boson. The symbols ghq

�q
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Figure 3: Example graphs that contribute to the B1g0Z matrix elements. The diagram
on the left shows a SM contribution. On the right we instead depict a SMEFT correction
that receives contributions from the generalised ZZh and �Zh currents introduced in (4.6).
The four-momentum flow is indicated by the grey arrows and labels. See the main text for
additional explanations.

describes the contribution from Q
(1)
Hq

, Q(3)
Hq

, QHu and QHd, while the second term is induced
by Q

(1)
H`

, Q(3)
H`

and QHe. Notice that compared to the corresponding SM contribution in (4.3)
the SMEFT correction proportional to �g

(1)hq

hZq
in (4.12) is missing the Z-boson propagator

depending on s123. This feature explains the high-energy growth [11–13] of the SMEFT
pp ! V h amplitudes involving the Wilson coefficients C

(1)
Hq

, C(3)
Hq

, CHu and CHd.
The last type of SMEFT corrections to the matrix element B1g0Z is associated to the

tree-level shifts of the SM parameters and couplings. EW input scheme corrections from
CHD, CHWB, C

(3)
H`

and C`` lead to the shifts �g1, �g2 and �v of the U(1)Y and SU(2)L

gauge coupling and the Higgs VEV, respectively, that in turn induce the shifts �g
(0)
hZZ

and
�g

(0)hf

Zf
in the respective couplings of the Z boson. The expressions for these shifts are listed

in Appendix A. In practice, the input scheme corrections can be accounted for by applying
the replacements ghZZ ! ghZZ + �g

(0)
hZZ

and �g
(0)hf

Zf
! �g

(0)hf

Zf
+ �g

(0)hf

Zf
to (4.3). Similarly,

the Wilson coefficients C
(1)
Hq

, C(3)
Hq

, CHu, CHd, C
(1)
H`

, C(3)
H`

and CHe lead to direct shifts in

the Zff̄ couplings that we include through the shifts g
(1)hf

Zf
! g

(1)hf

Zf
+ �g

(1)hf

Zf
in (4.3).

The expressions for the latter shifts are again given in Appendix A.
While we have used in this section the matrix element B1g0Z as an example to illus-

trate the general approach that we have employed in our SMEFT calculation of pp ! V h

at NNLO in QCD, it is important to realise that the computation of all other matrix
elements proceeds in an analogous manner. In the case of the SMEFT corrections aris-
ing from the choice of EW input scheme as well as those associated to insertions of the
operators (2.2) and (2.3) this is clear in view of the factorisation properties of these contri-
butions

�
cf. (4.12)

�
. Likewise, since the spinor-helicity structure of the partonic part of a

given SMEFT amplitude remains the same as in the SM, it can simply be extracted from the
SM expressions and contracted with the part of the SMEFT amplitude that does change.
It follows that an explicit calculation of the full partonic structures for the higher-order cor-
rections to pp ! V h in the SMEFT can always be avoided, because the relevant amplitudes
can be obtained from those in the SM by applying relations a la (4.8) and (4.10) which
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

As an example for the calculation of the SMEFT matrix elements, we consider the case
of B1g0Z where an additional gluon is radiated off the initial-state quark line. While contain-
ing all the main ingredients, the expressions for B1g0Z are concise enough to be stated here.
The corresponding SM Feynman diagram is displayed on the left-hand side in Figure 3.
Note that we consider the leptons (quarks) to be outgoing (incoming). The corresponding
spinor-helicity amplitude with left-handed fermion chiralities and a physical gluon with a
negative helicity reads

AB1g0Z

⇣
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g , 3

+
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�
`
, 5+¯̀

⌘
=

h34i

h12i h23i

⇣
h13i [51] + h23i [52]

⌘
, (3.1)

where hiji and [ij] denote the usual spinor products — see for example [32] for a review of
the spinor-helicity formalism. Notice that the semicolon in the expression on the left-hand
side of (3.1) separates the particles with incoming and outgoing convention, respectively.
The amplitudes for the remaining helicity combinations can be obtained via the following
parity and charge conjugation relations
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g , 3
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�
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(3.2)

The resulting spin-averaged matrix element B1g0Z then takes the form

B1g0Z =
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X
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2

, (3.3)

where
sij = (pi + pj)

2
, sijk = sij + sjk + ski , (3.4)
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

where
sij = (pi + pj)

2
, sijk = sij + sjk + ski , (4.4)

are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�M
2
Z + iMZ�Z , (4.5)

with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
of the initial vector boson V1 into the outgoing vector boson V2 and the Higgs boson h [8].
If the initial-state quarks and final-state leptons are left-handed the relevant generalised
neutral currents are given by

ZZhµ(p123, 4�` , 5
+
¯̀ ) =
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(4.6)
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
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of the initial vector boson V1 into the outgoing vector boson V2 and the Higgs boson h [8].
If the initial-state quarks and final-state leptons are left-handed the relevant generalised
neutral currents are given by

ZZhµ(p123, 4�` , 5
+
¯̀ ) =

g
�
Zq

g
�
Z`

DZ(s123)DZ(s45)

(
h4|�µ|5]

⇣
ghZZ + �g

(2)
hZZ

(s123 + s34) + �g
(3)
hZZ

⌘

� �g
(2)
hZZ

p
µ

123h4|/p123|5] +
�g

(1)
hZZ

2

⇣
h4|�µ/p123|4i[45] + h45i[5|/p123�

µ
|5]

⌘)
,

AZhµ(p123, 4�` , 5
+
¯̀ ) =

g
�
�q g

�
Z`

s123D(s45)

(
�g

(1)
h�Z

2

✓
h4|�µ|5]

⇣
h4|/p123|4] + h5|/p123|5]

⌘

� 2 (pµ4 + p
µ

5 ) h4|/p123|5]

◆
+ �g

(2)
h�Z

⇣
h4|�µ|5] s123 � p

µ

123 h4|/p123|5]
⌘)

,

(4.6)

– 10 –

(B-type) (C,D-type)

UV

γ, Z

Z

q

q
l

l +

-
-

b
-
b

hCorrections: Diagram:  

We start with the SM spinor-helicity amplitudes… [10.3929/ethz-b-000448848] (Thesis of I. Majer)
[1112.1531] (T. Gehrmann, L. Tancredi)

Luc Schnell
EFT in Multiboson Production

June 20243. Higher-Order Corrections
3.2 -initiated contributionsqq̄

https://doi.org/10.3929/ethz-b-000448848
https://arxiv.org/abs/1112.1531


are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�m
2
Z + imZ�Z , (3.5)

with �Z denoting the total decay width of the Z boson. In (3.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
To compute the SMEFT contributions that involve modified couplings between the

Higgs and two vector bosons, it is important to notice that by using the spinor identity

hiji[kl] =
1

2
hj|�

µ
|k]hi|�µ|l] , (3.6)

the result (3.1) can be rewritten as
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⇣
1�q , 2

�
g , 3

+
q̄ ; 4

�
`
, 5+¯̀
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= h4|�µ|5]A
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qgq(1
�
q , 2

�
g , 3

+
q̄ ) . (3.7)

Here the spinor-helicity amplitude corresponding to the qq̄g subprocess with the indi-
cated helicities is given by

A
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qgq(1
�
q , 2

�
g , 3

+
q̄ ) =

h13ih3|�µ|1] + h23ih3|�µ|2]

2h12ih23i
. (3.8)

3.2 SMEFT calculation

The technically most involved part of the SMEFT calculation results from insertions of the
three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the one present in the SM, i.e. the spinor
chain h4|�µ|5] in (3.7). These modifications can be included at the level of (3.1) by means
of generalised currents that describe the splitting of the initial vector boson V1 into the
outgoing vector boson V2 and the Higgs boson h [8]. If the initial-state quarks and final-
state leptons are left-handed the relevant generalised neutral currents are given by
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⌘
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µ
|5]
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�
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(
�

�g
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2
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� 2 (pµ4 + p
µ

5 ) h4|/p123|5]
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(2)
h�Z

⇣
h4|�µ|5] s123 � p

µ

123 h4|/p123|5]
⌘)

,

(3.9)

where the structures A
µ

hZZ
and A

µ

h�Z
encode the modified hZZ and h�Z vertices, respec-

tively, and p123 denotes the four-momentum of the incoming vector boson. The symbols ghq

�q
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Figure 3: Example graphs that contribute to the B1g0Z matrix elements. The diagram
on the left shows a SM contribution. On the right we instead depict a SMEFT correction
that receives contributions from the generalised ZZh and �Zh currents introduced in (4.6).
The four-momentum flow is indicated by the grey arrows and labels. See the main text for
additional explanations.

describes the contribution from Q
(1)
Hq

, Q(3)
Hq

, QHu and QHd, while the second term is induced
by Q

(1)
H`

, Q(3)
H`

and QHe. Notice that compared to the corresponding SM contribution in (4.3)
the SMEFT correction proportional to �g

(1)hq

hZq
in (4.12) is missing the Z-boson propagator

depending on s123. This feature explains the high-energy growth [11–13] of the SMEFT
pp ! V h amplitudes involving the Wilson coefficients C

(1)
Hq

, C(3)
Hq

, CHu and CHd.
The last type of SMEFT corrections to the matrix element B1g0Z is associated to the

tree-level shifts of the SM parameters and couplings. EW input scheme corrections from
CHD, CHWB, C

(3)
H`

and C`` lead to the shifts �g1, �g2 and �v of the U(1)Y and SU(2)L

gauge coupling and the Higgs VEV, respectively, that in turn induce the shifts �g
(0)
hZZ

and
�g

(0)hf

Zf
in the respective couplings of the Z boson. The expressions for these shifts are listed

in Appendix A. In practice, the input scheme corrections can be accounted for by applying
the replacements ghZZ ! ghZZ + �g

(0)
hZZ

and �g
(0)hf

Zf
! �g

(0)hf

Zf
+ �g

(0)hf

Zf
to (4.3). Similarly,

the Wilson coefficients C
(1)
Hq

, C(3)
Hq

, CHu, CHd, C
(1)
H`

, C(3)
H`

and CHe lead to direct shifts in

the Zff̄ couplings that we include through the shifts g
(1)hf

Zf
! g

(1)hf

Zf
+ �g

(1)hf

Zf
in (4.3).

The expressions for the latter shifts are again given in Appendix A.
While we have used in this section the matrix element B1g0Z as an example to illus-

trate the general approach that we have employed in our SMEFT calculation of pp ! V h

at NNLO in QCD, it is important to realise that the computation of all other matrix
elements proceeds in an analogous manner. In the case of the SMEFT corrections aris-
ing from the choice of EW input scheme as well as those associated to insertions of the
operators (2.2) and (2.3) this is clear in view of the factorisation properties of these contri-
butions

�
cf. (4.12)

�
. Likewise, since the spinor-helicity structure of the partonic part of a

given SMEFT amplitude remains the same as in the SM, it can simply be extracted from the
SM expressions and contracted with the part of the SMEFT amplitude that does change.
It follows that an explicit calculation of the full partonic structures for the higher-order cor-
rections to pp ! V h in the SMEFT can always be avoided, because the relevant amplitudes
can be obtained from those in the SM by applying relations a la (4.8) and (4.10) which
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(B1g0Z)

Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

As an example for the calculation of the SMEFT matrix elements, we consider the case
of B1g0Z where an additional gluon is radiated off the initial-state quark line. While contain-
ing all the main ingredients, the expressions for B1g0Z are concise enough to be stated here.
The corresponding SM Feynman diagram is displayed on the left-hand side in Figure 3.
Note that we consider the leptons (quarks) to be outgoing (incoming). The corresponding
spinor-helicity amplitude with left-handed fermion chiralities and a physical gluon with a
negative helicity reads
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⇣
1�q , 2

�
g , 3

+
q̄ ; 4

�
`
, 5+¯̀

⌘
=

h34i

h12i h23i

⇣
h13i [51] + h23i [52]

⌘
, (3.1)

where hiji and [ij] denote the usual spinor products — see for example [32] for a review of
the spinor-helicity formalism. Notice that the semicolon in the expression on the left-hand
side of (3.1) separates the particles with incoming and outgoing convention, respectively.
The amplitudes for the remaining helicity combinations can be obtained via the following
parity and charge conjugation relations
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1�q , 2

+
g , 3
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q̄ ; 4

�
`
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⇣
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�
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�
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⌘
.

(3.2)

The resulting spin-averaged matrix element B1g0Z then takes the form

B1g0Z =
8⇡↵sCF

CA

X

hq ,hg ,h`=±

�����
g
hq

Zq
g
h`

Z`
ghZZ

DZ(s123)DZ(s45)
AB1g0Z

⇣
1
hq

q , 2
hg

g , 3
�hq

q̄ ; 4h`

`
, 5�h`

¯̀

⌘�����

2

, (3.3)

where
sij = (pi + pj)

2
, sijk = sij + sjk + ski , (3.4)
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

As an example for the calculation of the SMEFT matrix elements, we consider the case
of B1g0Z where an additional gluon is radiated off the initial-state quark line. While contain-
ing all the main ingredients, the expressions for B1g0Z are concise enough to be stated here.
The corresponding SM Feynman diagram is displayed on the left-hand side in Figure 3.
Note that we consider the leptons (quarks) to be outgoing (incoming). The corresponding
spinor-helicity amplitude with left-handed fermion chiralities and a physical gluon with a
negative helicity reads
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where hiji and [ij] denote the usual spinor products — see for example [32] for a review of
the spinor-helicity formalism. Notice that the semicolon in the expression on the left-hand
side of (3.1) separates the particles with incoming and outgoing convention, respectively.
The amplitudes for the remaining helicity combinations can be obtained via the following
parity and charge conjugation relations
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The resulting spin-averaged matrix element B1g0Z then takes the form
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

where
sij = (pi + pj)

2
, sijk = sij + sjk + ski , (4.4)

are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�M
2
Z + iMZ�Z , (4.5)

with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
of the initial vector boson V1 into the outgoing vector boson V2 and the Higgs boson h [8].
If the initial-state quarks and final-state leptons are left-handed the relevant generalised
neutral currents are given by

ZZhµ(p123, 4�` , 5
+
¯̀ ) =

g
�
Zq

g
�
Z`

DZ(s123)DZ(s45)

(
h4|�µ|5]

⇣
ghZZ + �g

(2)
hZZ

(s123 + s34) + �g
(3)
hZZ

⌘

� �g
(2)
hZZ

p
µ

123h4|/p123|5] +
�g

(1)
hZZ

2

⇣
h4|�µ/p123|4i[45] + h45i[5|/p123�

µ
|5]

⌘)
,

AZhµ(p123, 4�` , 5
+
¯̀ ) =

g
�
�q g

�
Z`

s123D(s45)

(
�g

(1)
h�Z

2

✓
h4|�µ|5]

⇣
h4|/p123|4] + h5|/p123|5]

⌘

� 2 (pµ4 + p
µ

5 ) h4|/p123|5]

◆
+ �g

(2)
h�Z

⇣
h4|�µ|5] s123 � p

µ

123 h4|/p123|5]
⌘)

,

(4.6)
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�M
2
Z + iMZ�Z , (4.5)

with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
of the initial vector boson V1 into the outgoing vector boson V2 and the Higgs boson h [8].
If the initial-state quarks and final-state leptons are left-handed the relevant generalised
neutral currents are given by
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are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�m
2
Z + imZ�Z , (3.5)

with �Z denoting the total decay width of the Z boson. In (3.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
To compute the SMEFT contributions that involve modified couplings between the

Higgs and two vector bosons, it is important to notice that by using the spinor identity

hiji[kl] =
1

2
hj|�

µ
|k]hi|�µ|l] , (3.6)

the result (3.1) can be rewritten as
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qgq(1
�
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�
g , 3

+
q̄ ) . (3.7)

Here the spinor-helicity amplitude corresponding to the qq̄g subprocess with the indi-
cated helicities is given by

A
µ

qgq(1
�
q , 2

�
g , 3

+
q̄ ) =

h13ih3|�µ|1] + h23ih3|�µ|2]

2h12ih23i
. (3.8)

3.2 SMEFT calculation

The technically most involved part of the SMEFT calculation results from insertions of the
three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the one present in the SM, i.e. the spinor
chain h4|�µ|5] in (3.7). These modifications can be included at the level of (3.1) by means
of generalised currents that describe the splitting of the initial vector boson V1 into the
outgoing vector boson V2 and the Higgs boson h [8]. If the initial-state quarks and final-
state leptons are left-handed the relevant generalised neutral currents are given by
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(3.9)

where the structures A
µ

hZZ
and A

µ

h�Z
encode the modified hZZ and h�Z vertices, respec-

tively, and p123 denotes the four-momentum of the incoming vector boson. The symbols ghq

�q
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Figure 3: Example graphs that contribute to the B1g0Z matrix elements. The diagram
on the left shows a SM contribution. On the right we instead depict a SMEFT correction
that receives contributions from the generalised ZZh and �Zh currents introduced in (4.6).
The four-momentum flow is indicated by the grey arrows and labels. See the main text for
additional explanations.

describes the contribution from Q
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, QHu and QHd, while the second term is induced
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and QHe. Notice that compared to the corresponding SM contribution in (4.3)
the SMEFT correction proportional to �g

(1)hq

hZq
in (4.12) is missing the Z-boson propagator

depending on s123. This feature explains the high-energy growth [11–13] of the SMEFT
pp ! V h amplitudes involving the Wilson coefficients C
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, C(3)
Hq

, CHu and CHd.
The last type of SMEFT corrections to the matrix element B1g0Z is associated to the

tree-level shifts of the SM parameters and couplings. EW input scheme corrections from
CHD, CHWB, C

(3)
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and C`` lead to the shifts �g1, �g2 and �v of the U(1)Y and SU(2)L

gauge coupling and the Higgs VEV, respectively, that in turn induce the shifts �g
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and CHe lead to direct shifts in

the Zff̄ couplings that we include through the shifts g
(1)hf

Zf
! g

(1)hf
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(1)hf

Zf
in (4.3).

The expressions for the latter shifts are again given in Appendix A.
While we have used in this section the matrix element B1g0Z as an example to illus-

trate the general approach that we have employed in our SMEFT calculation of pp ! V h

at NNLO in QCD, it is important to realise that the computation of all other matrix
elements proceeds in an analogous manner. In the case of the SMEFT corrections aris-
ing from the choice of EW input scheme as well as those associated to insertions of the
operators (2.2) and (2.3) this is clear in view of the factorisation properties of these contri-
butions
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cf. (4.12)

�
. Likewise, since the spinor-helicity structure of the partonic part of a

given SMEFT amplitude remains the same as in the SM, it can simply be extracted from the
SM expressions and contracted with the part of the SMEFT amplitude that does change.
It follows that an explicit calculation of the full partonic structures for the higher-order cor-
rections to pp ! V h in the SMEFT can always be avoided, because the relevant amplitudes
can be obtained from those in the SM by applying relations a la (4.8) and (4.10) which
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

As an example for the calculation of the SMEFT matrix elements, we consider the case
of B1g0Z where an additional gluon is radiated off the initial-state quark line. While contain-
ing all the main ingredients, the expressions for B1g0Z are concise enough to be stated here.
The corresponding SM Feynman diagram is displayed on the left-hand side in Figure 3.
Note that we consider the leptons (quarks) to be outgoing (incoming). The corresponding
spinor-helicity amplitude with left-handed fermion chiralities and a physical gluon with a
negative helicity reads
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⌘
=
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, (3.1)

where hiji and [ij] denote the usual spinor products — see for example [32] for a review of
the spinor-helicity formalism. Notice that the semicolon in the expression on the left-hand
side of (3.1) separates the particles with incoming and outgoing convention, respectively.
The amplitudes for the remaining helicity combinations can be obtained via the following
parity and charge conjugation relations

AB1g0Z

⇣
1�q , 2

+
g , 3

+
q̄ ; 4

�
`
, 5+¯̀

⌘
= �AB1g0Z

⇣
3�q , 2

�
g , 1

+
q̄ ; 5

�
`
, 4+¯̀

⌘⇤
,

AB1g0Z

⇣
1�q , 2

hg

g , 3+q̄ ; 4
+
`
, 5�¯̀

⌘
= AB1g0Z

⇣
1�q , 2

hg

g , 3+q̄ ; 5
�
`
, 4+¯̀

⌘
,

AB1g0Z

⇣
1+q , 2

hg

g , 3�q̄ ; 4
�
`
, 5+¯̀

⌘
= �AB1g0Z

⇣
3�q , 2

hg

g , 1+q̄ ; 4
�
`
, 5+¯̀

⌘
,

AB1g0Z

⇣
1+q , 2

hg

g , 3�q̄ ; 4
+
`
, 5�¯̀

⌘
= �AB1g0Z

⇣
3�q , 2

hg

g , 1+q̄ ; 5
�
`
, 4+¯̀

⌘
.

(3.2)

The resulting spin-averaged matrix element B1g0Z then takes the form

B1g0Z =
8⇡↵sCF

CA

X

hq ,hg ,h`=±

�����
g
hq

Zq
g
h`

Z`
ghZZ

DZ(s123)DZ(s45)
AB1g0Z

⇣
1
hq

q , 2
hg

g , 3
�hq

q̄ ; 4h`

`
, 5�h`

¯̀

⌘�����

2

, (3.3)

where
sij = (pi + pj)

2
, sijk = sij + sjk + ski , (3.4)

– 5 –

Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�m
2
Z + imZ�Z , (3.5)

with �Z denoting the total decay width of the Z boson. In (3.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
To compute the SMEFT contributions that involve modified couplings between the

Higgs and two vector bosons, it is important to notice that by using the spinor identity

hiji[kl] =
1

2
hj|�

µ
|k]hi|�µ|l] , (3.6)

the result (3.1) can be rewritten as
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⇣
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q̄ ; 4
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, 5+¯̀

⌘
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qgq(1
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q , 2

�
g , 3
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q̄ ) . (3.7)

Here the spinor-helicity amplitude corresponding to the qq̄g subprocess with the indi-
cated helicities is given by
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. (3.8)

3.2 SMEFT calculation

The technically most involved part of the SMEFT calculation results from insertions of the
three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the one present in the SM, i.e. the spinor
chain h4|�µ|5] in (3.7). These modifications can be included at the level of (3.1) by means
of generalised currents that describe the splitting of the initial vector boson V1 into the
outgoing vector boson V2 and the Higgs boson h [8]. If the initial-state quarks and final-
state leptons are left-handed the relevant generalised neutral currents are given by
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(3.9)

where the structures A
µ

hZZ
and A

µ

h�Z
encode the modified hZZ and h�Z vertices, respec-

tively, and p123 denotes the four-momentum of the incoming vector boson. The symbols ghq

�q
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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vertices with helicity structures different from the SM one. These modifications can be
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 3: Example graphs that contribute to the B1g0Z matrix elements. The diagram
on the left shows a SM contribution. On the right we instead depict a SMEFT correction
that receives contributions from the generalised ZZh and �Zh currents introduced in (4.6).
The four-momentum flow is indicated by the grey arrows and labels. See the main text for
additional explanations.

describes the contribution from Q
(1)
Hq

, Q(3)
Hq

, QHu and QHd, while the second term is induced
by Q

(1)
H`

, Q(3)
H`

and QHe. Notice that compared to the corresponding SM contribution in (4.3)
the SMEFT correction proportional to �g

(1)hq

hZq
in (4.12) is missing the Z-boson propagator

depending on s123. This feature explains the high-energy growth [11–13] of the SMEFT
pp ! V h amplitudes involving the Wilson coefficients C

(1)
Hq

, C(3)
Hq

, CHu and CHd.
The last type of SMEFT corrections to the matrix element B1g0Z is associated to the

tree-level shifts of the SM parameters and couplings. EW input scheme corrections from
CHD, CHWB, C

(3)
H`

and C`` lead to the shifts �g1, �g2 and �v of the U(1)Y and SU(2)L

gauge coupling and the Higgs VEV, respectively, that in turn induce the shifts �g
(0)
hZZ

and
�g

(0)hf

Zf
in the respective couplings of the Z boson. The expressions for these shifts are listed

in Appendix A. In practice, the input scheme corrections can be accounted for by applying
the replacements ghZZ ! ghZZ + �g

(0)
hZZ

and �g
(0)hf

Zf
! �g

(0)hf

Zf
+ �g

(0)hf

Zf
to (4.3). Similarly,

the Wilson coefficients C
(1)
Hq

, C(3)
Hq

, CHu, CHd, C
(1)
H`

, C(3)
H`

and CHe lead to direct shifts in

the Zff̄ couplings that we include through the shifts g
(1)hf

Zf
! g

(1)hf

Zf
+ �g

(1)hf

Zf
in (4.3).

The expressions for the latter shifts are again given in Appendix A.
While we have used in this section the matrix element B1g0Z as an example to illus-

trate the general approach that we have employed in our SMEFT calculation of pp ! V h

at NNLO in QCD, it is important to realise that the computation of all other matrix
elements proceeds in an analogous manner. In the case of the SMEFT corrections aris-
ing from the choice of EW input scheme as well as those associated to insertions of the
operators (2.2) and (2.3) this is clear in view of the factorisation properties of these contri-
butions

�
cf. (4.12)

�
. Likewise, since the spinor-helicity structure of the partonic part of a

given SMEFT amplitude remains the same as in the SM, it can simply be extracted from the
SM expressions and contracted with the part of the SMEFT amplitude that does change.
It follows that an explicit calculation of the full partonic structures for the higher-order cor-
rections to pp ! V h in the SMEFT can always be avoided, because the relevant amplitudes
can be obtained from those in the SM by applying relations a la (4.8) and (4.10) which
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3.2 SMEFT calculation
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where the structures A
µ

hZZ
and A

µ

h�Z
encode the modified hZZ and h�Z vertices, respec-

tively, and p123 denotes the four-momentum of the incoming vector boson. The symbols ghq

�q
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Figure 3: Example graphs that contribute to the B1g0Z matrix elements. The diagram
on the left shows a SM contribution. On the right we instead depict a SMEFT correction
that receives contributions from the generalised ZZh and �Zh currents introduced in (4.6).
The four-momentum flow is indicated by the grey arrows and labels. See the main text for
additional explanations.
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To compute the SMEFT contributions that involve modified couplings between the

Higgs and two vector bosons, it is important to notice that by using the spinor identity
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3.2 SMEFT calculation
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three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V
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Figure 3: Example graphs that contribute to the B1g0Z matrix elements. The diagram
on the left shows a SM contribution. On the right we instead depict a SMEFT correction
that receives contributions from the generalised ZZh and �Zh currents introduced in (4.6).
The four-momentum flow is indicated by the grey arrows and labels. See the main text for
additional explanations.

describes the contribution from Q
(1)
Hq

, Q(3)
Hq

, QHu and QHd, while the second term is induced
by Q

(1)
H`

, Q(3)
H`

and QHe. Notice that compared to the corresponding SM contribution in (4.3)
the SMEFT correction proportional to �g

(1)hq

hZq
in (4.12) is missing the Z-boson propagator

depending on s123. This feature explains the high-energy growth [11–13] of the SMEFT
pp ! V h amplitudes involving the Wilson coefficients C

(1)
Hq

, C(3)
Hq

, CHu and CHd.
The last type of SMEFT corrections to the matrix element B1g0Z is associated to the

tree-level shifts of the SM parameters and couplings. EW input scheme corrections from
CHD, CHWB, C

(3)
H`

and C`` lead to the shifts �g1, �g2 and �v of the U(1)Y and SU(2)L

gauge coupling and the Higgs VEV, respectively, that in turn induce the shifts �g
(0)
hZZ

and
�g

(0)hf

Zf
in the respective couplings of the Z boson. The expressions for these shifts are listed

in Appendix A. In practice, the input scheme corrections can be accounted for by applying
the replacements ghZZ ! ghZZ + �g

(0)
hZZ

and �g
(0)hf

Zf
! �g

(0)hf

Zf
+ �g

(0)hf

Zf
to (4.3). Similarly,

the Wilson coefficients C
(1)
Hq

, C(3)
Hq

, CHu, CHd, C
(1)
H`

, C(3)
H`

and CHe lead to direct shifts in

the Zff̄ couplings that we include through the shifts g
(1)hf

Zf
! g

(1)hf

Zf
+ �g

(1)hf

Zf
in (4.3).

The expressions for the latter shifts are again given in Appendix A.
While we have used in this section the matrix element B1g0Z as an example to illus-

trate the general approach that we have employed in our SMEFT calculation of pp ! V h

at NNLO in QCD, it is important to realise that the computation of all other matrix
elements proceeds in an analogous manner. In the case of the SMEFT corrections aris-
ing from the choice of EW input scheme as well as those associated to insertions of the
operators (2.2) and (2.3) this is clear in view of the factorisation properties of these contri-
butions

�
cf. (4.12)

�
. Likewise, since the spinor-helicity structure of the partonic part of a

given SMEFT amplitude remains the same as in the SM, it can simply be extracted from the
SM expressions and contracted with the part of the SMEFT amplitude that does change.
It follows that an explicit calculation of the full partonic structures for the higher-order cor-
rections to pp ! V h in the SMEFT can always be avoided, because the relevant amplitudes
can be obtained from those in the SM by applying relations a la (4.8) and (4.10) which
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3.2 SMEFT calculation

The technically most involved part of the SMEFT calculation results from insertions of the
three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the one present in the SM, i.e. the spinor
chain h4|�µ|5] in (3.7). These modifications can be included at the level of (3.1) by means
of generalised currents that describe the splitting of the initial vector boson V1 into the
outgoing vector boson V2 and the Higgs boson h [8]. If the initial-state quarks and final-
state leptons are left-handed the relevant generalised neutral currents are given by
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where the structures A
µ

hZZ
and A

µ

h�Z
encode the modified hZZ and h�Z vertices, respec-

tively, and p123 denotes the four-momentum of the incoming vector boson. The symbols ghq
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Figure 3: Example graphs that contribute to the B1g0Z matrix elements. The diagram
on the left shows a SM contribution. On the right we instead depict a SMEFT correction
that receives contributions from the generalised hZZ and h�Z currents introduced in (3.9).
The four-momentum flow is indicated by the grey arrows and labels. See the main text for
additional explanations.

are the �qq̄ coupling strengths while �g
(1)
hZZ

, �g(2)
hZZ

, �g(3)
hZZ

, �g(1)
h�Z

and �g
(2)
h�Z

are anomalous
couplings that describe the interactions between the Higgs boson and the relevant vector
bosons as indicated by the subscript. The explicit expressions for all the couplings appear-
ing in (3.9) can be found in Appendix A. We stress that although the anomalous couplings
�g

(2)
hZZ

and �g
(2)
h�Z

do not receive corrections from the Wilson coefficients CHB, CHW and
CHWB our POWHEG-BOX implementation contains the full generalised neutral currents (3.9).
The presented MC code can therefore be used to extend the Higgsstrahlungs computations
in the anomalous-coupling framework [19–21] to the NNLO+PS level.

By looking at (3.7) and (3.9) it is now readily seen that in order to obtain the spin-
averaged matrix element B1g0Z that contains the contributions from the SM as well as the
Wilson coefficients CHB, CHW and CHWB one just has to replace the expression in the
modulus of (3.3) by the following spinor contraction

Aqgq,µ

⇣
1
hq

q , 2
hg

g , 3
�hq

q̄

⌘ h
A

µ

hZZ
(p123, 4

h`

`
, 5�h`

¯̀ ) +A
µ

h�Z
(p123, 4

h`

`
, 5�h`

¯̀ )
i
. (3.10)

A schematic depiction of (3.10) is given on the right in Figure 3. Notice that all helicity
configurations of Aµ

qgq can be obtained from (3.7) and (3.8) using the relations (3.2) while
in the case of A

µ

hZZ
and A

µ

h�Z
one just has to perform the replacements g

�
V f

! g
hf

V f
for

f = q, ` and V = Z, �.
Insertions of the operators (2.2) and (2.3) lead to the Feynman diagrams shown on the

right-hand side in Figure 1 at tree level. In order to capture this contribution in the case
of the matrix element B1g0Z, one simply has to add the following term

0

@�g
(1)hq

hZq
g
h`

Z`

DZ(s45)
+

g
hq

Zq
�g

(1)h`

hZ`

DZ(s123)

1

A AB1g0Z

⇣
1
hq

q , 2
hg

g , 3
�hq

q̄ ; 4h`

`
, 5�h`

¯̀

⌘
, (3.11)

to the corresponding SM contribution in the modulus of (3.3). The analytic expressions
for the couplings �g

(1)hf

hZf
are given in Appendix A. In (3.11) the first term in the brackets

describes the contribution from Q
(1)
Hq

, Q(3)
Hq

, QHd and QHu, while the second term is induced
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Corrections: Diagrams:  

(A-type)Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

where
sij = (pi + pj)

2
, sijk = sij + sjk + ski , (4.4)

are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�M
2
Z + iMZ�Z , (4.5)

with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
of the initial vector boson V1 into the outgoing vector boson V2 and the Higgs boson h [8].
If the initial-state quarks and final-state leptons are left-handed the relevant generalised
neutral currents are given by
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are the relevant direct SMEFT corrections to the Zff̄ couplings.

B SMEFT corrections to gg ! Zh process

Our calculation of gg ! Zh production is based on the spinor-helicity amplitudes for the
SM derived in [29] and implemented into MCFM [47]. In unitary gauge, the expression for the
triangle contributions with positive gluon helicities and left-handed fermion chiralities reads

A
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(B.1)

Notice that we have followed the convention of [29] and written the amplitude for all mo-
menta outgoing. Our convention with incoming parton momenta is implemented numeri-
cally via analytic continuation. In (B.1) the two terms in the last factor in the first line stem
from the transversal and longitudinal part of the Z-boson propagator in unitary gauge, re-
spectively, q is the quark running in the loop with mass mq and C0 is the scalar Passarino-
Veltman (PV) triangle integral defined as in [38, 73]. The corresponding SM Feynman
diagram is displayed on the right-hand side in Figure 2. Similarly, we have implemented
the box amplitudes

A
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, (B.2)
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Corrections: Diagrams:  

(A-type)Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

where
sij = (pi + pj)

2
, sijk = sij + sjk + ski , (4.4)

are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�M
2
Z + iMZ�Z , (4.5)

with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
of the initial vector boson V1 into the outgoing vector boson V2 and the Higgs boson h [8].
If the initial-state quarks and final-state leptons are left-handed the relevant generalised
neutral currents are given by
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which are, however, too lengthy to be reported here but may be inspected in our POWHEG code.
The remaining non-zero helicity combinations may be obtained via parity and charge con-
jugation relations. In the case of the triangle contributions, these relations take the form
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�
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(B.3)

where the overline means that the brackets should be exchanged, i.e. [. . .] $ h. . .i. Ana-
log relations hold for the box contributions including the cases where the gluons have
opposite helicities which are only present for A

q

A0g2Z2.
Including the triangle and box contributions the resulting spin-averaged matrix element

takes the form
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with
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. (B.6)

Here DZ(s) has been defined in (3.5) while the expressions for the couplings g±
Zf

and ghZZ

can be found in (A.2). The coupling ghZZ appearing in (B.6) requires some explanation.
In fact, the box contributions do not involve a hZZ vertex but instead the Higgs boson
couples directly to the quarks. However, since

ghZZ

m
2
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with a factor mq/v coming from the hqq̄ vertex and another mq stemming from the mass
insertion in the box diagram the expected mass dependence for A

q

A0g2Z2 is recovered.
It is important to realise that as a result of the generalised Furry theorem the vector-

current coupling of the Z boson, which is proportional to the combination (g�
Zq

+ g
+
Zq
) of

couplings, does not contribute to the spin-averaged matrix element A0g2Z as given in (B.4).
However, the axial-current part contributes, as signalled by the factor (g�

Zq
� g

+
Zq
) in

both (B.5) and (B.6), and this contribution is directly connected to the U(1)A ⇥ SU(3)c
gauge anomaly. In fact, a regulator and a loop routing scheme must be introduced
to properly define the amplitude A

q

A0g2Z4, rendering its expression scheme-dependent —
for a detailed explanation of this point see for example [74]. Within the SM, the axial parts
of the top- and bottom-quark coupling obey

(g�
Zt

� g
+
Zt
) = �(g�

Zb
� g

+
Zb
) , (B.8)
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Table 2: SMEFT input scheme corrections for the three EW input schemes implemented
in the MC code.
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are the relevant direct SMEFT corrections to the Zff̄ couplings.

B SMEFT corrections to gg ! Zh process

Our calculation of gg ! Zh production is based on the spinor-helicity amplitudes for the
SM derived in [29] and implemented into MCFM [47]. In unitary gauge, the expression for the
triangle contributions with positive gluon helicities and left-handed fermion chiralities reads

A
q

A0g2Z4

⇣
1+g , 2

+
g , 3

�
`
, 4+¯̀

⌘
= �

2 [21]
�
[41] h13i+ [42] h23i

�

h12i

✓
1�

s12

m
2
Z

◆

⇥m
2
q C0(s12, 0, 0,mq,mq,mq) .

(B.1)

Notice that we have followed the convention of [29] and written the amplitude for all mo-
menta outgoing. Our convention with incoming parton momenta is implemented numeri-
cally via analytic continuation. In (B.1) the two terms in the last factor in the first line stem
from the transversal and longitudinal part of the Z-boson propagator in unitary gauge, re-
spectively, q is the quark running in the loop with mass mq and C0 is the scalar Passarino-
Veltman (PV) triangle integral defined as in [38, 73]. The corresponding SM Feynman
diagram is displayed on the right-hand side in Figure 2. Similarly, we have implemented
the box amplitudes

A
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, (B.2)
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Corrections: Diagrams:  

(A-type)Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

where
sij = (pi + pj)

2
, sijk = sij + sjk + ski , (4.4)

are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�M
2
Z + iMZ�Z , (4.5)

with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
of the initial vector boson V1 into the outgoing vector boson V2 and the Higgs boson h [8].
If the initial-state quarks and final-state leptons are left-handed the relevant generalised
neutral currents are given by
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which are, however, too lengthy to be reported here but may be inspected in our POWHEG code.
The remaining non-zero helicity combinations may be obtained via parity and charge con-
jugation relations. In the case of the triangle contributions, these relations take the form
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where the overline means that the brackets should be exchanged, i.e. [. . .] $ h. . .i. Ana-
log relations hold for the box contributions including the cases where the gluons have
opposite helicities which are only present for A

q

A0g2Z2.
Including the triangle and box contributions the resulting spin-averaged matrix element

takes the form
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Here DZ(s) has been defined in (3.5) while the expressions for the couplings g±
Zf

and ghZZ

can be found in (A.2). The coupling ghZZ appearing in (B.6) requires some explanation.
In fact, the box contributions do not involve a hZZ vertex but instead the Higgs boson
couples directly to the quarks. However, since

ghZZ
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with a factor mq/v coming from the hqq̄ vertex and another mq stemming from the mass
insertion in the box diagram the expected mass dependence for A

q

A0g2Z2 is recovered.
It is important to realise that as a result of the generalised Furry theorem the vector-

current coupling of the Z boson, which is proportional to the combination (g�
Zq

+ g
+
Zq
) of

couplings, does not contribute to the spin-averaged matrix element A0g2Z as given in (B.4).
However, the axial-current part contributes, as signalled by the factor (g�

Zq
� g

+
Zq
) in

both (B.5) and (B.6), and this contribution is directly connected to the U(1)A ⇥ SU(3)c
gauge anomaly. In fact, a regulator and a loop routing scheme must be introduced
to properly define the amplitude A

q

A0g2Z4, rendering its expression scheme-dependent —
for a detailed explanation of this point see for example [74]. Within the SM, the axial parts
of the top- and bottom-quark coupling obey
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Table 2: SMEFT input scheme corrections for the three EW input schemes implemented
in the MC code.
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are the relevant direct SMEFT corrections to the Zff̄ couplings.

B SMEFT corrections to gg ! Zh process

Our calculation of gg ! Zh production is based on the spinor-helicity amplitudes for the
SM derived in [29] and implemented into MCFM [47]. In unitary gauge, the expression for the
triangle contributions with positive gluon helicities and left-handed fermion chiralities reads

A
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+
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(B.1)

Notice that we have followed the convention of [29] and written the amplitude for all mo-
menta outgoing. Our convention with incoming parton momenta is implemented numeri-
cally via analytic continuation. In (B.1) the two terms in the last factor in the first line stem
from the transversal and longitudinal part of the Z-boson propagator in unitary gauge, re-
spectively, q is the quark running in the loop with mass mq and C0 is the scalar Passarino-
Veltman (PV) triangle integral defined as in [38, 73]. The corresponding SM Feynman
diagram is displayed on the right-hand side in Figure 2. Similarly, we have implemented
the box amplitudes

A
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+
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, (B.2)
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Corrections: Diagrams:  

(A-type)Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

where
sij = (pi + pj)

2
, sijk = sij + sjk + ski , (4.4)

are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�M
2
Z + iMZ�Z , (4.5)

with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
of the initial vector boson V1 into the outgoing vector boson V2 and the Higgs boson h [8].
If the initial-state quarks and final-state leptons are left-handed the relevant generalised
neutral currents are given by
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which are, however, too lengthy to be reported here but may be inspected in our POWHEG code.
The remaining non-zero helicity combinations may be obtained via parity and charge con-
jugation relations. In the case of the triangle contributions, these relations take the form
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where the overline means that the brackets should be exchanged, i.e. [. . .] $ h. . .i. Ana-
log relations hold for the box contributions including the cases where the gluons have
opposite helicities which are only present for A

q

A0g2Z2.
Including the triangle and box contributions the resulting spin-averaged matrix element

takes the form
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with
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Here DZ(s) has been defined in (3.5) while the expressions for the couplings g±
Zf

and ghZZ

can be found in (A.2). The coupling ghZZ appearing in (B.6) requires some explanation.
In fact, the box contributions do not involve a hZZ vertex but instead the Higgs boson
couples directly to the quarks. However, since
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with a factor mq/v coming from the hqq̄ vertex and another mq stemming from the mass
insertion in the box diagram the expected mass dependence for A

q

A0g2Z2 is recovered.
It is important to realise that as a result of the generalised Furry theorem the vector-

current coupling of the Z boson, which is proportional to the combination (g�
Zq

+ g
+
Zq
) of

couplings, does not contribute to the spin-averaged matrix element A0g2Z as given in (B.4).
However, the axial-current part contributes, as signalled by the factor (g�

Zq
� g

+
Zq
) in

both (B.5) and (B.6), and this contribution is directly connected to the U(1)A ⇥ SU(3)c
gauge anomaly. In fact, a regulator and a loop routing scheme must be introduced
to properly define the amplitude A

q

A0g2Z4, rendering its expression scheme-dependent —
for a detailed explanation of this point see for example [74]. Within the SM, the axial parts
of the top- and bottom-quark coupling obey

(g�
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� g
+
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) = �(g�

Zb
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) , (B.8)
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Table 2: SMEFT input scheme corrections for the three EW input schemes implemented
in the MC code.
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are the relevant direct SMEFT corrections to the Zff̄ couplings.

B SMEFT corrections to gg ! Zh process

Our calculation of gg ! Zh production is based on the spinor-helicity amplitudes for the
SM derived in [29] and implemented into MCFM [47]. In unitary gauge, the expression for the
triangle contributions with positive gluon helicities and left-handed fermion chiralities reads

A
q
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⇣
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(B.1)

Notice that we have followed the convention of [29] and written the amplitude for all mo-
menta outgoing. Our convention with incoming parton momenta is implemented numeri-
cally via analytic continuation. In (B.1) the two terms in the last factor in the first line stem
from the transversal and longitudinal part of the Z-boson propagator in unitary gauge, re-
spectively, q is the quark running in the loop with mass mq and C0 is the scalar Passarino-
Veltman (PV) triangle integral defined as in [38, 73]. The corresponding SM Feynman
diagram is displayed on the right-hand side in Figure 2. Similarly, we have implemented
the box amplitudes
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, (B.2)
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Corrections: Diagrams:  

(A-type)Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

where
sij = (pi + pj)

2
, sijk = sij + sjk + ski , (4.4)

are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�M
2
Z + iMZ�Z , (4.5)

with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
of the initial vector boson V1 into the outgoing vector boson V2 and the Higgs boson h [8].
If the initial-state quarks and final-state leptons are left-handed the relevant generalised
neutral currents are given by
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which are, however, too lengthy to be reported here but may be inspected in our POWHEG code.
The remaining non-zero helicity combinations may be obtained via parity and charge con-
jugation relations. In the case of the triangle contributions, these relations take the form
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where the overline means that the brackets should be exchanged, i.e. [. . .] $ h. . .i. Ana-
log relations hold for the box contributions including the cases where the gluons have
opposite helicities which are only present for A

q

A0g2Z2.
Including the triangle and box contributions the resulting spin-averaged matrix element
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Here DZ(s) has been defined in (3.5) while the expressions for the couplings g±
Zf

and ghZZ

can be found in (A.2). The coupling ghZZ appearing in (B.6) requires some explanation.
In fact, the box contributions do not involve a hZZ vertex but instead the Higgs boson
couples directly to the quarks. However, since
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with a factor mq/v coming from the hqq̄ vertex and another mq stemming from the mass
insertion in the box diagram the expected mass dependence for A

q

A0g2Z2 is recovered.
It is important to realise that as a result of the generalised Furry theorem the vector-

current coupling of the Z boson, which is proportional to the combination (g�
Zq

+ g
+
Zq
) of

couplings, does not contribute to the spin-averaged matrix element A0g2Z as given in (B.4).
However, the axial-current part contributes, as signalled by the factor (g�

Zq
� g

+
Zq
) in

both (B.5) and (B.6), and this contribution is directly connected to the U(1)A ⇥ SU(3)c
gauge anomaly. In fact, a regulator and a loop routing scheme must be introduced
to properly define the amplitude A

q

A0g2Z4, rendering its expression scheme-dependent —
for a detailed explanation of this point see for example [74]. Within the SM, the axial parts
of the top- and bottom-quark coupling obey

(g�
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) , (B.8)
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which are, however, too lengthy to be reported here but may be inspected in our squared
matrix element library. The remaining non-zero helicity combinations may be obtained via
parity and charge conjugation relations. In the case of the triangle contributions, these
relations take the form
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where the overline means that the brackets should be exchanged, i.e. [. . .] $ h. . .i. Ana-
log relations hold for the box contributions including the cases where the gluons have
opposite helicities which are only present for A

q

A0g2Z2.
Including the triangle and box contributions the resulting spin-averaged matrix element
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Here DZ(s) has been defined in (3.5) while the expressions for the couplings g
±
Zf

and ghZZ

can be found in (A.2). The coupling ghZZ appearing in (B.6) requires some explanation.
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with a factor mq/v coming from the hqq̄ vertex and another mq stemming from the mass
insertion in the box diagram the expected mass dependence for A

q

A0g2Z2 is recovered.
It is important to realise that as a result of the generalised Furry theorem the vector-

current coupling of the Z boson, which is proportional to the combination (g�
Zq

+ g
+
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) of

couplings, does not contribute to the spin-averaged matrix element A0g2Z as given in (B.4).
However, the axial-current part contributes, as signalled by the factor (g�

Zq
� g

+
Zq
) in

both (B.5) and (B.6), and this contribution is directly connected to the U(1)A ⇥ SU(3)c
gauge anomaly. In fact, a regulator and a loop routing scheme must be introduced to prop-
erly define the amplitude A

q

A0g2Z4, rendering its expression scheme-dependent — for a de-
tailed explanation of this point see for example [81]. Within the SM, the axial parts of the
top- and bottom-quark couplings obey
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Table 2: SMEFT input scheme corrections for the three EW input schemes implemented
in the MC code.
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=
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2
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are the relevant direct SMEFT corrections to the Zff̄ couplings.

B SMEFT corrections to gg ! Zh process

Our calculation of gg ! Zh production is based on the spinor-helicity amplitudes for the
SM derived in [29] and implemented into MCFM [47]. In unitary gauge, the expression for the
triangle contributions with positive gluon helicities and left-handed fermion chiralities reads

A
q

A0g2Z4

⇣
1+g , 2

+
g , 3

�
`
, 4+¯̀

⌘
= �

2 [21]
�
[41] h13i+ [42] h23i

�

h12i

✓
1�

s12

m
2
Z

◆

⇥m
2
q C0(s12, 0, 0,mq,mq,mq) .

(B.1)

Notice that we have followed the convention of [29] and written the amplitude for all mo-
menta outgoing. Our convention with incoming parton momenta is implemented numeri-
cally via analytic continuation. In (B.1) the two terms in the last factor in the first line stem
from the transversal and longitudinal part of the Z-boson propagator in unitary gauge, re-
spectively, q is the quark running in the loop with mass mq and C0 is the scalar Passarino-
Veltman (PV) triangle integral defined as in [38, 73]. The corresponding SM Feynman
diagram is displayed on the right-hand side in Figure 2. Similarly, we have implemented
the box amplitudes

A
q

A0g2Z2
⇣
1+g , 2

+
g , 3

�
`
, 4+¯̀

⌘
, A

q

A0g2Z2
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1�g , 2

+
g , 3

�
`
, 4+¯̀

⌘
, (B.2)
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Corrections: Diagrams:  

(A-type)Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

where
sij = (pi + pj)

2
, sijk = sij + sjk + ski , (4.4)

are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�M
2
Z + iMZ�Z , (4.5)

with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
of the initial vector boson V1 into the outgoing vector boson V2 and the Higgs boson h [8].
If the initial-state quarks and final-state leptons are left-handed the relevant generalised
neutral currents are given by

ZZhµ(p123, 4�` , 5
+
¯̀ ) =

g
�
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g
�
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µ
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◆
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⌘)

,

(4.6)
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We start with the SM spinor-helicity amplitudes… 

which are, however, too lengthy to be reported here but may be inspected in our POWHEG code.
The remaining non-zero helicity combinations may be obtained via parity and charge con-
jugation relations. In the case of the triangle contributions, these relations take the form

A
q

A0g2Z4

⇣
1�g , 2

�
g , 3

⌥
`
, 4±¯̀

⌘
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+
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⌥
`
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⌘
,

A
q
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±
g , 3

+
`
, 4�¯̀

⌘
= A

q

A0g2Z4

⇣
1±g , 2

±
g , 4

�
`
, 3+¯̀

⌘
,

(B.3)

where the overline means that the brackets should be exchanged, i.e. [. . .] $ h. . .i. Ana-
log relations hold for the box contributions including the cases where the gluons have
opposite helicities which are only present for A

q

A0g2Z2.
Including the triangle and box contributions the resulting spin-averaged matrix element

takes the form

A0g2Z =
↵
2
s

8⇡2 (C2
A
� 1)2

X

hg ,h`=±

������

X

q=t,b

 
A

q

4 +
X

s=±

m
2
q

m
2
Z

A
q,s

2

!������

2

, (B.4)

with

A
q

4 =
(g�

Zq
� g

+
Zq
)gh`
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ghZZ

DZ(s12)DZ(s34)
A

q
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1
hg
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hg

g , 3h`

`
, 4�h`

¯̀

⌘
, (B.5)

A
q,±
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(g�
Zq

� g
+
Zq
)gh`

Z`
ghZZ

DZ(s34)
A

q

A0g2Z2
⇣
1
hg

g , 2
±hg

g , 3h`

`
, 4�h`

¯̀

⌘
. (B.6)

Here DZ(s) has been defined in (3.5) while the expressions for the couplings g±
Zf

and ghZZ

can be found in (A.2). The coupling ghZZ appearing in (B.6) requires some explanation.
In fact, the box contributions do not involve a hZZ vertex but instead the Higgs boson
couples directly to the quarks. However, since

ghZZ

m
2
q

m
2
Z

=
v
�
g
2
1 + g

2
2

�

2

m
2
q

m
2
Z

=
2m2

Z

v

m
2
q

m
2
Z

=
2m2

q

v
, (B.7)

with a factor mq/v coming from the hqq̄ vertex and another mq stemming from the mass
insertion in the box diagram the expected mass dependence for A

q

A0g2Z2 is recovered.
It is important to realise that as a result of the generalised Furry theorem the vector-

current coupling of the Z boson, which is proportional to the combination (g�
Zq

+ g
+
Zq
) of

couplings, does not contribute to the spin-averaged matrix element A0g2Z as given in (B.4).
However, the axial-current part contributes, as signalled by the factor (g�

Zq
� g

+
Zq
) in

both (B.5) and (B.6), and this contribution is directly connected to the U(1)A ⇥ SU(3)c
gauge anomaly. In fact, a regulator and a loop routing scheme must be introduced
to properly define the amplitude A

q

A0g2Z4, rendering its expression scheme-dependent —
for a detailed explanation of this point see for example [74]. Within the SM, the axial parts
of the top- and bottom-quark coupling obey

(g�
Zt

� g
+
Zt
) = �(g�

Zb
� g

+
Zb
) , (B.8)
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Figure 9: Examples of contributions to gg ! Zh production within the SMEFT.
All graphs involve an insertion of one of the operators given in (2.2) as indicated by the
blue squares. Further details can be found in the main text.

and as a result all gauge anomalies are cancelled. It follows that the sum over q that appears
in (B.4) evaluates to

X

q=t,b

(g�
Zq

� g
+
Zq
)Aq

A0g2Z4 = (g�
Zt

� g
+
Zt
)
⇣
A

t

A0g2Z4 �A
b

A0g2Z4

⌘
, (B.9)

and in consequence any scheme-dependent constant shift in the amplitude A
q

A0g2Z4 drops
out in the combination

�
A

t

A0g2Z4�A
b

A0g2Z4
�
. Notice that in the degenerate or zero mass case

the sum (B.9) vanishes identically. Since we treat the light-quark generations as massless,
down-, up-, strange- and charm-quark loops hence do not need to be included in the spin-
averaged matrix element (B.4).

The amplitudes including the SMEFT contributions to (B.4) were computed with the
procedure outlined in Section 3.2. Since the SM amplitudes were derived in unitary gauge,
only SMEFT contributions to vertices involving the Z boson have to be considered. We have
checked explicitly that in Feynman gauge, the SMEFT effects in the Goldstone diagrams
are equivalent to the effects in the longitudinal part of the amplitude in unitary gauge.
In addition to the contributions with an effective Zqq̄ or Z`

+
`
� vertex represented by

the diagram on the left in Figure 9, there are also contributions with hZqq̄ or hZ`
+
`
�

vertices. A corresponding graph is depicted on the right in Figure 9. In these cases only the
transversal part of (B.1) contributes — the longitudinal part vanishes because the Z boson
couples directly to the leptons that are treated as massless — and therefore in addition to
dropping the factor DZ(s12) in (B.5), one also has to discard the longitudinal part in (B.1)
by removing the factor (1� s12/m

2
Z
). This leads to the following contribution

2
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, (B.10)

from SMEFT diagrams with a hZqq̄ or hZ`
+
`
� vertex. This contribution can be included

by simply adding the expression (B.10) to the sum over q in (B.4).
The triangle contributions with a Zqq̄ or a hZqq̄ vertex depicted in Figure 9 deserve

further discussion. In fact, in their sum these contributions cancel exactly [82], which is
an interesting feature of the SMEFT. To explicitly see this cancellation we rewrite the
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Anomaly cancellation in the SM: 

which are, however, too lengthy to be reported here but may be inspected in our squared
matrix element library. The remaining non-zero helicity combinations may be obtained via
parity and charge conjugation relations. In the case of the triangle contributions, these
relations take the form

A
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(B.3)

where the overline means that the brackets should be exchanged, i.e. [. . .] $ h. . .i. Ana-
log relations hold for the box contributions including the cases where the gluons have
opposite helicities which are only present for A

q

A0g2Z2.
Including the triangle and box contributions the resulting spin-averaged matrix element

takes the form
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Here DZ(s) has been defined in (3.5) while the expressions for the couplings g
±
Zf

and ghZZ

can be found in (A.2). The coupling ghZZ appearing in (B.6) requires some explanation.
In fact, the box contributions do not involve a hZZ vertex but instead the Higgs boson
couples directly to the quarks. However, since
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with a factor mq/v coming from the hqq̄ vertex and another mq stemming from the mass
insertion in the box diagram the expected mass dependence for A

q

A0g2Z2 is recovered.
It is important to realise that as a result of the generalised Furry theorem the vector-

current coupling of the Z boson, which is proportional to the combination (g�
Zq

+ g
+
Zq
) of

couplings, does not contribute to the spin-averaged matrix element A0g2Z as given in (B.4).
However, the axial-current part contributes, as signalled by the factor (g�

Zq
� g

+
Zq
) in

both (B.5) and (B.6), and this contribution is directly connected to the U(1)A ⇥ SU(3)c
gauge anomaly. In fact, a regulator and a loop routing scheme must be introduced to prop-
erly define the amplitude A

q

A0g2Z4, rendering its expression scheme-dependent — for a de-
tailed explanation of this point see for example [81]. Within the SM, the axial parts of the
top- and bottom-quark couplings obey

(g�
Zt

� g
+
Zt
) = �(g�

Zb
� g

+
Zb
) , (B.8)

– 32 –

Longitudinal 
contribution

Only axial part 
contributes

Luc Schnell
EFT in Multiboson Production

June 20243. Higher-Order Corrections
3.3 -initiated contributionsgg

https://arxiv.org/abs/1601.00658


�g1/g1 �g2/g2 �v/v

↵-scheme

{GF ,mZ ,mW }

�

m
2
Z

CHD

4�m2 +C
(3)
H`

�C
``

2 +
mW CHWB

�mp
2GF

�
1p
2GF

⇣
C

(3)
H`

�
C``

2

⌘
1p
2GF

⇣
C

(3)
H`

�
C``

2

⌘

↵µ-scheme

{↵,mZ ,mW }

�
m

2
W

�m
2

4⇡↵m
2
Z

CHD

m
3
W

(mWCHD+4�mCHWB)

4⇡↵m
2
Z

�
m

3
W

(mWCHD+4�mCHWB)

4⇡↵m
2
Z

LEP-scheme

{↵, GF ,mZ}

sw

h
cwCHWB+

swCHD

4 +sw

⇣
C

(3)
H`

�C
``

2

⌘i

p
2GF (c2w�s2w)

�
cw

h
swCHWB+

cwCHD

4 +cw

⇣
C

(3)
H`

�C
``

2

⌘i

p
2GF (c2w�s2w)

1p
2GF

⇣
C

(3)
H`

�
C``

2

⌘

Table 2: SMEFT input scheme corrections for the three EW input schemes implemented
in the MC code.
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are the relevant direct SMEFT corrections to the Zff̄ couplings.

B SMEFT corrections to gg ! Zh process

Our calculation of gg ! Zh production is based on the spinor-helicity amplitudes for the
SM derived in [29] and implemented into MCFM [47]. In unitary gauge, the expression for the
triangle contributions with positive gluon helicities and left-handed fermion chiralities reads

A
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(B.1)

Notice that we have followed the convention of [29] and written the amplitude for all mo-
menta outgoing. Our convention with incoming parton momenta is implemented numeri-
cally via analytic continuation. In (B.1) the two terms in the last factor in the first line stem
from the transversal and longitudinal part of the Z-boson propagator in unitary gauge, re-
spectively, q is the quark running in the loop with mass mq and C0 is the scalar Passarino-
Veltman (PV) triangle integral defined as in [38, 73]. The corresponding SM Feynman
diagram is displayed on the right-hand side in Figure 2. Similarly, we have implemented
the box amplitudes
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Corrections: Diagrams:  

(A-type)Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

where
sij = (pi + pj)

2
, sijk = sij + sjk + ski , (4.4)

are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�M
2
Z + iMZ�Z , (4.5)

with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
of the initial vector boson V1 into the outgoing vector boson V2 and the Higgs boson h [8].
If the initial-state quarks and final-state leptons are left-handed the relevant generalised
neutral currents are given by
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which are, however, too lengthy to be reported here but may be inspected in our POWHEG code.
The remaining non-zero helicity combinations may be obtained via parity and charge con-
jugation relations. In the case of the triangle contributions, these relations take the form
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where the overline means that the brackets should be exchanged, i.e. [. . .] $ h. . .i. Ana-
log relations hold for the box contributions including the cases where the gluons have
opposite helicities which are only present for A

q

A0g2Z2.
Including the triangle and box contributions the resulting spin-averaged matrix element

takes the form
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Here DZ(s) has been defined in (3.5) while the expressions for the couplings g±
Zf

and ghZZ

can be found in (A.2). The coupling ghZZ appearing in (B.6) requires some explanation.
In fact, the box contributions do not involve a hZZ vertex but instead the Higgs boson
couples directly to the quarks. However, since
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with a factor mq/v coming from the hqq̄ vertex and another mq stemming from the mass
insertion in the box diagram the expected mass dependence for A

q

A0g2Z2 is recovered.
It is important to realise that as a result of the generalised Furry theorem the vector-

current coupling of the Z boson, which is proportional to the combination (g�
Zq

+ g
+
Zq
) of

couplings, does not contribute to the spin-averaged matrix element A0g2Z as given in (B.4).
However, the axial-current part contributes, as signalled by the factor (g�

Zq
� g

+
Zq
) in

both (B.5) and (B.6), and this contribution is directly connected to the U(1)A ⇥ SU(3)c
gauge anomaly. In fact, a regulator and a loop routing scheme must be introduced
to properly define the amplitude A

q

A0g2Z4, rendering its expression scheme-dependent —
for a detailed explanation of this point see for example [74]. Within the SM, the axial parts
of the top- and bottom-quark coupling obey

(g�
Zt

� g
+
Zt
) = �(g�

Zb
� g

+
Zb
) , (B.8)
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Figure 9: Examples of contributions to gg ! Zh production within the SMEFT.
All graphs involve an insertion of one of the operators given in (2.2) as indicated by the
blue squares. Further details can be found in the main text.

and as a result all gauge anomalies are cancelled. It follows that the sum over q that appears
in (B.4) evaluates to
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and in consequence any scheme-dependent constant shift in the amplitude A
q

A0g2Z4 drops
out in the combination

�
A

t

A0g2Z4�A
b

A0g2Z4
�
. Notice that in the degenerate or zero mass case

the sum (B.9) vanishes identically. Since we treat the light-quark generations as massless,
down-, up-, strange- and charm-quark loops hence do not need to be included in the spin-
averaged matrix element (B.4).

The amplitudes including the SMEFT contributions to (B.4) were computed with the
procedure outlined in Section 3.2. Since the SM amplitudes were derived in unitary gauge,
only SMEFT contributions to vertices involving the Z boson have to be considered. We have
checked explicitly that in Feynman gauge, the SMEFT effects in the Goldstone diagrams
are equivalent to the effects in the longitudinal part of the amplitude in unitary gauge.
In addition to the contributions with an effective Zqq̄ or Z`

+
`
� vertex represented by

the diagram on the left in Figure 9, there are also contributions with hZqq̄ or hZ`
+
`
�

vertices. A corresponding graph is depicted on the right in Figure 9. In these cases only the
transversal part of (B.1) contributes — the longitudinal part vanishes because the Z boson
couples directly to the leptons that are treated as massless — and therefore in addition to
dropping the factor DZ(s12) in (B.5), one also has to discard the longitudinal part in (B.1)
by removing the factor (1� s12/m

2
Z
). This leads to the following contribution
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from SMEFT diagrams with a hZqq̄ or hZ`
+
`
� vertex. This contribution can be included

by simply adding the expression (B.10) to the sum over q in (B.4).
The triangle contributions with a Zqq̄ or a hZqq̄ vertex depicted in Figure 9 deserve

further discussion. In fact, in their sum these contributions cancel exactly [82], which is
an interesting feature of the SMEFT. To explicitly see this cancellation we rewrite the
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which are, however, too lengthy to be reported here but may be inspected in our squared
matrix element library. The remaining non-zero helicity combinations may be obtained via
parity and charge conjugation relations. In the case of the triangle contributions, these
relations take the form
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where the overline means that the brackets should be exchanged, i.e. [. . .] $ h. . .i. Ana-
log relations hold for the box contributions including the cases where the gluons have
opposite helicities which are only present for A
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Here DZ(s) has been defined in (3.5) while the expressions for the couplings g
±
Zf

and ghZZ

can be found in (A.2). The coupling ghZZ appearing in (B.6) requires some explanation.
In fact, the box contributions do not involve a hZZ vertex but instead the Higgs boson
couples directly to the quarks. However, since
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with a factor mq/v coming from the hqq̄ vertex and another mq stemming from the mass
insertion in the box diagram the expected mass dependence for A

q

A0g2Z2 is recovered.
It is important to realise that as a result of the generalised Furry theorem the vector-

current coupling of the Z boson, which is proportional to the combination (g�
Zq

+ g
+
Zq
) of

couplings, does not contribute to the spin-averaged matrix element A0g2Z as given in (B.4).
However, the axial-current part contributes, as signalled by the factor (g�

Zq
� g

+
Zq
) in

both (B.5) and (B.6), and this contribution is directly connected to the U(1)A ⇥ SU(3)c
gauge anomaly. In fact, a regulator and a loop routing scheme must be introduced to prop-
erly define the amplitude A

q

A0g2Z4, rendering its expression scheme-dependent — for a de-
tailed explanation of this point see for example [81]. Within the SM, the axial parts of the
top- and bottom-quark couplings obey
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Figure 9: Examples of contributions to gg ! Zh production within the SMEFT.
All graphs involve an insertion of one of the operators given in (2.2) as indicated by the
blue squares. Further details can be found in the main text.

and as a result all gauge anomalies are cancelled. It follows that the sum over q that appears
in (B.4) evaluates to
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and in consequence any scheme-dependent constant shift in the amplitude A
q

A0g2Z4 drops
out in the combination

�
A

t

A0g2Z4�A
b

A0g2Z4
�
. Notice that in the degenerate or zero mass case

the sum (B.9) vanishes identically. Since we treat the light-quark generations as massless,
down-, up-, strange- and charm-quark loops hence do not need to be included in the spin-
averaged matrix element (B.4).

The amplitudes including the SMEFT contributions to (B.4) were computed with the
procedure outlined in Section 3.2. Since the SM amplitudes were derived in unitary gauge,
only SMEFT contributions to vertices involving the Z boson have to be considered. We have
checked explicitly that in Feynman gauge, the SMEFT effects in the Goldstone diagrams
are equivalent to the effects in the longitudinal part of the amplitude in unitary gauge.
In addition to the contributions with an effective Zqq̄ or Z`

+
`
� vertex represented by

the diagram on the left in Figure 9, there are also contributions with hZqq̄ or hZ`
+
`
�

vertices. A corresponding graph is depicted on the right in Figure 9. In these cases only the
transversal part of (B.1) contributes — the longitudinal part vanishes because the Z boson
couples directly to the leptons that are treated as massless — and therefore in addition to
dropping the factor DZ(s12) in (B.5), one also has to discard the longitudinal part in (B.1)
by removing the factor (1� s12/m

2
Z
). This leads to the following contribution
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from SMEFT diagrams with a hZqq̄ or hZ`
+
`
� vertex. This contribution can be included

by simply adding the expression (B.10) to the sum over q in (B.4).
The triangle contributions with a Zqq̄ or a hZqq̄ vertex depicted in Figure 9 deserve

further discussion. In fact, in their sum these contributions cancel exactly [82], which is
an interesting feature of the SMEFT. To explicitly see this cancellation we rewrite the
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blue squares. Further details can be found in the main text.

and as a result all gauge anomalies are cancelled. It follows that the sum over q that appears
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and in consequence any scheme-dependent constant shift in the amplitude A
q

A0g2Z4 drops
out in the combination

�
A

t

A0g2Z4�A
b

A0g2Z4
�
. Notice that in the degenerate or zero mass case

the sum (B.9) vanishes identically. Since we treat the light-quark generations as massless,
down-, up-, strange- and charm-quark loops hence do not need to be included in the spin-
averaged matrix element (B.4).

The amplitudes including the SMEFT contributions to (B.4) were computed with the
procedure outlined in Section 3.2. Since the SM amplitudes were derived in unitary gauge,
only SMEFT contributions to vertices involving the Z boson have to be considered. We have
checked explicitly that in Feynman gauge, the SMEFT effects in the Goldstone diagrams
are equivalent to the effects in the longitudinal part of the amplitude in unitary gauge.
In addition to the contributions with an effective Zqq̄ or Z`

+
`
� vertex represented by

the diagram on the left in Figure 9, there are also contributions with hZqq̄ or hZ`
+
`
�

vertices. A corresponding graph is depicted on the right in Figure 9. In these cases only the
transversal part of (B.1) contributes — the longitudinal part vanishes because the Z boson
couples directly to the leptons that are treated as massless — and therefore in addition to
dropping the factor DZ(s12) in (B.5), one also has to discard the longitudinal part in (B.1)
by removing the factor (1� s12/m
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). This leads to the following contribution
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from SMEFT diagrams with a hZqq̄ or hZ`
+
`
� vertex. This contribution can be included

by simply adding the expression (B.10) to the sum over q in (B.4).
The triangle contributions with a Zqq̄ or a hZqq̄ vertex depicted in Figure 9 deserve

further discussion. In fact, in their sum these contributions cancel exactly [82], which is
an interesting feature of the SMEFT. To explicitly see this cancellation we rewrite the
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All graphs involve an insertion of one of the operators given in (2.2) as indicated by the
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and as a result all gauge anomalies are cancelled. It follows that the sum over q that appears
in (B.4) evaluates to

X

q=t,b

(g�
Zq

� g
+
Zq
)Aq

A0g2Z4 = (g�
Zt

� g
+
Zt
)
⇣
A

t

A0g2Z4 �A
b

A0g2Z4

⌘
, (B.9)

and in consequence any scheme-dependent constant shift in the amplitude A
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A0g2Z4 drops
out in the combination
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. Notice that in the degenerate or zero mass case

the sum (B.9) vanishes identically. Since we treat the light-quark generations as massless,
down-, up-, strange- and charm-quark loops hence do not need to be included in the spin-
averaged matrix element (B.4).

The amplitudes including the SMEFT contributions to (B.4) were computed with the
procedure outlined in Section 3.2. Since the SM amplitudes were derived in unitary gauge,
only SMEFT contributions to vertices involving the Z boson have to be considered. We have
checked explicitly that in Feynman gauge, the SMEFT effects in the Goldstone diagrams
are equivalent to the effects in the longitudinal part of the amplitude in unitary gauge.
In addition to the contributions with an effective Zqq̄ or Z`

+
`
� vertex represented by

the diagram on the left in Figure 9, there are also contributions with hZqq̄ or hZ`
+
`
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vertices. A corresponding graph is depicted on the right in Figure 9. In these cases only the
transversal part of (B.1) contributes — the longitudinal part vanishes because the Z boson
couples directly to the leptons that are treated as massless — and therefore in addition to
dropping the factor DZ(s12) in (B.5), one also has to discard the longitudinal part in (B.1)
by removing the factor (1� s12/m
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). This leads to the following contribution
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from SMEFT diagrams with a hZqq̄ or hZ`
+
`
� vertex. This contribution can be included

by simply adding the expression (B.10) to the sum over q in (B.4).
The triangle contributions with a Zqq̄ or a hZqq̄ vertex depicted in Figure 9 deserve

further discussion. In fact, in their sum these contributions cancel exactly [82], which is
an interesting feature of the SMEFT. To explicitly see this cancellation we rewrite the
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Figure 9: Examples of contributions to gg ! Zh production within the SMEFT.
All graphs involve an insertion of one of the operators given in (2.2) as indicated by the
blue squares. Further details can be found in the main text.
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and in consequence any scheme-dependent constant shift in the amplitude A
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. Notice that in the degenerate or zero mass case

the sum (B.9) vanishes identically. Since we treat the light-quark generations as massless,
down-, up-, strange- and charm-quark loops hence do not need to be included in the spin-
averaged matrix element (B.4).

The amplitudes including the SMEFT contributions to (B.4) were computed with the
procedure outlined in Section 3.2. Since the SM amplitudes were derived in unitary gauge,
only SMEFT contributions to vertices involving the Z boson have to be considered. We have
checked explicitly that in Feynman gauge, the SMEFT effects in the Goldstone diagrams
are equivalent to the effects in the longitudinal part of the amplitude in unitary gauge.
In addition to the contributions with an effective Zqq̄ or Z`

+
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� vertex represented by

the diagram on the left in Figure 9, there are also contributions with hZqq̄ or hZ`
+
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vertices. A corresponding graph is depicted on the right in Figure 9. In these cases only the
transversal part of (B.1) contributes — the longitudinal part vanishes because the Z boson
couples directly to the leptons that are treated as massless — and therefore in addition to
dropping the factor DZ(s12) in (B.5), one also has to discard the longitudinal part in (B.1)
by removing the factor (1� s12/m
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from SMEFT diagrams with a hZqq̄ or hZ`
+
`
� vertex. This contribution can be included

by simply adding the expression (B.10) to the sum over q in (B.4).
The triangle contributions with a Zqq̄ or a hZqq̄ vertex depicted in Figure 9 deserve

further discussion. In fact, in their sum these contributions cancel exactly [82], which is
an interesting feature of the SMEFT. To explicitly see this cancellation we rewrite the
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SMEFT Zqq̄ contribution to (B.5) in the following way
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(B.11)

Here we have used (3.5), (A.2) and (A.5) in the first step. Notice that the final result
in (B.11) is up to an overall sign and the amplitude Aq

A0g2Z4 equal to the first term in (B.10)
which proves the cancellation. For simplicity we have treated m

2
Z

as real here, however,
the discussion does not change if one replaces it by its complex counterpart m

2
Z
� imZ�Z

in both DZ(s12) and ghZZ . The only contributions that remain for the operators in (2.2)

are therefore the box contributions shown in the middle of Figure 9. Note that for the
operators in (2.1) both the triangle and box diagrams are non-vanishing.

Notice that the cancellation of the triangle contributions in pp ! Zh production guar-
antees that both relevant and irrelevant anomalous contributions depending on the Wilson
coefficients of the operators (2.2) automatically annul. In fact, it can be shown [83–87] that
the cancellation of relevant anomalous contributions is a general feature of the SMEFT,
while the cancellation of irrelevant terms can always be achieved by adding an appropriate
local counterterm, i.e. a Wess-Zumino term [88], to the SMEFT Lagrangian. As a result,
the condition for the cancellation of relevant gauge anomalies in the SMEFT is the same
as in the SM and only dependent on the gauge quantum numbers of the fermionic sec-
tor, as one would naively expect from an effective field theory point of view. The observed
cancellation between the triangle contribution with a Zqq̄ and a hZqq̄ vertex hence implies
that one does not need to introduce a Wess-Zumino term to obtain a scheme-independent
expression for the gg ! Zh amplitudes in the SMEFT.

We finally note that the amplitude for the generalised neutral current proportional
to �g

(1)
hZZ

as given in (3.9) vanishes in A0g2Z. Also �g
(1)
h�Z

and �g
(2)
h�Z

have no effect, since
the photon couples vectorially to the quark loop. Only �g

(3)
hZZ

as given in (A.4) and the
corresponding SMEFT operators contribute to gg ! Zh production. This contribution is
however not anomalous and hence needs no special treatment. Let us finally mention that
we have used OpenLoops 2 [49] as well as the implementation SMEFT@NLO [78] together with
MadGraph5_aMC@NLO [91] to cross check the results presented in this appendix.

C SMEFT effects at NLO+PS and NNLO+PS

NLO QCD correction to V h production in the SMEFT have been calculated by several
groups [8–13]. By now these computations can also be performed automatically by means
of the combination of SMEFT@NLO and MadGraph5_aMC@NLO. In what follows, we will use the
POWHEG-BOX implementation of pp ! Zh ! `

+
`
�
h production presented in [10] to obtain

the relevant NLO+PS predictions. Our physics analysis proceeds as described in the first
paragraph of Section 5.
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Figure 9: Examples of contributions to gg ! Zh production within the SMEFT.
All graphs involve an insertion of one of the operators given in (2.2) as indicated by the
blue squares. Further details can be found in the main text.
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and in consequence any scheme-dependent constant shift in the amplitude A
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out in the combination
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�
. Notice that in the degenerate or zero mass case

the sum (B.9) vanishes identically. Since we treat the light-quark generations as massless,
down-, up-, strange- and charm-quark loops hence do not need to be included in the spin-
averaged matrix element (B.4).

The amplitudes including the SMEFT contributions to (B.4) were computed with the
procedure outlined in Section 3.2. Since the SM amplitudes were derived in unitary gauge,
only SMEFT contributions to vertices involving the Z boson have to be considered. We have
checked explicitly that in Feynman gauge, the SMEFT effects in the Goldstone diagrams
are equivalent to the effects in the longitudinal part of the amplitude in unitary gauge.
In addition to the contributions with an effective Zqq̄ or Z`

+
`
� vertex represented by

the diagram on the left in Figure 9, there are also contributions with hZqq̄ or hZ`
+
`
�

vertices. A corresponding graph is depicted on the right in Figure 9. In these cases only the
transversal part of (B.1) contributes — the longitudinal part vanishes because the Z boson
couples directly to the leptons that are treated as massless — and therefore in addition to
dropping the factor DZ(s12) in (B.5), one also has to discard the longitudinal part in (B.1)
by removing the factor (1� s12/m

2
Z
). This leads to the following contribution
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from SMEFT diagrams with a hZqq̄ or hZ`
+
`
� vertex. This contribution can be included

by simply adding the expression (B.10) to the sum over q in (B.4).
The triangle contributions with a Zqq̄ or a hZqq̄ vertex depicted in Figure 9 deserve

further discussion. In fact, in their sum these contributions cancel exactly [82], which is
an interesting feature of the SMEFT. To explicitly see this cancellation we rewrite the
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Here we have used (3.5), (A.2) and (A.5) in the first step. Notice that the final result
in (B.11) is up to an overall sign and the amplitude Aq

A0g2Z4 equal to the first term in (B.10)
which proves the cancellation. For simplicity we have treated m

2
Z

as real here, however,
the discussion does not change if one replaces it by its complex counterpart m

2
Z
� imZ�Z

in both DZ(s12) and ghZZ . The only contributions that remain for the operators in (2.2)

are therefore the box contributions shown in the middle of Figure 9. Note that for the
operators in (2.1) both the triangle and box diagrams are non-vanishing.

Notice that the cancellation of the triangle contributions in pp ! Zh production guar-
antees that both relevant and irrelevant anomalous contributions depending on the Wilson
coefficients of the operators (2.2) automatically annul. In fact, it can be shown [83–87] that
the cancellation of relevant anomalous contributions is a general feature of the SMEFT,
while the cancellation of irrelevant terms can always be achieved by adding an appropriate
local counterterm, i.e. a Wess-Zumino term [88], to the SMEFT Lagrangian. As a result,
the condition for the cancellation of relevant gauge anomalies in the SMEFT is the same
as in the SM and only dependent on the gauge quantum numbers of the fermionic sec-
tor, as one would naively expect from an effective field theory point of view. The observed
cancellation between the triangle contribution with a Zqq̄ and a hZqq̄ vertex hence implies
that one does not need to introduce a Wess-Zumino term to obtain a scheme-independent
expression for the gg ! Zh amplitudes in the SMEFT.

We finally note that the amplitude for the generalised neutral current proportional
to �g

(1)
hZZ

as given in (3.9) vanishes in A0g2Z. Also �g
(1)
h�Z

and �g
(2)
h�Z

have no effect, since
the photon couples vectorially to the quark loop. Only �g

(3)
hZZ

as given in (A.4) and the
corresponding SMEFT operators contribute to gg ! Zh production. This contribution is
however not anomalous and hence needs no special treatment. Let us finally mention that
we have used OpenLoops 2 [49] as well as the implementation SMEFT@NLO [78] together with
MadGraph5_aMC@NLO [91] to cross check the results presented in this appendix.

C SMEFT effects at NLO+PS and NNLO+PS

NLO QCD correction to V h production in the SMEFT have been calculated by several
groups [8–13]. By now these computations can also be performed automatically by means
of the combination of SMEFT@NLO and MadGraph5_aMC@NLO. In what follows, we will use the
POWHEG-BOX implementation of pp ! Zh ! `

+
`
�
h production presented in [10] to obtain

the relevant NLO+PS predictions. Our physics analysis proceeds as described in the first
paragraph of Section 5.
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from SMEFT diagrams with a hZqq̄ or hZ`
+
`
� vertex. This contribution can be included

by simply adding the expression (B.10) to the sum over q in (B.4).
The triangle contributions with a Zqq̄ or a hZqq̄ vertex depicted in Figure 9 deserve

further discussion. In fact, in their sum these contributions cancel exactly [82], which is
an interesting feature of the SMEFT. To explicitly see this cancellation we rewrite the
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Figure 9: Examples of contributions to gg ! Zh production within the SMEFT.
All graphs involve an insertion of one of the operators given in (2.2) as indicated by the
blue squares. Further details can be found in the main text.
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. Notice that in the degenerate or zero mass case

the sum (B.9) vanishes identically. Since we treat the light-quark generations as massless,
down-, up-, strange- and charm-quark loops hence do not need to be included in the spin-
averaged matrix element (B.4).

The amplitudes including the SMEFT contributions to (B.4) were computed with the
procedure outlined in Section 3.2. Since the SM amplitudes were derived in unitary gauge,
only SMEFT contributions to vertices involving the Z boson have to be considered. We have
checked explicitly that in Feynman gauge, the SMEFT effects in the Goldstone diagrams
are equivalent to the effects in the longitudinal part of the amplitude in unitary gauge.
In addition to the contributions with an effective Zqq̄ or Z`

+
`
� vertex represented by

the diagram on the left in Figure 9, there are also contributions with hZqq̄ or hZ`
+
`
�

vertices. A corresponding graph is depicted on the right in Figure 9. In these cases only the
transversal part of (B.1) contributes — the longitudinal part vanishes because the Z boson
couples directly to the leptons that are treated as massless — and therefore in addition to
dropping the factor DZ(s12) in (B.5), one also has to discard the longitudinal part in (B.1)
by removing the factor (1� s12/m
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). This leads to the following contribution
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from SMEFT diagrams with a hZqq̄ or hZ`
+
`
� vertex. This contribution can be included

by simply adding the expression (B.10) to the sum over q in (B.4).
The triangle contributions with a Zqq̄ or a hZqq̄ vertex depicted in Figure 9 deserve

further discussion. In fact, in their sum these contributions cancel exactly [82], which is
an interesting feature of the SMEFT. To explicitly see this cancellation we rewrite the
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Here we have used (3.5), (A.2) and (A.5) in the first step. Notice that the final result
in (B.11) is up to an overall sign and the amplitude Aq

A0g2Z4 equal to the first term in (B.10)
which proves the cancellation. For simplicity we have treated m

2
Z

as real here, however,
the discussion does not change if one replaces it by its complex counterpart m

2
Z
� imZ�Z

in both DZ(s12) and ghZZ . The only contributions that remain for the operators in (2.2)

are therefore the box contributions shown in the middle of Figure 9. Note that for the
operators in (2.1) both the triangle and box diagrams are non-vanishing.

Notice that the cancellation of the triangle contributions in pp ! Zh production guar-
antees that both relevant and irrelevant anomalous contributions depending on the Wilson
coefficients of the operators (2.2) automatically annul. In fact, it can be shown [83–87] that
the cancellation of relevant anomalous contributions is a general feature of the SMEFT,
while the cancellation of irrelevant terms can always be achieved by adding an appropriate
local counterterm, i.e. a Wess-Zumino term [88], to the SMEFT Lagrangian. As a result,
the condition for the cancellation of relevant gauge anomalies in the SMEFT is the same
as in the SM and only dependent on the gauge quantum numbers of the fermionic sec-
tor, as one would naively expect from an effective field theory point of view. The observed
cancellation between the triangle contribution with a Zqq̄ and a hZqq̄ vertex hence implies
that one does not need to introduce a Wess-Zumino term to obtain a scheme-independent
expression for the gg ! Zh amplitudes in the SMEFT.

We finally note that the amplitude for the generalised neutral current proportional
to �g

(1)
hZZ

as given in (3.9) vanishes in A0g2Z. Also �g
(1)
h�Z

and �g
(2)
h�Z

have no effect, since
the photon couples vectorially to the quark loop. Only �g

(3)
hZZ

as given in (A.4) and the
corresponding SMEFT operators contribute to gg ! Zh production. This contribution is
however not anomalous and hence needs no special treatment. Let us finally mention that
we have used OpenLoops 2 [49] as well as the implementation SMEFT@NLO [78] together with
MadGraph5_aMC@NLO [91] to cross check the results presented in this appendix.

C SMEFT effects at NLO+PS and NNLO+PS

NLO QCD correction to V h production in the SMEFT have been calculated by several
groups [8–13]. By now these computations can also be performed automatically by means
of the combination of SMEFT@NLO and MadGraph5_aMC@NLO. In what follows, we will use the
POWHEG-BOX implementation of pp ! Zh ! `

+
`
�
h production presented in [10] to obtain

the relevant NLO+PS predictions. Our physics analysis proceeds as described in the first
paragraph of Section 5.
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All graphs involve an insertion of one of the operators given in (2.2) as indicated by the
blue squares. Further details can be found in the main text.
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checked explicitly that in Feynman gauge, the SMEFT effects in the Goldstone diagrams
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� vertex represented by
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from SMEFT diagrams with a hZqq̄ or hZ`
+
`
� vertex. This contribution can be included

by simply adding the expression (B.10) to the sum over q in (B.4).
The triangle contributions with a Zqq̄ or a hZqq̄ vertex depicted in Figure 9 deserve

further discussion. In fact, in their sum these contributions cancel exactly [82], which is
an interesting feature of the SMEFT. To explicitly see this cancellation we rewrite the
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are therefore the box contributions shown in the middle of Figure 9. Note that for the
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coefficients of the operators (2.2) automatically annul. In fact, it can be shown [83–87] that
the cancellation of relevant anomalous contributions is a general feature of the SMEFT,
while the cancellation of irrelevant terms can always be achieved by adding an appropriate
local counterterm, i.e. a Wess-Zumino term [88], to the SMEFT Lagrangian. As a result,
the condition for the cancellation of relevant gauge anomalies in the SMEFT is the same
as in the SM and only dependent on the gauge quantum numbers of the fermionic sec-
tor, as one would naively expect from an effective field theory point of view. The observed
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the sum (B.9) vanishes identically. Since we treat the light-quark generations as massless,
down-, up-, strange- and charm-quark loops hence do not need to be included in the spin-
averaged matrix element (B.4).

The amplitudes including the SMEFT contributions to (B.4) were computed with the
procedure outlined in Section 3.2. Since the SM amplitudes were derived in unitary gauge,
only SMEFT contributions to vertices involving the Z boson have to be considered. We have
checked explicitly that in Feynman gauge, the SMEFT effects in the Goldstone diagrams
are equivalent to the effects in the longitudinal part of the amplitude in unitary gauge.
In addition to the contributions with an effective Zqq̄ or Z`

+
`
� vertex represented by

the diagram on the left in Figure 9, there are also contributions with hZqq̄ or hZ`
+
`
�

vertices. A corresponding graph is depicted on the right in Figure 9. In these cases only the
transversal part of (B.1) contributes — the longitudinal part vanishes because the Z boson
couples directly to the leptons that are treated as massless — and therefore in addition to
dropping the factor DZ(s12) in (B.5), one also has to discard the longitudinal part in (B.1)
by removing the factor (1� s12/m
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from SMEFT diagrams with a hZqq̄ or hZ`
+
`
� vertex. This contribution can be included

by simply adding the expression (B.10) to the sum over q in (B.4).
The triangle contributions with a Zqq̄ or a hZqq̄ vertex depicted in Figure 9 deserve

further discussion. In fact, in their sum these contributions cancel exactly [82], which is
an interesting feature of the SMEFT. To explicitly see this cancellation we rewrite the
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Here we have used (3.5), (A.2) and (A.5) in the first step. Notice that the final result
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are therefore the box contributions shown in the middle of Figure 9. Note that for the
operators in (2.1) both the triangle and box diagrams are non-vanishing.

Notice that the cancellation of the triangle contributions in pp ! Zh production guar-
antees that both relevant and irrelevant anomalous contributions depending on the Wilson
coefficients of the operators (2.2) automatically annul. In fact, it can be shown [83–87] that
the cancellation of relevant anomalous contributions is a general feature of the SMEFT,
while the cancellation of irrelevant terms can always be achieved by adding an appropriate
local counterterm, i.e. a Wess-Zumino term [88], to the SMEFT Lagrangian. As a result,
the condition for the cancellation of relevant gauge anomalies in the SMEFT is the same
as in the SM and only dependent on the gauge quantum numbers of the fermionic sec-
tor, as one would naively expect from an effective field theory point of view. The observed
cancellation between the triangle contribution with a Zqq̄ and a hZqq̄ vertex hence implies
that one does not need to introduce a Wess-Zumino term to obtain a scheme-independent
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we have used OpenLoops 2 [49] as well as the implementation SMEFT@NLO [78] together with
MadGraph5_aMC@NLO [91] to cross check the results presented in this appendix.
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from SMEFT diagrams with a hZqq̄ or hZ`
+
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� vertex. This contribution can be included

by simply adding the expression (B.10) to the sum over q in (B.4).
The triangle contributions with a Zqq̄ or a hZqq̄ vertex depicted in Figure 9 deserve

further discussion. In fact, in their sum these contributions cancel exactly [82], which is
an interesting feature of the SMEFT. To explicitly see this cancellation we rewrite the
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Here we have used (3.5), (A.2) and (A.5) in the first step. Notice that the final result
in (B.11) is up to an overall sign and the amplitude Aq

A0g2Z4 equal to the first term in (B.10)
which proves the cancellation. For simplicity we have treated m

2
Z

as real here, however,
the discussion does not change if one replaces it by its complex counterpart m

2
Z
� imZ�Z

in both DZ(s12) and ghZZ . The only contributions that remain for the operators in (2.2)

are therefore the box contributions shown in the middle of Figure 9. Note that for the
operators in (2.1) both the triangle and box diagrams are non-vanishing.

Notice that the cancellation of the triangle contributions in pp ! Zh production guar-
antees that both relevant and irrelevant anomalous contributions depending on the Wilson
coefficients of the operators (2.2) automatically annul. In fact, it can be shown [83–87] that
the cancellation of relevant anomalous contributions is a general feature of the SMEFT,
while the cancellation of irrelevant terms can always be achieved by adding an appropriate
local counterterm, i.e. a Wess-Zumino term [88], to the SMEFT Lagrangian. As a result,
the condition for the cancellation of relevant gauge anomalies in the SMEFT is the same
as in the SM and only dependent on the gauge quantum numbers of the fermionic sec-
tor, as one would naively expect from an effective field theory point of view. The observed
cancellation between the triangle contribution with a Zqq̄ and a hZqq̄ vertex hence implies
that one does not need to introduce a Wess-Zumino term to obtain a scheme-independent
expression for the gg ! Zh amplitudes in the SMEFT.

We finally note that the amplitude for the generalised neutral current proportional
to �g
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hZZ

as given in (3.9) vanishes in A0g2Z. Also �g
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and �g
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have no effect, since
the photon couples vectorially to the quark loop. Only �g
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hZZ

as given in (A.4) and the
corresponding SMEFT operators contribute to gg ! Zh production. This contribution is
however not anomalous and hence needs no special treatment. Let us finally mention that
we have used OpenLoops 2 [49] as well as the implementation SMEFT@NLO [78] together with
MadGraph5_aMC@NLO [91] to cross check the results presented in this appendix.

C SMEFT effects at NLO+PS and NNLO+PS

NLO QCD correction to V h production in the SMEFT have been calculated by several
groups [8–13]. By now these computations can also be performed automatically by means
of the combination of SMEFT@NLO and MadGraph5_aMC@NLO. In what follows, we will use the
POWHEG-BOX implementation of pp ! Zh ! `

+
`
�
h production presented in [10] to obtain

the relevant NLO+PS predictions. Our physics analysis proceeds as described in the first
paragraph of Section 5.

– 34 –
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Phenomenology analysis
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Figure 1: Tree-level SMEFT contributions to qq̄ ! Zh production. The diagram on
the left involves an insertion of one of the operators defined in (2.1), while the two graphs
on the right stem from an insertion of one of the operators given in (2.2). The operator
insertions are indicated by the blue squares.

3 Calculation in a nutshell

In this section, we sketch the different ingredients of our NNLO+PS SMEFT calculation of
pp ! V h production. We begin by recalling the basic steps of the NNLO QCD computation
within the SM and then detail the general method that we employ to calculate the relevant
matrix elements in the SMEFT and their implementation into the POWHEG-BOX. It is then
explained how the fixed-order NNLO SMEFT calculations of the pp ! V h processes are
consistently matched to a PS using the MiNNLOPS method.

3.1 SM calculation

To explain how we calculate the matrix elements of pp ! V h including the effects of SMEFT
operators let us recall the structure of the NNLO computation in the SM. Within the SM
the relevant higher-order corrections can be classified into three different types. In the case
of pp ! Zh production relevant sample Feynman diagrams are shown in Figure 2. The
first class of corrections, represented by the graph on the left, involves up to two additional
real or virtual gluon lines compared to the tree-level contribution. The corresponding ma-
trix elements are called B0g0V, B1g0V, B0g1V, B1g1V, B2g0V, B0g2V, where the number
before (after) the g refers to the number of additional real (virtual) gluons. In the case of
the SM, the analytic expressions for the corresponding spinor-helicity amplitudes can be
found in [25–28]. The second class of corrections, represented by the graph in the middle
of Figure 2, features the real emission of two additional quarks. These matrix elements are
called C0g0V and D0g0V and within the SM the analytic expressions for the corresponding
spinor-helicity amplitudes are provided in [28]. Finally, the gluon-gluon initiated contri-
butions shown on the right in Figure 2 constitute the third type of corrections. They are
referred to as A0g0V and the corresponding SM spinor-helicity amplitudes are given in [29].
Notice that due to charge conservation the third type of corrections only contributes to the
pp ! Zh but not the pp ! Wh process. We add that the qq̄ ! V h corrections called VI,II

and RI,II that are related to top-quark loops [30] are neglected in our SM calculation. Since
in total the numerical effect of these contributions amounts to only around 1% [18, 30, 31],
ignoring the VI,II and RI,II terms seems justified at present.
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The file Bridge contains the general routines that are required to evaluate the squared
matrix elements for an event, which is represented internally by an object of type Event_t.
These routines allow to set up the numerical expressions for the spinor-helicity brackets,
pass the input parameters to the Event_t object and calculate the dependent parame-
ters for a chosen EW input scheme. The file squaredamps contains the squared matrix
elements. The squared matrix element B1g0Z discussed above, for example, has the form
B1g0Z(i1,i2,i3,i4,i5,K,f1,f2), where the integers i1, ..., i5 2 {1, ..., 5} allow to specify
the crossing of the external legs, K is the Event_t object of the event, and f1 and f2 indi-
cate the flavours of the quark and lepton lines present in the relevant topology, respectively.
Our implementation employs the Monte Carlo Particle Numbering Scheme conventions of
the PDG [35]. The dimension-four, -six and -eight contributions to the squared matrix
elements are calculated individually and their inclusion can be controlled via the flags SM,
Linear and Quadratic of the Event_t object, respectively. Notice that the dimension-six
or linear (dimension-eight or quadratic) SMEFT contributions arise from the interference of
the SMEFT and SM amplitudes (self-interference of the SMEFT amplitudes). The spinor-
helicity amplitudes, the loop coefficients and the functions implementing the parity and
charge conjugation relations are collected in the amplib file.

Two further comments seem to be in order. First, besides including the squared matrix
elements described above, we also provide the corresponding colour- and spin-correlated
squared matrix elements that are required to build the infrared (IR) subtraction terms
in the NNLO+PS implementation of pp ! V h production. In the case of B1g0V for
instance the colour- and spin-correlated squared matrix elements are called B1g0V_colour
and B1g0V_spin, respectively. The definition of these squared matrix elements follows the
POWHEG conventions specified in (2.6) and (2.8) of the publication [22]. While the elements
of B1g0V_colour are simply equal to B1g0V times colour factors, calculating B1g0V_spin
requires a bit more care. In our notation, it takes the form

B1g0Z_spinµ⌫ =
8⇡↵sCF

CA

X

hq ,h`=±

�����
g
hq

Zq
g
h`

Z`
ghZZ

DZ(s123)DZ(s45)

�����

2 X

hg1 ,hg2=±
✏
µ ⇤
hg1

✏
⌫

hg2

⇥AB1g0Z

⇣
1
hq

q , 2
hg1
g , 3

�hq

q̄ ; 4h`

`
, 5�h`

¯̀

⌘
A

†
B1g0Z

⇣
1
hq

q , 2
hg2
g , 3

�hq

q̄ ; 4h`

`
, 5�h`

¯̀

⌘
,

(3.12)

where the ✏
µ

± are polarisation vectors normalised as
X

µ,⌫

gµ⌫ ✏
µ ⇤
hg1

✏
⌫

hg2
= ��hg1hg2

, (3.13)

with gµ⌫ = diag (1,�1,�1,�1). The polarisation vectors ✏µ± are implemented in POWHEG as

✏
µ

[PWG]± = ⌥
1
p
2
(✏µ1 ± i✏

µ

2 ) , (3.14)

where the form of the four-vectors ✏
µ

1 and ✏
µ

2 can be found in (A.12) of [39]. In order to
obtain AB1g0Z as given in (3.1), we have however employed

✏
µ

[GHS]+ =
h3|�µ|2]
p
2 h32i

, ✏
µ

[GHS]� =
h2|�µ|1]
p
2 [21]

, (3.15)

– 9 –

The file Bridge contains the general routines that are required to evaluate the squared
matrix elements for an event, which is represented internally by an object of type Event_t.
These routines allow to set up the numerical expressions for the spinor-helicity brackets,
pass the input parameters to the Event_t object and calculate the dependent parame-
ters for a chosen EW input scheme. The file squaredamps contains the squared matrix
elements. The squared matrix element B1g0Z discussed above, for example, has the form
B1g0Z(i1,i2,i3,i4,i5,K,f1,f2), where the integers i1, ..., i5 2 {1, ..., 5} allow to specify
the crossing of the external legs, K is the Event_t object of the event, and f1 and f2 indi-
cate the flavours of the quark and lepton lines present in the relevant topology, respectively.
Our implementation employs the Monte Carlo Particle Numbering Scheme conventions of
the PDG [35]. The dimension-four, -six and -eight contributions to the squared matrix
elements are calculated individually and their inclusion can be controlled via the flags SM,
Linear and Quadratic of the Event_t object, respectively. Notice that the dimension-six
or linear (dimension-eight or quadratic) SMEFT contributions arise from the interference of
the SMEFT and SM amplitudes (self-interference of the SMEFT amplitudes). The spinor-
helicity amplitudes, the loop coefficients and the functions implementing the parity and
charge conjugation relations are collected in the amplib file.

Two further comments seem to be in order. First, besides including the squared matrix
elements described above, we also provide the corresponding colour- and spin-correlated
squared matrix elements that are required to build the infrared (IR) subtraction terms
in the NNLO+PS implementation of pp ! V h production. In the case of B1g0V for
instance the colour- and spin-correlated squared matrix elements are called B1g0V_colour
and B1g0V_spin, respectively. The definition of these squared matrix elements follows the
POWHEG conventions specified in (2.6) and (2.8) of the publication [22]. While the elements
of B1g0V_colour are simply equal to B1g0V times colour factors, calculating B1g0V_spin
requires a bit more care. In our notation, it takes the form

B1g0Z_spinµ⌫ =
8⇡↵sCF

CA

X

hq ,h`=±

�����
g
hq

Zq
g
h`

Z`
ghZZ

DZ(s123)DZ(s45)

�����

2 X

hg1 ,hg2=±
✏
µ ⇤
hg1

✏
⌫

hg2

⇥AB1g0Z

⇣
1
hq

q , 2
hg1
g , 3

�hq

q̄ ; 4h`

`
, 5�h`

¯̀

⌘
A

†
B1g0Z

⇣
1
hq

q , 2
hg2
g , 3

�hq

q̄ ; 4h`

`
, 5�h`

¯̀

⌘
,

(3.12)

where the ✏
µ

± are polarisation vectors normalised as
X

µ,⌫

gµ⌫ ✏
µ ⇤
hg1

✏
⌫

hg2
= ��hg1hg2

, (3.13)

with gµ⌫ = diag (1,�1,�1,�1). The polarisation vectors ✏µ± are implemented in POWHEG as

✏
µ

[PWG]± = ⌥
1
p
2
(✏µ1 ± i✏

µ

2 ) , (3.14)

where the form of the four-vectors ✏
µ

1 and ✏
µ

2 can be found in (A.12) of [39]. In order to
obtain AB1g0Z as given in (3.1), we have however employed

✏
µ

[GHS]+ =
h3|�µ|2]
p
2 h32i

, ✏
µ

[GHS]� =
h2|�µ|1]
p
2 [21]

, (3.15)

– 9 –

In the paper, we will refer to this set of numbers as Xborn. We recall that the Born

phase space Φn, defined in [2], is given by

dΦn = dx⊕ dx⊖(2π)
4δ4
(

k⊕ + k⊖ −
n∑

i=1

ki

)
n∏

i=1

d3ki
(2π)32k0i

. (2.4)

The born phsp routine should perform the following tasks:

1. Set kn pborn(mu=0:3,k=1:nlegborn) and kn cmpborn(mu=0:3,k=1:nlegborn)1 to

the Born momenta in the laboratory frame and in the center-of-mass (CM) frame. The

Lorentz index µ = 0 denotes the time component, 1, 2 the transverse components x, y,

and 3 the longitudinal component z. Set the variables kn xb1 and kn xb2 to the value

of the parton momentum fraction x⊕ and x⊖. Set the variable kn sborn to the squared

CM energy of the Born process.

2. The array kn masses should be filled with the masses of the legs of the process. Fur-

thermore, the variable kn minmass should be set to a fixed (i.e. independent upon the

kinematics) lower bound on the mass of the final state. Thus, if no resonances are

present, it is typically set to the sum of the masses of the final-state particles. If there

are resonances, it will be set to the sum of the lower limits of the windows imposed

around the resonances.

3. Set the variable kn jacborn to the Jacobian

Jborn =

∣∣∣∣
∂Φn

∂Xborn

∣∣∣∣ . (2.5)

2.3 The Born and Born-correlated squared amplitudes

The user of the POWHEG BOX should provide the routine

setborn(p(0:3,1:nlegborn),bflav(1:nlegborn),born,

bornjk(1:nlegborn,1:nlegborn),bmunu(0:3,0:3,1:nlegborn)).

Given the four-momenta p and the flavour structure bflav of a Born subprocess, the routine

should return the Born squared matrix element 2sbB in born, the colour correlated one in

bornjk and the spin correlated one in bmunu. The flux factor 1/(2 sb) =1/(2*kn sborn)

(where sb is the center-of-mass energy squared of the Born process) should not be included,2

since it is supplied by the POWHEG BOX.

The colour correlated Born amplitude is defined in eq. (2.97) of ref. [2]. We report it

here for completeness

2sbBij = −N
∑

spins
colours

M{ck}

(
M†

{ck}

)
ci→c′i
cj→c′j

T a
ci,c′i

T a
cj ,c′j

. (2.6)

Here M{ck} is the Born amplitude, and {ck} stands for the colour indexes of all external

coloured particles in the amplitude. The suffix on the parentheses that enclose M†
{ck}

1All variables with the kn prefix are defined in the header file pwhg kn.h.
2In the notation of ref [2], B includes the flux factor
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indicates that the colour indexes of partons i, j are substituted with primed indexes in

M†
{ck}

. The factor N is the appropriate normalization factor including averages over initial

spin and colour and symmetry factors. We assume summation over repeated colour indexes

(ck, c′i, c
′
j and a) and spin indexes. For gluons T a

cb = ifcab, where fabc are the structure

constants of the SU(3) algebra. For incoming quarks T a
αβ = taαβ , where t are the colour

matrices in the fundamental representation (normalized as Tr[t t] = 1/2). For antiquarks

T a
αβ = −taβα. It follows from colour conservation that Bij satisfy

∑

i,i ̸=j

Bij = CfjB , (2.7)

where i runs over all coloured particles entering or exiting the process, and Cfj is the

Casimir constant for the colour representation of particle j. The spin correlated Born

squared amplitude Bµν
j is defined to be non-zero if the jth Born leg is a gluon, and is

basically the Born cross section obtained by leaving the gluon indexes of the jth leg un-

contracted. More precisely, we can write

Bµν
j = N

∑

{i},sj ,s′j

M ({i}, sj) M†
(
{i}, s′j

)
(ϵµsj)

∗ ϵνs′j
, (2.8)

where M ({i}, sj) is the Born amplitude, {i} represent collectively all remaining spins and

colours of the incoming and outgoing particles, and sj represents the spin of the jth particle.

The ϵµsj are polarization vectors, normalized as

∑

µ,ν

gµν (ϵ
µ
sj )

∗ ϵνs′j
= −δsjs′j . (2.9)

Thus ∑

µ,ν

gµν Bµν
j = −B . (2.10)

Notice that the Born squared amplitude is requested for each individual flavour structure

of the contributing subprocesses. Many different flavour structures will return identical or

proportional values of the Born cross section. For example dd̄ → Z is identical to ss̄ → Z,

and uū → γ∗ is proportional to dd̄ → γ∗. The POWHEG BOX identifies these identical

contributions initially, and stores the proportionality constants. When computing the

Born cross section for all needed flavour structures, it computes only the minimum number

of squared amplitudes it needs, and obtains the others using the proportionality relations

found initially.

2.4 The virtual amplitudes

The user should provide a subroutine

setvirtual(p(0:3,1:nlegborn),vflav(1:nlegborn),virtual),

that returns in virtual the finite part Vfin of the virtual cross section for the process

with flavour structure vflav and external momenta p. The Vfin contribution is defined, in
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We implemented all squared matrix elements in a Fortran library using spinor helicity amplitudes… 

Figure 1: Tree-level SMEFT contributions to qq̄ ! Zh production. The diagram on
the left involves an insertion of one of the operators defined in (2.1), while the two graphs
on the right stem from an insertion of one of the operators given in (2.2). The operator
insertions are indicated by the blue squares.

3 Calculation in a nutshell

In this section, we sketch the different ingredients of our NNLO+PS SMEFT calculation of
pp ! V h production. We begin by recalling the basic steps of the NNLO QCD computation
within the SM and then detail the general method that we employ to calculate the relevant
matrix elements in the SMEFT and their implementation into the POWHEG-BOX. It is then
explained how the fixed-order NNLO SMEFT calculations of the pp ! V h processes are
consistently matched to a PS using the MiNNLOPS method.

3.1 SM calculation

To explain how we calculate the matrix elements of pp ! V h including the effects of SMEFT
operators let us recall the structure of the NNLO computation in the SM. Within the SM
the relevant higher-order corrections can be classified into three different types. In the case
of pp ! Zh production relevant sample Feynman diagrams are shown in Figure 2. The
first class of corrections, represented by the graph on the left, involves up to two additional
real or virtual gluon lines compared to the tree-level contribution. The corresponding ma-
trix elements are called B0g0V, B1g0V, B0g1V, B1g1V, B2g0V, B0g2V, where the number
before (after) the g refers to the number of additional real (virtual) gluons. In the case of
the SM, the analytic expressions for the corresponding spinor-helicity amplitudes can be
found in [25–28]. The second class of corrections, represented by the graph in the middle
of Figure 2, features the real emission of two additional quarks. These matrix elements are
called C0g0V and D0g0V and within the SM the analytic expressions for the corresponding
spinor-helicity amplitudes are provided in [28]. Finally, the gluon-gluon initiated contri-
butions shown on the right in Figure 2 constitute the third type of corrections. They are
referred to as A0g0V and the corresponding SM spinor-helicity amplitudes are given in [29].
Notice that due to charge conservation the third type of corrections only contributes to the
pp ! Zh but not the pp ! Wh process. We add that the qq̄ ! V h corrections called VI,II

and RI,II that are related to top-quark loops [30] are neglected in our SM calculation. Since
in total the numerical effect of these contributions amounts to only around 1% [18, 30, 31],
ignoring the VI,II and RI,II terms seems justified at present.
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The file Bridge contains the general routines that are required to evaluate the squared
matrix elements for an event, which is represented internally by an object of type Event_t.
These routines allow to set up the numerical expressions for the spinor-helicity brackets,
pass the input parameters to the Event_t object and calculate the dependent parame-
ters for a chosen EW input scheme. The file squaredamps contains the squared matrix
elements. The squared matrix element B1g0Z discussed above, for example, has the form
B1g0Z(i1,i2,i3,i4,i5,K,f1,f2), where the integers i1, ..., i5 2 {1, ..., 5} allow to specify
the crossing of the external legs, K is the Event_t object of the event, and f1 and f2 indi-
cate the flavours of the quark and lepton lines present in the relevant topology, respectively.
Our implementation employs the Monte Carlo Particle Numbering Scheme conventions of
the PDG [35]. The dimension-four, -six and -eight contributions to the squared matrix
elements are calculated individually and their inclusion can be controlled via the flags SM,
Linear and Quadratic of the Event_t object, respectively. Notice that the dimension-six
or linear (dimension-eight or quadratic) SMEFT contributions arise from the interference of
the SMEFT and SM amplitudes (self-interference of the SMEFT amplitudes). The spinor-
helicity amplitudes, the loop coefficients and the functions implementing the parity and
charge conjugation relations are collected in the amplib file.

Two further comments seem to be in order. First, besides including the squared matrix
elements described above, we also provide the corresponding colour- and spin-correlated
squared matrix elements that are required to build the infrared (IR) subtraction terms
in the NNLO+PS implementation of pp ! V h production. In the case of B1g0V for
instance the colour- and spin-correlated squared matrix elements are called B1g0V_colour
and B1g0V_spin, respectively. The definition of these squared matrix elements follows the
POWHEG conventions specified in (2.6) and (2.8) of the publication [22]. While the elements
of B1g0V_colour are simply equal to B1g0V times colour factors, calculating B1g0V_spin
requires a bit more care. In our notation, it takes the form

B1g0Z_spinµ⌫ =
8⇡↵sCF

CA

X

hq ,h`=±

�����
g
hq
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h`
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ghZZ
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�����
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`
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†
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(3.12)

where the ✏
µ

± are polarisation vectors normalised as
X

µ,⌫

gµ⌫ ✏
µ ⇤
hg1

✏
⌫

hg2
= ��hg1hg2

, (3.13)

with gµ⌫ = diag (1,�1,�1,�1). The polarisation vectors ✏µ± are implemented in POWHEG as

✏
µ

[PWG]± = ⌥
1
p
2
(✏µ1 ± i✏

µ

2 ) , (3.14)

where the form of the four-vectors ✏
µ

1 and ✏
µ

2 can be found in (A.12) of [39]. In order to
obtain AB1g0Z as given in (3.1), we have however employed
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In the paper, we will refer to this set of numbers as Xborn. We recall that the Born

phase space Φn, defined in [2], is given by

dΦn = dx⊕ dx⊖(2π)
4δ4
(

k⊕ + k⊖ −
n∑

i=1

ki

)
n∏

i=1

d3ki
(2π)32k0i

. (2.4)

The born phsp routine should perform the following tasks:

1. Set kn pborn(mu=0:3,k=1:nlegborn) and kn cmpborn(mu=0:3,k=1:nlegborn)1 to

the Born momenta in the laboratory frame and in the center-of-mass (CM) frame. The

Lorentz index µ = 0 denotes the time component, 1, 2 the transverse components x, y,

and 3 the longitudinal component z. Set the variables kn xb1 and kn xb2 to the value

of the parton momentum fraction x⊕ and x⊖. Set the variable kn sborn to the squared

CM energy of the Born process.

2. The array kn masses should be filled with the masses of the legs of the process. Fur-

thermore, the variable kn minmass should be set to a fixed (i.e. independent upon the

kinematics) lower bound on the mass of the final state. Thus, if no resonances are

present, it is typically set to the sum of the masses of the final-state particles. If there

are resonances, it will be set to the sum of the lower limits of the windows imposed

around the resonances.

3. Set the variable kn jacborn to the Jacobian

Jborn =

∣∣∣∣
∂Φn

∂Xborn

∣∣∣∣ . (2.5)

2.3 The Born and Born-correlated squared amplitudes

The user of the POWHEG BOX should provide the routine

setborn(p(0:3,1:nlegborn),bflav(1:nlegborn),born,

bornjk(1:nlegborn,1:nlegborn),bmunu(0:3,0:3,1:nlegborn)).

Given the four-momenta p and the flavour structure bflav of a Born subprocess, the routine

should return the Born squared matrix element 2sbB in born, the colour correlated one in

bornjk and the spin correlated one in bmunu. The flux factor 1/(2 sb) =1/(2*kn sborn)

(where sb is the center-of-mass energy squared of the Born process) should not be included,2

since it is supplied by the POWHEG BOX.

The colour correlated Born amplitude is defined in eq. (2.97) of ref. [2]. We report it

here for completeness

2sbBij = −N
∑

spins
colours

M{ck}

(
M†

{ck}

)
ci→c′i
cj→c′j

T a
ci,c′i

T a
cj ,c′j

. (2.6)

Here M{ck} is the Born amplitude, and {ck} stands for the colour indexes of all external

coloured particles in the amplitude. The suffix on the parentheses that enclose M†
{ck}

1All variables with the kn prefix are defined in the header file pwhg kn.h.
2In the notation of ref [2], B includes the flux factor
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indicates that the colour indexes of partons i, j are substituted with primed indexes in

M†
{ck}

. The factor N is the appropriate normalization factor including averages over initial

spin and colour and symmetry factors. We assume summation over repeated colour indexes

(ck, c′i, c
′
j and a) and spin indexes. For gluons T a

cb = ifcab, where fabc are the structure

constants of the SU(3) algebra. For incoming quarks T a
αβ = taαβ , where t are the colour

matrices in the fundamental representation (normalized as Tr[t t] = 1/2). For antiquarks

T a
αβ = −taβα. It follows from colour conservation that Bij satisfy

∑

i,i ̸=j

Bij = CfjB , (2.7)

where i runs over all coloured particles entering or exiting the process, and Cfj is the

Casimir constant for the colour representation of particle j. The spin correlated Born

squared amplitude Bµν
j is defined to be non-zero if the jth Born leg is a gluon, and is

basically the Born cross section obtained by leaving the gluon indexes of the jth leg un-

contracted. More precisely, we can write

Bµν
j = N

∑

{i},sj ,s′j

M ({i}, sj) M†
(
{i}, s′j

)
(ϵµsj)

∗ ϵνs′j
, (2.8)

where M ({i}, sj) is the Born amplitude, {i} represent collectively all remaining spins and

colours of the incoming and outgoing particles, and sj represents the spin of the jth particle.

The ϵµsj are polarization vectors, normalized as

∑

µ,ν

gµν (ϵ
µ
sj )

∗ ϵνs′j
= −δsjs′j . (2.9)

Thus ∑

µ,ν

gµν Bµν
j = −B . (2.10)

Notice that the Born squared amplitude is requested for each individual flavour structure

of the contributing subprocesses. Many different flavour structures will return identical or

proportional values of the Born cross section. For example dd̄ → Z is identical to ss̄ → Z,

and uū → γ∗ is proportional to dd̄ → γ∗. The POWHEG BOX identifies these identical

contributions initially, and stores the proportionality constants. When computing the

Born cross section for all needed flavour structures, it computes only the minimum number

of squared amplitudes it needs, and obtains the others using the proportionality relations

found initially.

2.4 The virtual amplitudes

The user should provide a subroutine

setvirtual(p(0:3,1:nlegborn),vflav(1:nlegborn),virtual),

that returns in virtual the finite part Vfin of the virtual cross section for the process

with flavour structure vflav and external momenta p. The Vfin contribution is defined, in
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We implemented all squared matrix elements in a Fortran library using spinor helicity amplitudes… 

Figure 1: Tree-level SMEFT contributions to qq̄ ! Zh production. The diagram on
the left involves an insertion of one of the operators defined in (2.1), while the two graphs
on the right stem from an insertion of one of the operators given in (2.2). The operator
insertions are indicated by the blue squares.

3 Calculation in a nutshell

In this section, we sketch the different ingredients of our NNLO+PS SMEFT calculation of
pp ! V h production. We begin by recalling the basic steps of the NNLO QCD computation
within the SM and then detail the general method that we employ to calculate the relevant
matrix elements in the SMEFT and their implementation into the POWHEG-BOX. It is then
explained how the fixed-order NNLO SMEFT calculations of the pp ! V h processes are
consistently matched to a PS using the MiNNLOPS method.

3.1 SM calculation

To explain how we calculate the matrix elements of pp ! V h including the effects of SMEFT
operators let us recall the structure of the NNLO computation in the SM. Within the SM
the relevant higher-order corrections can be classified into three different types. In the case
of pp ! Zh production relevant sample Feynman diagrams are shown in Figure 2. The
first class of corrections, represented by the graph on the left, involves up to two additional
real or virtual gluon lines compared to the tree-level contribution. The corresponding ma-
trix elements are called B0g0V, B1g0V, B0g1V, B1g1V, B2g0V, B0g2V, where the number
before (after) the g refers to the number of additional real (virtual) gluons. In the case of
the SM, the analytic expressions for the corresponding spinor-helicity amplitudes can be
found in [25–28]. The second class of corrections, represented by the graph in the middle
of Figure 2, features the real emission of two additional quarks. These matrix elements are
called C0g0V and D0g0V and within the SM the analytic expressions for the corresponding
spinor-helicity amplitudes are provided in [28]. Finally, the gluon-gluon initiated contri-
butions shown on the right in Figure 2 constitute the third type of corrections. They are
referred to as A0g0V and the corresponding SM spinor-helicity amplitudes are given in [29].
Notice that due to charge conservation the third type of corrections only contributes to the
pp ! Zh but not the pp ! Wh process. We add that the qq̄ ! V h corrections called VI,II

and RI,II that are related to top-quark loops [30] are neglected in our SM calculation. Since
in total the numerical effect of these contributions amounts to only around 1% [18, 30, 31],
ignoring the VI,II and RI,II terms seems justified at present.
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The file Bridge contains the general routines that are required to evaluate the squared
matrix elements for an event, which is represented internally by an object of type Event_t.
These routines allow to set up the numerical expressions for the spinor-helicity brackets,
pass the input parameters to the Event_t object and calculate the dependent parame-
ters for a chosen EW input scheme. The file squaredamps contains the squared matrix
elements. The squared matrix element B1g0Z discussed above, for example, has the form
B1g0Z(i1,i2,i3,i4,i5,K,f1,f2), where the integers i1, ..., i5 2 {1, ..., 5} allow to specify
the crossing of the external legs, K is the Event_t object of the event, and f1 and f2 indi-
cate the flavours of the quark and lepton lines present in the relevant topology, respectively.
Our implementation employs the Monte Carlo Particle Numbering Scheme conventions of
the PDG [35]. The dimension-four, -six and -eight contributions to the squared matrix
elements are calculated individually and their inclusion can be controlled via the flags SM,
Linear and Quadratic of the Event_t object, respectively. Notice that the dimension-six
or linear (dimension-eight or quadratic) SMEFT contributions arise from the interference of
the SMEFT and SM amplitudes (self-interference of the SMEFT amplitudes). The spinor-
helicity amplitudes, the loop coefficients and the functions implementing the parity and
charge conjugation relations are collected in the amplib file.

Two further comments seem to be in order. First, besides including the squared matrix
elements described above, we also provide the corresponding colour- and spin-correlated
squared matrix elements that are required to build the infrared (IR) subtraction terms
in the NNLO+PS implementation of pp ! V h production. In the case of B1g0V for
instance the colour- and spin-correlated squared matrix elements are called B1g0V_colour
and B1g0V_spin, respectively. The definition of these squared matrix elements follows the
POWHEG conventions specified in (2.6) and (2.8) of the publication [22]. While the elements
of B1g0V_colour are simply equal to B1g0V times colour factors, calculating B1g0V_spin
requires a bit more care. In our notation, it takes the form

B1g0Z_spinµ⌫ =
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where the ✏
µ

± are polarisation vectors normalised as
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1 and ✏
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✏
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p
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The file Bridge contains the general routines that are required to evaluate the squared
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In the paper, we will refer to this set of numbers as Xborn. We recall that the Born

phase space Φn, defined in [2], is given by

dΦn = dx⊕ dx⊖(2π)
4δ4
(

k⊕ + k⊖ −
n∑

i=1

ki

)
n∏

i=1

d3ki
(2π)32k0i

. (2.4)

The born phsp routine should perform the following tasks:

1. Set kn pborn(mu=0:3,k=1:nlegborn) and kn cmpborn(mu=0:3,k=1:nlegborn)1 to

the Born momenta in the laboratory frame and in the center-of-mass (CM) frame. The

Lorentz index µ = 0 denotes the time component, 1, 2 the transverse components x, y,

and 3 the longitudinal component z. Set the variables kn xb1 and kn xb2 to the value

of the parton momentum fraction x⊕ and x⊖. Set the variable kn sborn to the squared

CM energy of the Born process.

2. The array kn masses should be filled with the masses of the legs of the process. Fur-

thermore, the variable kn minmass should be set to a fixed (i.e. independent upon the

kinematics) lower bound on the mass of the final state. Thus, if no resonances are

present, it is typically set to the sum of the masses of the final-state particles. If there

are resonances, it will be set to the sum of the lower limits of the windows imposed

around the resonances.

3. Set the variable kn jacborn to the Jacobian

Jborn =

∣∣∣∣
∂Φn

∂Xborn

∣∣∣∣ . (2.5)

2.3 The Born and Born-correlated squared amplitudes

The user of the POWHEG BOX should provide the routine

setborn(p(0:3,1:nlegborn),bflav(1:nlegborn),born,

bornjk(1:nlegborn,1:nlegborn),bmunu(0:3,0:3,1:nlegborn)).

Given the four-momenta p and the flavour structure bflav of a Born subprocess, the routine

should return the Born squared matrix element 2sbB in born, the colour correlated one in

bornjk and the spin correlated one in bmunu. The flux factor 1/(2 sb) =1/(2*kn sborn)

(where sb is the center-of-mass energy squared of the Born process) should not be included,2

since it is supplied by the POWHEG BOX.

The colour correlated Born amplitude is defined in eq. (2.97) of ref. [2]. We report it

here for completeness

2sbBij = −N
∑

spins
colours

M{ck}

(
M†

{ck}

)
ci→c′i
cj→c′j

T a
ci,c′i

T a
cj ,c′j

. (2.6)

Here M{ck} is the Born amplitude, and {ck} stands for the colour indexes of all external

coloured particles in the amplitude. The suffix on the parentheses that enclose M†
{ck}

1All variables with the kn prefix are defined in the header file pwhg kn.h.
2In the notation of ref [2], B includes the flux factor
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conservation
-

Born please

& Bjorken + of incoming
space -

particles
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ute

on invariant
masses

-
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indicates that the colour indexes of partons i, j are substituted with primed indexes in

M†
{ck}

. The factor N is the appropriate normalization factor including averages over initial

spin and colour and symmetry factors. We assume summation over repeated colour indexes

(ck, c′i, c
′
j and a) and spin indexes. For gluons T a

cb = ifcab, where fabc are the structure

constants of the SU(3) algebra. For incoming quarks T a
αβ = taαβ , where t are the colour

matrices in the fundamental representation (normalized as Tr[t t] = 1/2). For antiquarks

T a
αβ = −taβα. It follows from colour conservation that Bij satisfy

∑

i,i ̸=j

Bij = CfjB , (2.7)

where i runs over all coloured particles entering or exiting the process, and Cfj is the

Casimir constant for the colour representation of particle j. The spin correlated Born

squared amplitude Bµν
j is defined to be non-zero if the jth Born leg is a gluon, and is

basically the Born cross section obtained by leaving the gluon indexes of the jth leg un-

contracted. More precisely, we can write

Bµν
j = N

∑

{i},sj ,s′j

M ({i}, sj) M†
(
{i}, s′j

)
(ϵµsj)

∗ ϵνs′j
, (2.8)

where M ({i}, sj) is the Born amplitude, {i} represent collectively all remaining spins and

colours of the incoming and outgoing particles, and sj represents the spin of the jth particle.

The ϵµsj are polarization vectors, normalized as

∑

µ,ν

gµν (ϵ
µ
sj )

∗ ϵνs′j
= −δsjs′j . (2.9)

Thus ∑

µ,ν

gµν Bµν
j = −B . (2.10)

Notice that the Born squared amplitude is requested for each individual flavour structure

of the contributing subprocesses. Many different flavour structures will return identical or

proportional values of the Born cross section. For example dd̄ → Z is identical to ss̄ → Z,

and uū → γ∗ is proportional to dd̄ → γ∗. The POWHEG BOX identifies these identical

contributions initially, and stores the proportionality constants. When computing the

Born cross section for all needed flavour structures, it computes only the minimum number

of squared amplitudes it needs, and obtains the others using the proportionality relations

found initially.

2.4 The virtual amplitudes

The user should provide a subroutine

setvirtual(p(0:3,1:nlegborn),vflav(1:nlegborn),virtual),

that returns in virtual the finite part Vfin of the virtual cross section for the process

with flavour structure vflav and external momenta p. The Vfin contribution is defined, in

– 9 –
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Figure 5: As Figure 4 but for benchmark scenario (4.23) with ⇤ = 1TeV. The yellow
lines correspond to the BSM results.

linear SMEFT effects are largest in the benchmark scenario with C
(3)
Hq

= 0.05 where they
can exceed +50% compared to the SM for pT,Z > 300GeV. The respective effects in the
benchmark scenario with CHd = �0.1 (CHu = 0.1) just correspond to around +7% (+20%).
The observed hierarchy of SMEFT effects can be traced back to the approximate pattern
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Figure 4: NNLO+PS predictions for pp ! Zh ! `
+
`
�
h production in the SMEFT bench-

mark scenario (4.21) assuming a common operator suppression scale of ⇤ = 1TeV. The four
panels show the fiducial cross section differential in |⌘Z | (upper left), pT,Z (upper right),
|⌘Z � ⌘h| (lower left) and mZh (lower right) for proton-proton (pp) collisions at 13TeV.
The SM predictions are indicated by the solid black lines while the solid (dotted) orange
curves represent the SMEFT contribution linear (quadratic) in the Wilson coefficients. The
solid dark orange lines correspond to the sums of the linear and quadratic SMEFT contri-
butions. The lower panels depict the ratios between the BSM and the SM distributions with
the grey band representing the SM scale uncertainties. See main text for further details.
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Figure 10: SM NLO+PS and NNLO+PS results for pp ! Zh ! `
+
`
�
h production.

The |⌘Z | (upper left), pT,Z (upper right), |⌘Z � ⌘h| (lower left) and mZh (lower right)
spectra are shown. The dashed (solid) lines illustrate the NLO+PS (NNLO+PS) results,
while the dotted curves are the ggF NNLO+PS corrections. The solid (dotted) lines in the
lower panels depict the ratios between the full NNLO+PS (NLO+PS plus ggF NNLO+PS)
and the NLO+PS results. See main text for further explanations.
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Figure 11: As Figure 10 but for benchmark scenario (4.21). The curves called
SM+SMEFT correspond to the full squared matrix elements including the sum of both the
SM and SMEFT contributions. The lower panels show the ratios between the SM+SMEFT
and the SM predictions at the same order in QCD. For more details consult main text.

the case in the SMEFT, where effects stemming from the gg ! Zh channel are suppressed
compared to the SM as a result of the additional subtraction (B.10). We add that the
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Figure 12: As Figure 11 but for benchmark scenario (4.23).

comparisons of SM+SMEFT predictions present in this appendix represent a non-trivial
validation of our new NNLO+PS MC code for Higgsstrahlung.
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Our NNLO+PS code can do SM, linear SMEFT, quadratic SMEFT individually (+ input scheme corrections). 
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allows to measure Higgs couplings precisely. 

‣ We calculated SMEFT contributions to  at NNLO and implemented 
them in an NNLO+PS accurate POWHEG MiNNLOPS event generator. 

pp → V( → l+l−)h

‣ In our calculation we encountered interesting theoretical aspects, 
including the un- and recontraction of spinor-helicity amplitudes and the 
cancellation of gauge anomalies in the SMEFT. 

 useful tool for future Higgs characterisation studies at the LHC→
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… and implemented the matrix elements in a POWHEG MiNNLOPS NNLO+PS event generator.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�M
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Z + iMZ�Z , (4.5)

with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

where
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2
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are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�M
2
Z + iMZ�Z , (4.5)

with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf
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and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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DZ(s) = s�M
2
Z + iMZ�Z , (4.5)

with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf
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and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
of the initial vector boson V1 into the outgoing vector boson V2 and the Higgs boson h [8].
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the

SM. The diagram on the left features additional virtual and real gluon lines (B-type), the

diagram in the middle involves a second quark line (C- and D-type) and the diagram on the

right is gluon-gluon initiated (A-type). Consult the main text for further details.where
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… and implemented the matrix elements in a POWHEG MiNNLOPS NNLO+PS event generator.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
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Figure 2: Examples of higher-order QCD corrections to pp !
Zh production within the

SM. The diagram on the left features additional virtual and real gluon lines (B-type), the

diagram in the middle involves a second quark line (C- and D-type) and the diagram on the

right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

where
sij = (pi + pj)

2
, sijk = sij + sjk + ski , (4.4)

are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
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with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
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The explicit expressions for these quantities are given in Appendix A.
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Figure 2: Examples of higher-order QCD corrections to pp !
Zh production within the

SM. The diagram on the left features additional virtual and real gluon lines (B-type), the

diagram in the middle involves a second quark line (C- and D-type) and the diagram on the

right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
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and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the

SM. The diagram on the left features additional virtual and real gluon lines (B-type), the

diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Zh production within the

SM. The diagram on the left features additional virtual and real gluon lines (B-type), the

diagram in the middle involves a second quark line (C- and D-type) and the diagram on the

right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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diagram in the middle involves a second quark line (C- and D-type) and the diagram on the

right is gluon-gluon initiated (A-type). Consult the main text for further details.
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into the pieces associated with a given singular region a. We now define B̄ asThe B̄ function
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(2.83)

The Sudakov form factor Dpwg is defined asThe POWHEG
Sudakov form

factor Dpwg

Dpwg(PF, pT,pwg) ⌘ exp
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3

75 , (2.84)

where qT,rad is a function of the (n + 1)-body kinematics *
FFJ and is related to the

transverse momentum of the radiated parton. As for the PS, the Sudakov form
factor Dpwg can be interpreted as the probability that no parton is radiated with a
transverse momentum greater than pT,pwg. In the POWHEG method, the expectation
value for an IR-safe observable O, including up to one additional parton emission,
then readsThe POWHEG master

formula

hOiNLO =
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(2.85)

A shorthand notation has been introduced, with the lower integration limit pT,pwg
referring to the theta function in (2.84). Note the similarity with (2.81), but also
that (2.85) includes the full information on the real matrix element R. Indeed, the
POWHEG method models the hardest emission above pT,pwg at full NLO accuracy in
the all-order emission probability of (2.85). Subsequent radiations below the scale
of the hard emission qT,rad are supplied by the PS, using qT,rad as the starting scale.
This necessitates that the PS is pT-ordered, i.e. that the hard emission scale qT,radAlthough Pythia is

pT-ordered, its
definition of relative

transverse
momentum differs

from the one of
POWHEG.

Consequently, a
shower veto should

be employed (see [39]
and the example

main31 of Pythia).

is compatible with the evolution variable t. If this is the case, the overcounting
from Figure 2.9 is avoided: POWHEG uses the full NLO matrix elements to simulate
the hardest emission, the PS is used exclusively for the subsequent emissions below.
Note that the expression with the all-order Sudakov form factor of the POWHEG

method is equivalent to the usual NLO prescription given in (2.85) at O(as).
Finally, we note that POWHEG is not the only method that allows for a consistent

matching of fixed-order NLO matrix elements with PS generators. The same feat
is achieved by the MC@NLO method [40], which avoids overcounting by subtracting
from the exact NLO cross section its approximation. This generally results in more
negatively weighted events than with the POWHEG method, since the exact NLO
expression minus the PS subtraction terms need not be positive.
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… and implemented the matrix elements in a POWHEG MiNNLOPS NNLO+PS event generator.
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4.2 POWHEG MiNNLOPS event generator

Master formula

Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
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diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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into the pieces associated with a given singular region a. We now define B̄ asThe B̄ function
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The Sudakov form factor Dpwg is defined asThe POWHEG
Sudakov form

factor Dpwg
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75 , (2.84)

where qT,rad is a function of the (n + 1)-body kinematics *
FFJ and is related to the

transverse momentum of the radiated parton. As for the PS, the Sudakov form
factor Dpwg can be interpreted as the probability that no parton is radiated with a
transverse momentum greater than pT,pwg. In the POWHEG method, the expectation
value for an IR-safe observable O, including up to one additional parton emission,
then readsThe POWHEG master

formula

hOiNLO =
Z

dFFB̄(PF)

"
Dpwg(PF, pT,pwg)O(FF)
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(2.85)

A shorthand notation has been introduced, with the lower integration limit pT,pwg
referring to the theta function in (2.84). Note the similarity with (2.81), but also
that (2.85) includes the full information on the real matrix element R. Indeed, the
POWHEG method models the hardest emission above pT,pwg at full NLO accuracy in
the all-order emission probability of (2.85). Subsequent radiations below the scale
of the hard emission qT,rad are supplied by the PS, using qT,rad as the starting scale.
This necessitates that the PS is pT-ordered, i.e. that the hard emission scale qT,radAlthough Pythia is

pT-ordered, its
definition of relative

transverse
momentum differs

from the one of
POWHEG.

Consequently, a
shower veto should

be employed (see [39]
and the example

main31 of Pythia).

is compatible with the evolution variable t. If this is the case, the overcounting
from Figure 2.9 is avoided: POWHEG uses the full NLO matrix elements to simulate
the hardest emission, the PS is used exclusively for the subsequent emissions below.
Note that the expression with the all-order Sudakov form factor of the POWHEG

method is equivalent to the usual NLO prescription given in (2.85) at O(as).
Finally, we note that POWHEG is not the only method that allows for a consistent

matching of fixed-order NLO matrix elements with PS generators. The same feat
is achieved by the MC@NLO method [40], which avoids overcounting by subtracting
from the exact NLO cross section its approximation. This generally results in more
negatively weighted events than with the POWHEG method, since the exact NLO
expression minus the PS subtraction terms need not be positive.

20

… and implemented the matrix elements in a POWHEG MiNNLOPS NNLO+PS event generator.
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4.2 POWHEG MiNNLOPS event generator
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Master formula

Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�M
2
Z + iMZ�Z , (4.5)

with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
of the initial vector boson V1 into the outgoing vector boson V2 and the Higgs boson h [8].
If the initial-state quarks and final-state leptons are left-handed the relevant generalised
neutral currents are given by
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp !
Zh production within the

SM. The diagram on the left features additional virtual and real gluon lines (B-type), the

diagram in the middle involves a second quark line (C- and D-type) and the diagram on the

right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp !
Zh production within the

SM. The diagram on the left features additional virtual and real gluon lines (B-type), the

diagram in the middle involves a second quark line (C- and D-type) and the diagram on the

right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Zh production within the

SM. The diagram on the left features additional virtual and real gluon lines (B-type), the

diagram in the middle involves a second quark line (C- and D-type) and the diagram on the

right is gluon-gluon initiated (A-type). Consult the main text for further details.
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into the pieces associated with a given singular region a. We now define B̄ asThe B̄ function
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The Sudakov form factor Dpwg is defined asThe POWHEG
Sudakov form

factor Dpwg
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where qT,rad is a function of the (n + 1)-body kinematics *
FFJ and is related to the

transverse momentum of the radiated parton. As for the PS, the Sudakov form
factor Dpwg can be interpreted as the probability that no parton is radiated with a
transverse momentum greater than pT,pwg. In the POWHEG method, the expectation
value for an IR-safe observable O, including up to one additional parton emission,
then readsThe POWHEG master

formula

hOiNLO =
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"
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(2.85)

A shorthand notation has been introduced, with the lower integration limit pT,pwg
referring to the theta function in (2.84). Note the similarity with (2.81), but also
that (2.85) includes the full information on the real matrix element R. Indeed, the
POWHEG method models the hardest emission above pT,pwg at full NLO accuracy in
the all-order emission probability of (2.85). Subsequent radiations below the scale
of the hard emission qT,rad are supplied by the PS, using qT,rad as the starting scale.
This necessitates that the PS is pT-ordered, i.e. that the hard emission scale qT,radAlthough Pythia is

pT-ordered, its
definition of relative

transverse
momentum differs

from the one of
POWHEG.

Consequently, a
shower veto should

be employed (see [39]
and the example

main31 of Pythia).

is compatible with the evolution variable t. If this is the case, the overcounting
from Figure 2.9 is avoided: POWHEG uses the full NLO matrix elements to simulate
the hardest emission, the PS is used exclusively for the subsequent emissions below.
Note that the expression with the all-order Sudakov form factor of the POWHEG

method is equivalent to the usual NLO prescription given in (2.85) at O(as).
Finally, we note that POWHEG is not the only method that allows for a consistent

matching of fixed-order NLO matrix elements with PS generators. The same feat
is achieved by the MC@NLO method [40], which avoids overcounting by subtracting
from the exact NLO cross section its approximation. This generally results in more
negatively weighted events than with the POWHEG method, since the exact NLO
expression minus the PS subtraction terms need not be positive.
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… and implemented the matrix elements in a POWHEG MiNNLOPS NNLO+PS event generator.
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the hardest emission, the PS is used exclusively for the subsequent emissions below.
Note that the expression with the all-order Sudakov form factor of the POWHEG

method is equivalent to the usual NLO prescription given in (2.85) at O(as).
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matching of fixed-order NLO matrix elements with PS generators. The same feat
is achieved by the MC@NLO method [40], which avoids overcounting by subtracting
from the exact NLO cross section its approximation. This generally results in more
negatively weighted events than with the POWHEG method, since the exact NLO
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Subtraction counterterms. Master formula

Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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sij = (pi + pj)

2
, sijk = sij + sjk + ski , (4.4)

are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�M
2
Z + iMZ�Z , (4.5)

with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
of the initial vector boson V1 into the outgoing vector boson V2 and the Higgs boson h [8].
If the initial-state quarks and final-state leptons are left-handed the relevant generalised
neutral currents are given by
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
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and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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NLO LO+PS
Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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into the pieces associated with a given singular region a. We now define B̄ asThe B̄ function
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The Sudakov form factor Dpwg is defined asThe POWHEG
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where qT,rad is a function of the (n + 1)-body kinematics *
FFJ and is related to the

transverse momentum of the radiated parton. As for the PS, the Sudakov form
factor Dpwg can be interpreted as the probability that no parton is radiated with a
transverse momentum greater than pT,pwg. In the POWHEG method, the expectation
value for an IR-safe observable O, including up to one additional parton emission,
then readsThe POWHEG master

formula
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A shorthand notation has been introduced, with the lower integration limit pT,pwg
referring to the theta function in (2.84). Note the similarity with (2.81), but also
that (2.85) includes the full information on the real matrix element R. Indeed, the
POWHEG method models the hardest emission above pT,pwg at full NLO accuracy in
the all-order emission probability of (2.85). Subsequent radiations below the scale
of the hard emission qT,rad are supplied by the PS, using qT,rad as the starting scale.
This necessitates that the PS is pT-ordered, i.e. that the hard emission scale qT,radAlthough Pythia is

pT-ordered, its
definition of relative

transverse
momentum differs

from the one of
POWHEG.

Consequently, a
shower veto should

be employed (see [39]
and the example

main31 of Pythia).

is compatible with the evolution variable t. If this is the case, the overcounting
from Figure 2.9 is avoided: POWHEG uses the full NLO matrix elements to simulate
the hardest emission, the PS is used exclusively for the subsequent emissions below.
Note that the expression with the all-order Sudakov form factor of the POWHEG

method is equivalent to the usual NLO prescription given in (2.85) at O(as).
Finally, we note that POWHEG is not the only method that allows for a consistent

matching of fixed-order NLO matrix elements with PS generators. The same feat
is achieved by the MC@NLO method [40], which avoids overcounting by subtracting
from the exact NLO cross section its approximation. This generally results in more
negatively weighted events than with the POWHEG method, since the exact NLO
expression minus the PS subtraction terms need not be positive.

20

… and implemented the matrix elements in a POWHEG MiNNLOPS NNLO+PS event generator.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp !
Zh production within the

SM. The diagram on the left features additional virtual and real gluon lines (B-type), the

diagram in the middle involves a second quark line (C- and D-type) and the diagram on the

right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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SM. The diagram on the left features additional virtual and real gluon lines (B-type), the

diagram in the middle involves a second quark line (C- and D-type) and the diagram on the

right is gluon-gluon initiated (A-type). Consult the main text for further details.
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into the pieces associated with a given singular region a. We now define B̄ asThe B̄ function
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The Sudakov form factor Dpwg is defined asThe POWHEG
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where qT,rad is a function of the (n + 1)-body kinematics *
FFJ and is related to the

transverse momentum of the radiated parton. As for the PS, the Sudakov form
factor Dpwg can be interpreted as the probability that no parton is radiated with a
transverse momentum greater than pT,pwg. In the POWHEG method, the expectation
value for an IR-safe observable O, including up to one additional parton emission,
then readsThe POWHEG master

formula
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A shorthand notation has been introduced, with the lower integration limit pT,pwg
referring to the theta function in (2.84). Note the similarity with (2.81), but also
that (2.85) includes the full information on the real matrix element R. Indeed, the
POWHEG method models the hardest emission above pT,pwg at full NLO accuracy in
the all-order emission probability of (2.85). Subsequent radiations below the scale
of the hard emission qT,rad are supplied by the PS, using qT,rad as the starting scale.
This necessitates that the PS is pT-ordered, i.e. that the hard emission scale qT,radAlthough Pythia is

pT-ordered, its
definition of relative

transverse
momentum differs

from the one of
POWHEG.

Consequently, a
shower veto should

be employed (see [39]
and the example

main31 of Pythia).

is compatible with the evolution variable t. If this is the case, the overcounting
from Figure 2.9 is avoided: POWHEG uses the full NLO matrix elements to simulate
the hardest emission, the PS is used exclusively for the subsequent emissions below.
Note that the expression with the all-order Sudakov form factor of the POWHEG

method is equivalent to the usual NLO prescription given in (2.85) at O(as).
Finally, we note that POWHEG is not the only method that allows for a consistent

matching of fixed-order NLO matrix elements with PS generators. The same feat
is achieved by the MC@NLO method [40], which avoids overcounting by subtracting
from the exact NLO cross section its approximation. This generally results in more
negatively weighted events than with the POWHEG method, since the exact NLO
expression minus the PS subtraction terms need not be positive.
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Subtraction counterterms. Master formula

Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
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with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
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and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
of the initial vector boson V1 into the outgoing vector boson V2 and the Higgs boson h [8].
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Figure 2: Examples of higher-order QCD corrections to pp !
Zh production within the

SM. The diagram on the left features additional virtual and real gluon lines (B-type), the

diagram in the middle involves a second quark line (C- and D-type) and the diagram on the

right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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into the pieces associated with a given singular region a. We now define B̄ asThe B̄ function
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The Sudakov form factor Dpwg is defined asThe POWHEG
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where qT,rad is a function of the (n + 1)-body kinematics *
FFJ and is related to the

transverse momentum of the radiated parton. As for the PS, the Sudakov form
factor Dpwg can be interpreted as the probability that no parton is radiated with a
transverse momentum greater than pT,pwg. In the POWHEG method, the expectation
value for an IR-safe observable O, including up to one additional parton emission,
then readsThe POWHEG master

formula
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A shorthand notation has been introduced, with the lower integration limit pT,pwg
referring to the theta function in (2.84). Note the similarity with (2.81), but also
that (2.85) includes the full information on the real matrix element R. Indeed, the
POWHEG method models the hardest emission above pT,pwg at full NLO accuracy in
the all-order emission probability of (2.85). Subsequent radiations below the scale
of the hard emission qT,rad are supplied by the PS, using qT,rad as the starting scale.
This necessitates that the PS is pT-ordered, i.e. that the hard emission scale qT,radAlthough Pythia is

pT-ordered, its
definition of relative

transverse
momentum differs

from the one of
POWHEG.

Consequently, a
shower veto should

be employed (see [39]
and the example

main31 of Pythia).

is compatible with the evolution variable t. If this is the case, the overcounting
from Figure 2.9 is avoided: POWHEG uses the full NLO matrix elements to simulate
the hardest emission, the PS is used exclusively for the subsequent emissions below.
Note that the expression with the all-order Sudakov form factor of the POWHEG

method is equivalent to the usual NLO prescription given in (2.85) at O(as).
Finally, we note that POWHEG is not the only method that allows for a consistent

matching of fixed-order NLO matrix elements with PS generators. The same feat
is achieved by the MC@NLO method [40], which avoids overcounting by subtracting
from the exact NLO cross section its approximation. This generally results in more
negatively weighted events than with the POWHEG method, since the exact NLO
expression minus the PS subtraction terms need not be positive.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

where
sij = (pi + pj)

2
, sijk = sij + sjk + ski , (4.4)

are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
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with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
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hf
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and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
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If the initial-state quarks and final-state leptons are left-handed the relevant generalised
neutral currents are given by

ZZhµ(p123, 4�` , 5
+
¯̀ ) =

g
�
Zq

g
�
Z`

DZ(s123)DZ(s45)

(
h4|�µ|5]

⇣
ghZZ + �g

(2)
hZZ

(s123 + s34) + �g
(3)
hZZ

⌘

� �g
(2)
hZZ

p
µ

123h4|/p123|5] +
�g

(1)
hZZ

2

⇣
h4|�µ/p123|4i[45] + h45i[5|/p123�

µ
|5]

⌘)
,

AZhµ(p123, 4�` , 5
+
¯̀ ) =

g
�
�q g

�
Z`

s123D(s45)

(
�g

(1)
h�Z

2

✓
h4|�µ|5]

⇣
h4|/p123|4] + h5|/p123|5]

⌘

� 2 (pµ4 + p
µ

5 ) h4|/p123|5]

◆
+ �g

(2)
h�Z

⇣
h4|�µ|5] s123 � p

µ

123 h4|/p123|5]
⌘)

,

(4.6)

– 10 –

Z at NLO ZJ at NLO
Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
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right is gluon-gluon initiated (A-type). Consult the main text for further details.
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diagram in the middle involves a second quark line (C- and D-type) and the diagram on the

right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
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The explicit expressions for these quantities are given in Appendix A.
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into the pieces associated with a given singular region a. We now define B̄ asThe B̄ function
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The Sudakov form factor Dpwg is defined asThe POWHEG
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where qT,rad is a function of the (n + 1)-body kinematics *
FFJ and is related to the

transverse momentum of the radiated parton. As for the PS, the Sudakov form
factor Dpwg can be interpreted as the probability that no parton is radiated with a
transverse momentum greater than pT,pwg. In the POWHEG method, the expectation
value for an IR-safe observable O, including up to one additional parton emission,
then readsThe POWHEG master

formula
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A shorthand notation has been introduced, with the lower integration limit pT,pwg
referring to the theta function in (2.84). Note the similarity with (2.81), but also
that (2.85) includes the full information on the real matrix element R. Indeed, the
POWHEG method models the hardest emission above pT,pwg at full NLO accuracy in
the all-order emission probability of (2.85). Subsequent radiations below the scale
of the hard emission qT,rad are supplied by the PS, using qT,rad as the starting scale.
This necessitates that the PS is pT-ordered, i.e. that the hard emission scale qT,radAlthough Pythia is

pT-ordered, its
definition of relative

transverse
momentum differs

from the one of
POWHEG.

Consequently, a
shower veto should

be employed (see [39]
and the example

main31 of Pythia).

is compatible with the evolution variable t. If this is the case, the overcounting
from Figure 2.9 is avoided: POWHEG uses the full NLO matrix elements to simulate
the hardest emission, the PS is used exclusively for the subsequent emissions below.
Note that the expression with the all-order Sudakov form factor of the POWHEG

method is equivalent to the usual NLO prescription given in (2.85) at O(as).
Finally, we note that POWHEG is not the only method that allows for a consistent

matching of fixed-order NLO matrix elements with PS generators. The same feat
is achieved by the MC@NLO method [40], which avoids overcounting by subtracting
from the exact NLO cross section its approximation. This generally results in more
negatively weighted events than with the POWHEG method, since the exact NLO
expression minus the PS subtraction terms need not be positive.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�M
2
Z + iMZ�Z , (4.5)

with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
of the initial vector boson V1 into the outgoing vector boson V2 and the Higgs boson h [8].
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ZZhµ(p123, 4�` , 5
+
¯̀ ) =

g
�
Zq

g
�
Z`

DZ(s123)DZ(s45)

(
h4|�µ|5]

⇣
ghZZ + �g

(2)
hZZ

(s123 + s34) + �g
(3)
hZZ

⌘

� �g
(2)
hZZ

p
µ

123h4|/p123|5] +
�g

(1)
hZZ

2

⇣
h4|�µ/p123|4i[45] + h45i[5|/p123�

µ
|5]

⌘)
,

AZhµ(p123, 4�` , 5
+
¯̀ ) =

g
�
�q g

�
Z`

s123D(s45)

(
�g

(1)
h�Z

2

✓
h4|�µ|5]

⇣
h4|/p123|4] + h5|/p123|5]

⌘

� 2 (pµ4 + p
µ

5 ) h4|/p123|5]

◆
+ �g

(2)
h�Z

⇣
h4|�µ|5] s123 � p

µ

123 h4|/p123|5]
⌘)

,

(4.6)

– 10 –

Z at NLO ZJ at NLO
Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp !
Zh production within the

SM. The diagram on the left features additional virtual and real gluon lines (B-type), the

diagram in the middle involves a second quark line (C- and D-type) and the diagram on the

right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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into the pieces associated with a given singular region a. We now define B̄ asThe B̄ function
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where qT,rad is a function of the (n + 1)-body kinematics *
FFJ and is related to the

transverse momentum of the radiated parton. As for the PS, the Sudakov form
factor Dpwg can be interpreted as the probability that no parton is radiated with a
transverse momentum greater than pT,pwg. In the POWHEG method, the expectation
value for an IR-safe observable O, including up to one additional parton emission,
then readsThe POWHEG master

formula
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A shorthand notation has been introduced, with the lower integration limit pT,pwg
referring to the theta function in (2.84). Note the similarity with (2.81), but also
that (2.85) includes the full information on the real matrix element R. Indeed, the
POWHEG method models the hardest emission above pT,pwg at full NLO accuracy in
the all-order emission probability of (2.85). Subsequent radiations below the scale
of the hard emission qT,rad are supplied by the PS, using qT,rad as the starting scale.
This necessitates that the PS is pT-ordered, i.e. that the hard emission scale qT,radAlthough Pythia is

pT-ordered, its
definition of relative

transverse
momentum differs

from the one of
POWHEG.

Consequently, a
shower veto should

be employed (see [39]
and the example

main31 of Pythia).

is compatible with the evolution variable t. If this is the case, the overcounting
from Figure 2.9 is avoided: POWHEG uses the full NLO matrix elements to simulate
the hardest emission, the PS is used exclusively for the subsequent emissions below.
Note that the expression with the all-order Sudakov form factor of the POWHEG

method is equivalent to the usual NLO prescription given in (2.85) at O(as).
Finally, we note that POWHEG is not the only method that allows for a consistent

matching of fixed-order NLO matrix elements with PS generators. The same feat
is achieved by the MC@NLO method [40], which avoids overcounting by subtracting
from the exact NLO cross section its approximation. This generally results in more
negatively weighted events than with the POWHEG method, since the exact NLO
expression minus the PS subtraction terms need not be positive.
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the hardest emission, the PS is used exclusively for the subsequent emissions below.
Note that the expression with the all-order Sudakov form factor of the POWHEG

method is equivalent to the usual NLO prescription given in (2.85) at O(as).
Finally, we note that POWHEG is not the only method that allows for a consistent

matching of fixed-order NLO matrix elements with PS generators. The same feat
is achieved by the MC@NLO method [40], which avoids overcounting by subtracting
from the exact NLO cross section its approximation. This generally results in more
negatively weighted events than with the POWHEG method, since the exact NLO
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… and repeat.

Figure 3: Example graphs that contribute to the B1g0Z matrix elements. The diagram
on the left shows a SM contribution. On the right we instead depict a SMEFT correction
that receives contributions from the generalised ZZh and �Zh currents introduced in (4.6).
The four-momentum flow is indicated by the grey arrows and labels. See the main text for
additional explanations.
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and QHe. Notice that compared to the corresponding SM contribution in (4.3)
the SMEFT correction proportional to �g

(1)hq
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in (4.12) is missing the Z-boson propagator

depending on s123. This feature explains the high-energy growth [11–13] of the SMEFT
pp ! V h amplitudes involving the Wilson coefficients C

(1)
Hq

, C(3)
Hq

, CHu and CHd.
The last type of SMEFT corrections to the matrix element B1g0Z is associated to the

tree-level shifts of the SM parameters and couplings. EW input scheme corrections from
CHD, CHWB, C

(3)
H`

and C`` lead to the shifts �g1, �g2 and �v of the U(1)Y and SU(2)L

gauge coupling and the Higgs VEV, respectively, that in turn induce the shifts �g
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and
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in the respective couplings of the Z boson. The expressions for these shifts are listed

in Appendix A. In practice, the input scheme corrections can be accounted for by applying
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The expressions for the latter shifts are again given in Appendix A.
While we have used in this section the matrix element B1g0Z as an example to illus-
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at NNLO in QCD, it is important to realise that the computation of all other matrix
elements proceeds in an analogous manner. In the case of the SMEFT corrections aris-
ing from the choice of EW input scheme as well as those associated to insertions of the
operators (2.2) and (2.3) this is clear in view of the factorisation properties of these contri-
butions
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. Likewise, since the spinor-helicity structure of the partonic part of a

given SMEFT amplitude remains the same as in the SM, it can simply be extracted from the
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Our implementation is further validated by the fact that the IR poles are properly cancelled
in the POWHEG procedure.

Second, for the squared matrix element B1g1Z, we follow the discussion presented in
the article [28]. There, the spinor-helicity amplitude is split into three primitive ampli-
tudes A⌦ with ⌦ = ↵,�, � and their corresponding loop coefficients ⌦:

AB1g1Z = ↵A↵ + �A� + �A� . (3.17)

The primitive amplitudes A⌦ are given in (2.22) of the work [28] for the case of qq̄ !

V � production, where momentum conservation between the initial-state quarks and the
final-state vector bosons is assumed. Despite sharing the same chirality structure as the
qq̄ ! V � process, the qq̄ ! V hj process additionally involves an Higgs boson in the
final state (which carries away some momentum). Accordingly, the expressions for A⌦

from [28] have to be modified to suit our purposes. Going back to the most general partonic
current in (2.13) of [28], we have derived the primitive amplitudes A⌦ using (2.17) to (2.20)
without imposing momentum conservation. The resulting amplitudes in our conventions
agree with (A.45) to (A.47) of [25] and contain additional terms proportional to the structure

Anc = h13i[21]
h14i[51] + h24i[52] + h34i[53]

2s123h12i
. (3.18)

Using (3.6) it is clear that Anc vanishes for p1+ p2+ p3 = p4+ p5, i.e. when the momentum
of the Higgs boson vanishes. The loop coefficients ⌦ can be further divided into an IR
divergent and an IR finite part as follows

⌦ = I
(1)(✏)⌦(0) + ⌦(1), finite

, (3.19)

with I
(1)(✏) the usual IR singularity operator as given for example in (C.9) of [28]. We in-

clude the O(1/✏2), O(1/✏) and O(1) pieces of I(1)(✏)⌦(0) in the array entries 1, 2 and 3 of
the loop coefficients ⌦, respectively. Note that ↵

(0) = �
(0) = 1 and �

(0) = 0. The finite
parts ⌦(1), finite are instead decomposed as

⌦(1), finite = CA⌦(1), finite
1 +

1

CA

⌦(1), finite
2 + �0⌦

(1), finite
3 , (3.20)

and include the leading colour, the subleading colour and the �0 = (11CA � 4TFNf )/6

pieces individually. Here TF = 1/2 and Nf = 4 denotes the number of active quark
flavours. Analytic expressions for the coefficients ⌦(1), finite

i
with i = 1, 2, 3 were provided as

FORM output in the arXiv submission of [28] for the three kinematical regions (i.e. s13 > 0,
s12 > 0 and s23 > 0) relevant at hadron colliders. They are expressed as one- and two-
dimensional harmonic polylogarithms (HPLs) and we translate the appearing HPLs to
logarithms and dilogarithms using the relevant formulae in [36, 37], computing the latter
numerically with the help of LoopTools [38]. The finite contributions ⌦(1), finite are added
to the array entry 3 of the loop coefficients ⌦ in our code.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

where
sij = (pi + pj)

2
, sijk = sij + sjk + ski , (4.4)

are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�M
2
Z + iMZ�Z , (4.5)

with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
of the initial vector boson V1 into the outgoing vector boson V2 and the Higgs boson h [8].
If the initial-state quarks and final-state leptons are left-handed the relevant generalised
neutral currents are given by
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As an example for the calculation of the SMEFT matrix elements, we consider the case
of B1g0Z where an additional gluon is radiated off the initial-state quark line. While contain-
ing all the main ingredients, the expressions for B1g0Z are concise enough to be stated here.
The corresponding SM Feynman diagram is displayed on the left-hand side in Figure 3.
Note that we consider the leptons (quarks) to be outgoing (incoming). The corresponding
spinor-helicity amplitude with left-handed fermion chiralities and a physical gluon with a
negative helicity reads

AB1g0Z

⇣
1�q , 2

�
g , 3

+
q̄ ; 4

�
`
, 5+¯̀

⌘
=

h34i

h12i h23i

⇣
h13i [51] + h23i [52]

⌘
, (3.1)

where hiji and [ij] denote the usual spinor products — see for example [32] for a review of
the spinor-helicity formalism. Notice that the semicolon in the expression on the left-hand
side of (3.1) separates the particles with incoming and outgoing convention, respectively.
The amplitudes for the remaining helicity combinations can be obtained via the following
parity and charge conjugation relations
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The resulting spin-averaged matrix element B1g0Z then takes the form
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where
sij = (pi + pj)

2
, sijk = sij + sjk + ski , (3.4)

– 5 –

These contributions give overall factors to the SM amplitude. 

„Quartic“ contributions

Figure 3: Example graphs that contribute to the B1g0Z matrix elements. The diagram
on the left shows a SM contribution. On the right we instead depict a SMEFT correction
that receives contributions from the generalised hZZ and h�Z currents introduced in (3.9).
The four-momentum flow is indicated by the grey arrows and labels. See the main text for
additional explanations.

are the �qq̄ coupling strengths while �g
(1)
hZZ

, �g(2)
hZZ

, �g(3)
hZZ

, �g(1)
h�Z

and �g
(2)
h�Z

are anomalous
couplings that describe the interactions between the Higgs boson and the relevant vector
bosons as indicated by the subscript. The explicit expressions for all the couplings appear-
ing in (3.9) can be found in Appendix A. We stress that although the anomalous couplings
�g

(2)
hZZ

and �g
(2)
h�Z

do not receive corrections from the Wilson coefficients CHB, CHW and
CHWB our POWHEG-BOX implementation contains the full generalised neutral currents (3.9).
The presented MC code can therefore be used to extend the Higgsstrahlungs computations
in the anomalous-coupling framework [19–21] to the NNLO+PS level.

By looking at (3.7) and (3.9) it is now readily seen that in order to obtain the spin-
averaged matrix element B1g0Z that contains the contributions from the SM as well as the
Wilson coefficients CHB, CHW and CHWB one just has to replace the expression in the
modulus of (3.3) by the following spinor contraction
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A schematic depiction of (3.10) is given on the right in Figure 3. Notice that all helicity
configurations of Aµ

qgq can be obtained from (3.7) and (3.8) using the relations (3.2) while
in the case of A

µ

hZZ
and A

µ

h�Z
one just has to perform the replacements g

�
V f

! g
hf

V f
for

f = q, ` and V = Z, �.
Insertions of the operators (2.2) and (2.3) lead to the Feynman diagrams shown on the

right-hand side in Figure 1 at tree level. In order to capture this contribution in the case
of the matrix element B1g0Z, one simply has to add the following term
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to the corresponding SM contribution in the modulus of (3.3). The analytic expressions
for the couplings �g

(1)hf

hZf
are given in Appendix A. In (3.11) the first term in the brackets

describes the contribution from Q
(1)
Hq

, Q(3)
Hq

, QHd and QHu, while the second term is induced
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Table 2: SMEFT input scheme corrections for the three EW input schemes implemented
in the MC code.
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(A.6)

are the relevant direct SMEFT corrections to the Zff̄ couplings.

B SMEFT corrections to gg ! Zh process

Our implementation of the gg ! Zh production channel is based on the spinor-helicity
amplitudes for the SM implemented in MCFM [49] and presented in [38]. The expressions
for the triangle contribution in unitary gauge read1
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(B.1)

where q is the fermion running in the loop with mass mq and the two terms in the first
factor stem from the transversal and longitudinal part of the Z propagator in unitary gauge.
Similarly, we implemented the amplitudes for the box contributions

A0g2Z_box
q
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1+g , 2

+
g , 3

�
`
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⌘
, A0g2Z_box
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�
`
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⌘
, (B.2)

which are too lengthy to be written out here but may be inspected in the code. The
remaining non-zero helicity combinations are obtained via the parity and charge conjugation

1Here we follow the convention of [38] and state the amplitudes for all-outgoing momenta. Our convention
with incoming parton momenta is implemented numerically via analytic continuation.
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where L is the parton luminosity4

L = L(x⊕, x⊖) = f⊕(x⊕) f⊖(x⊖) , (2.6)

and

dΦn = dx⊕ dx⊖ dΦn (k⊕ + k⊖; k1, . . . , kn) , (2.7)

with dΦn the n-body phase space

dΦn (q; k1, . . . , kn) = (2π)4 δ4
(

q −
n
∑

i=1

ki

)

n
∏

i=1

d3ki

(2π)3 2k0i
. (2.8)

In case of leptons in the initial state, the corresponding parton distribution function f(x)

in eq. (2.6) is replaced by δ(1 − x).

The real contributions at the NLO arise from the tree-level squared amplitudes for

the 2 → n + 1 parton process, which we denote by R. As before, we denote by Φn+1 the

corresponding set of variables

Φn+1 = {x⊕, x⊖, k1, . . . , kn+1} (2.9)

constrained by momentum conservation and on-shell conditions.

The virtual contributions arise from the interference of the one-loop amplitudes times

the LO amplitudes. We denote by Vb the renormalized virtual corrections, that is, we

assume that all ultraviolet divergences have already been removed by renormalization.

These terms still contain infrared divergences. Therefore, they are computed in d = 4− 2ϵ

dimensions, and the divergences appear as 1/ϵ2 and 1/ϵ poles. The subscript b (for “bare”)

reminds us of the presence of infrared divergences in the amplitude.

In hadronic collisions, the complete cancellation of the initial-state collinear singular-

ities is achieved by adding two counterterms, one for each of the incoming partons (⊕,

⊖), to the differential cross section. We denote them by G⊕,b and G⊖,b. The factorization

counterterms are infrared divergent in four dimensions. Therefore, they are computed in

d = 4− 2ϵ dimensions, and the divergences appear as 1/ϵ poles. To remind this fact, also

in this case a subscript b has been included in the notation.

The total NLO cross section is given by5

σNLO =

∫

dΦn L
[

B(Φn) + Vb(Φn)
]

+

∫

dΦn+1L R(Φn+1)

+

∫

dΦn,⊕ L G⊕,b(Φn,⊕) +

∫

dΦn,⊖ L G⊖,b(Φn,⊖) , (2.10)

where

dΦn+1 = dx⊕ dx⊖ dΦn+1 (k⊕ + k⊖; k1, . . . , kn+1) . (2.11)

4In this section we drop the parton flavours and the scale dependence in the luminosity, for ease of

notation.
5The G⃝,b terms are present only for incoming hadrons. If one or both the incoming particles are leptons,

the corresponding Gb is zero.
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 how to deal with IR singularities?→

Soft/collinear 
divergences

Subtraction:

 inclusive (N)NLO→

Sudakov form factor: 

 exclusive above → pmin
T

 parton shower for radiation below → pmin
T

Sources: [1] [0709.2092] (S. Frixione, P. Nason, C. Oleari).

Details of the calculation
The POWHEG method
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into the pieces associated with a given singular region a. We now define B̄ asThe B̄ function
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(2.83)

The Sudakov form factor Dpwg is defined asThe POWHEG
Sudakov form

factor Dpwg

Dpwg(PF, pT,pwg) ⌘ exp

2

64�Â
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⇣

*P(a)
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⌘
q
⇣

q(a)
T,rad � pT,pwg

⌘

B(PF)

3

75 , (2.84)

where qT,rad is a function of the (n + 1)-body kinematics *
FFJ and is related to the

transverse momentum of the radiated parton. As for the PS, the Sudakov form
factor Dpwg can be interpreted as the probability that no parton is radiated with a
transverse momentum greater than pT,pwg. In the POWHEG method, the expectation
value for an IR-safe observable O, including up to one additional parton emission,
then readsThe POWHEG master

formula

hOiNLO =
Z

dFFB̄(PF)

"
Dpwg(PF, pT,pwg)O(FF)

+ Â
a

Z

pT,pwg

dF(a)
rad

R(a)
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*P(a)
FJ

⌘

B(PF)
Dpwg

⇣
PF, q(a)

T,rad

⌘
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⇣
*
F

(a)
FJ

⌘#
.

(2.85)

A shorthand notation has been introduced, with the lower integration limit pT,pwg
referring to the theta function in (2.84). Note the similarity with (2.81), but also
that (2.85) includes the full information on the real matrix element R. Indeed, the
POWHEG method models the hardest emission above pT,pwg at full NLO accuracy in
the all-order emission probability of (2.85). Subsequent radiations below the scale
of the hard emission qT,rad are supplied by the PS, using qT,rad as the starting scale.
This necessitates that the PS is pT-ordered, i.e. that the hard emission scale qT,radAlthough Pythia is

pT-ordered, its
definition of relative

transverse
momentum differs

from the one of
POWHEG.

Consequently, a
shower veto should

be employed (see [39]
and the example

main31 of Pythia).

is compatible with the evolution variable t. If this is the case, the overcounting
from Figure 2.9 is avoided: POWHEG uses the full NLO matrix elements to simulate
the hardest emission, the PS is used exclusively for the subsequent emissions below.
Note that the expression with the all-order Sudakov form factor of the POWHEG

method is equivalent to the usual NLO prescription given in (2.85) at O(as).
Finally, we note that POWHEG is not the only method that allows for a consistent

matching of fixed-order NLO matrix elements with PS generators. The same feat
is achieved by the MC@NLO method [40], which avoids overcounting by subtracting
from the exact NLO cross section its approximation. This generally results in more
negatively weighted events than with the POWHEG method, since the exact NLO
expression minus the PS subtraction terms need not be positive.
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is achieved by the MC@NLO method [40], which avoids overcounting by subtracting
from the exact NLO cross section its approximation. This generally results in more
negatively weighted events than with the POWHEG method, since the exact NLO
expression minus the PS subtraction terms need not be positive.
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into the pieces associated with a given singular region a. We now define B̄ asThe B̄ function

B̄(PF) ⌘ B(PF) + V(PF)
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(2.83)

The Sudakov form factor Dpwg is defined asThe POWHEG
Sudakov form

factor Dpwg

Dpwg(PF, pT,pwg) ⌘ exp
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3

75 , (2.84)

where qT,rad is a function of the (n + 1)-body kinematics *
FFJ and is related to the

transverse momentum of the radiated parton. As for the PS, the Sudakov form
factor Dpwg can be interpreted as the probability that no parton is radiated with a
transverse momentum greater than pT,pwg. In the POWHEG method, the expectation
value for an IR-safe observable O, including up to one additional parton emission,
then readsThe POWHEG master

formula

hOiNLO =
Z

dFFB̄(PF)

"
Dpwg(PF, pT,pwg)O(FF)
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⇣
*
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FJ
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(2.85)

A shorthand notation has been introduced, with the lower integration limit pT,pwg
referring to the theta function in (2.84). Note the similarity with (2.81), but also
that (2.85) includes the full information on the real matrix element R. Indeed, the
POWHEG method models the hardest emission above pT,pwg at full NLO accuracy in
the all-order emission probability of (2.85). Subsequent radiations below the scale
of the hard emission qT,rad are supplied by the PS, using qT,rad as the starting scale.
This necessitates that the PS is pT-ordered, i.e. that the hard emission scale qT,radAlthough Pythia is

pT-ordered, its
definition of relative

transverse
momentum differs

from the one of
POWHEG.

Consequently, a
shower veto should

be employed (see [39]
and the example

main31 of Pythia).

is compatible with the evolution variable t. If this is the case, the overcounting
from Figure 2.9 is avoided: POWHEG uses the full NLO matrix elements to simulate
the hardest emission, the PS is used exclusively for the subsequent emissions below.
Note that the expression with the all-order Sudakov form factor of the POWHEG

method is equivalent to the usual NLO prescription given in (2.85) at O(as).
Finally, we note that POWHEG is not the only method that allows for a consistent

matching of fixed-order NLO matrix elements with PS generators. The same feat
is achieved by the MC@NLO method [40], which avoids overcounting by subtracting
from the exact NLO cross section its approximation. This generally results in more
negatively weighted events than with the POWHEG method, since the exact NLO
expression minus the PS subtraction terms need not be positive.

Master formula

https://arxiv.org/abs/0709.2092
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Operators normalised such that Wilson coefficients are expected to be of O(1) 
in UV-complete weakly-coupled BSM models

[UH, Scott, Wiesemann, Zanderighi & Zanoli, 2204.00663]
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Since operators QH◻, QHD & QbH do not contain a gluon, associated SMEFT 
effects factorise to all orders in strong coupling constant. SMEFT results can 
be obtained from SM matrix elements by following simple replacement:

corrections due to 
Higgs wave function

correction due to 
Yukawa operator
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For example in case of partial h → bb decay rate factorisable corrections are:

NLO & NNLO QCD 
correction in SM
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Dominant non-factorisable corrections arise from dipole operator QbG:

leading contribution from 
interference of h → bbg 

amplitude in SMEFT & SM

h
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Dominant non-factorisable corrections arise from dipole operator QbG:
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beyond leading order, double 
real, 1-loop single real &         

2-loop virtual contributions
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[see MiNNLO talks on Tuesday morning; UH, Scott, Wiesemann, Zanderighi & Zanoli, 2204.00663]

Non-factorisable contributions
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QbG corrections implemented into POWHEG-BOX. Possible to obtain realistic 
exclusive description of pp → Zh → l+l-bb production with NNLO accuracy 
using MiNLO′ & MiNNLOPS methods. Applying code to Higgs decay leads to:

new term represents 
a 60% correction
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[Ellis et al., 2012.02779]

Contributions from QHG
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cHG =
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CHG 2 [�0.09, 0.06]

[Ellis et al., 2012.02779]

Contributions from QHG
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Contributions from Q3G
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Contributions from Q3G
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Maximal size of factorisable corrections to partial h → bb decay rate can be 
derived from global fits of SMEFT Wilson coefficients:


We have seen that QCD corrections associated to operators other than QH◻, 
QHD, QbH & QbG do not exceed level of a few permille

Phenomenology analysis
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Observable Wilson coe�cient 95% CL bound

Dijet angular distributions
��cbG

�� 2864

Two b-tagged jets
��cbG

�� 152

Z-boson production with two b-jets
��cbG

�� 438

Searches for neutron electric dipole moment
��Im

�
cbG

��� 0.05

Due to chirality-flipping nature of QbG no interference between SMEFT & 
SM amplitudes for mb = 0. Resulting LHC bounds on |cbG| thus very weak.   
|Im(cbG)| instead severely constrained by neutron electric dipole moment

[UH & Koole, 2106.01289]



Bounds on dipole-type operator QbG

37

�

�
�

� �
� �

� � � � �

�� data

NLO QCD + EW

v2/�2 CbG = 0.5

0.06

0.07

0.08

0.09

0.10

0.11

0.12

1/
�
d�

/d
�

2.4 TeV < M jj < 3.0 TeV

� � �
� � � � � � �

� �

2 4 6 8 10 12 14 16
0.9
1.0
1.1
1.2

�

R

Figure 3: As Figure 2 but for the four lower mass bins considered in the CMS analysis [19].

where
ffij (⌧, µF ) =

1

s

2

1 + �ij

Z 1

⌧

dx

x
fi/p(x, µF ) fj/p(⌧/x, µF ) , (2.4)

are the so-called parton luminosities, the sum runs over all pairs of incoming partons {ij}

and s denotes the squared CM energy of the collider. The parton luminosities are obtained
from a convolution of the universal non-perturbative PDFs fi/p(x, µF ), which describe the
probability of finding the parton i in the proton with longitudinal momentum fraction x.
The variable µF that enters (2.3) and (2.4) denotes the factorisation scale.
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QbG contributions lead to an enhanced activity of high-energy jets in central region
[UH & Koole, 2106.01289]
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Figure 4: Left: Normalised dijet invariant mass distributions for the category with two
b-jets as measured by ATLAS in [20]. The black dotted line is the central value of the back-
ground fit performed by ATLAS, the grey band indicates the associated uncertainties and
the red curve shows the new-physics prediction assuming v

2
/⇤2

CbG = 0.05. Right: Ratio
of the data and the new-physics prediction for v2/⇤2

CbG = 0.05 to the central value of the
background fit. The colour coding resembles the one used in the left panel. Consult the
main text for further details.

and PYTHIA 8.2 [31], respectively, using NNPDF31_nlo_as_0118 PDFs [32] and working in
the four-flavour scheme. The background distribution was corrected to the NLO prediction
using the matrix elements calculated in [33] as implemented in MCFM [34]. Hadronic jets are
built using the anti-kt algorithm [35] with a radius parameter of R = 0.4, as implemented
in FastJet [36]. We furthermore rely on DELPHES 3 [37] as a fast detector simulation and
on CheckMATE 2 [38]. Our event selection follows the ATLAS analysis [20] which is based
on 139 fb�1 of dijet data collected at 13 TeV CM energy. We require at least two jets (j)
with a transverse momentum pT (j) satisfying pT (j) > 150GeV and the azimuthal angle
difference ��(j1j2) between the two leading jets j1 and j2 must fulfill |��(j1j2)| > 1.0. The
two leading jets must be b-tagged and their pseudorapidities must satisfy |⌘(j)| < 2.0. The
b-tagging algorithm is taken from the ATLAS publication [39], and in accordance with [20]
a b-tagging working point is chosen that yields a b-tagging efficiency of 77%, a c-jet rejection
of 5 and a light-flavour jet rejection of 110. Furthermore, to suppress the QCD background
a selection cut of |y⇤| < 0.8 is imposed, where y⇤ =

�
y(j1)� y(j2)

�
/2 with y(j1) and y(j2)

the rapidities of the leading and subleading jet, respectively. Both the QCD background
and the new-physics samples are generated binned in pT (j) and the resulting dijet mass
distributions are fit to the parametric function

f(x) = p1 (1� x)p2 xp3+p4 lnx
, (3.1)

where x = Mjj/
p
s and pi with i = 1, 2, 3, 4 four fitting parameters. Given the data-driven

– 7 –

QbG contributions lead to an enhancement of rate for high dijet invariant masses 
[UH & Koole, 2106.01289]
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QbG effects grow with transverse momentum & lead to more events at high pT(Z)
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Figure 6: Left: pT (Z) distributions for the category with two b-jets. The black dotted
line is the central value of the SM prediction provided by ATLAS [45], the grey band
indicates the associated uncertainties and the red curve shows the new-physics prediction
assuming v

2
/⇤2

CbG = 0.07. Right: Ratio between the SM and the BSM prediction for
v
2
/⇤2

CbG = 0.07 and the measurement. The colour coding resembles the one employed on
the left-hand side.

In the bin with pT (Z) > 350GeV the experimental (theoretical) uncertainty used in our
analysis amounts to about 20% (35%). Reducing the theoretical uncertainty by a factor
of 2 would improve the limit (4.1) to approximately 1/(1.1TeV)2. In view of the recent
progress [47] in the calculation of Z-boson production in association with b-jets at next-
to-next-to-leading order accuracy in QCD including finite heavy-quark mass effects, such a
reduction of uncertainties does not seem unreasonable.

5 Constraints from flavour physics

In order to derive a bound on the real part of the Wilson coefficients of the charm-quark
dipole operator, let us consider the following effective interaction

Le↵ � �µ̃c(mh)
gs(mh)

2
c̄�µ⌫T

a
cG

a,µ⌫
, (5.1)

where the initial condition µ̃c(mh) of the charm-quark chromomagnetic dipole moment in
the terms of the relevant Wilson coefficient multiplying the operators in (1.1) is given by

µ̃c(mh) = �

p
2v

⇤2
Re

�
CcG

�
. (5.2)

One-loop Feynman diagrams involving a W -boson exchange generate the chromomagnetic
dipole operator
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, (5.3)
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Despite large Wilson coefficient of QbG possible size of non-factorisable 
contributions to partial h → bb decay rate smaller than that of factorisable 
ones by a factor of O(5):

But non-factorisable contributions lead to non-trivial modifications of spectra 
in pp → Zh → l+l-bb production
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Phenomenology analysis
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Figure 3: Invariant mass of the two b-jets using the anti-kt algorithm with radius pa-
rameter R = 0.4. The red histogram in the left (right) panel corresponds to the prediction
for cbH = 0.15 (cbG = 400). For comparison our SM prediction with its scale uncertainty
band is shown in black and gray. All results correspond to proton-proton (pp) collisions at
p
s = 13TeV and are subject to the fiducial cuts discussed in the main text. The lower

panels depict the ratios between the BSM and the SM distributions.

40% for invariant masses m
bb̄

' 50GeV. The reason for this somewhat surprising feature
is the structure of the tree-level squared matrix element, given in (A.1), that modifies
the h ! bb̄g process and constitutes the leading QbG contribution. The corresponding
Feynman diagram is shown in Figure 1 in the upper row on the left-hand side. From (A.1)
one observes that the probability for emitting a gluon is flat in phase space. In contrast, the
real emission contribution to the differential decay rate h ! bb̄g in the SM is divergent when
the radiated gluon becomes unresolved, i.e. soft or collinear to one of the bottom quarks, and
therefore such emissions are favoured. As a result, configurations where the total invariant
mass m

bb̄g
= mh of the bb̄g system is shared equally between the three individual partons

occur much more frequently in the former than in the latter case, where the bottom quarks
typically carry most of the energy which leads to an invariant mass distribution that is
strongly peaked at m

bb̄
' mh. We add that changing the sign of cbH or cbG will also change

the sign of the relative corrections due to the considered SMEFT operators.
Notice that in the case of cbG 6= 0 the shape of the m

bb̄
distribution depends on the

jet radius R used to identify b-jets. To illustrate this feature we display in Figure 4 two
additional spectra assuming again cbG = 400, but taking R = 0.7 and R = 1.0 instead of
the standard choice R = 0.4. One observes that the corrections due to QbG are on average
pushed towards lower values of m

bb̄
when the jet radius R is increased. We further add in

this context that at O(↵
3
s) insertions of the operator QbG lead to a one-loop contribution

to the h ! bb̄g amplitude, tree-level contributions to the h ! bb̄qq̄ and h ! bb̄gg processes

– 15 –

factorisable contributions just lead to 
a constant shift, i.e. a K-factor, in all 

pp → Zh → l+l-bb distributions  
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Phenomenology analysis
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Also 3-jet invariant mass reduced on average. Effects again R-dependent
[UH, Scott, Wiesemann, Zanderighi & Zanoli, 2204.00663]
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KHG = 1.844

[UH, Scott, Wiesemann, Zanderighi & Zanoli, 2204.00663]
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The SMEFT QCD corrections in (B.3) and (B.7) due to QHG and Q3G are smaller by more
than a factor of O(20) compared to the contributions from QbG. Missing higher-order QCD
effects in (4.3) can therefore only have a relative numerical impact of a few permille once
existing experimental limits on the Wilson coefficients of the operators in (2.1) are taken
into account.

4.2 Differential pp ! Zh ! `+`�bb̄ cross section in the SMEFT

In our differential analysis we select events with two charged leptons (electrons or muons)
to explore the Zh ! `

+
`
�
bb̄ signature. The leptons are required to have a transverse

momentum of pT,` > 15GeV and a pseudorapidity of |⌘`| < 2.5. The invariant mass of the
dilepton pair is restricted to m`+`� 2 [75, 105]GeV. The events are furthermore required
to have at least two b-jets, which are reconstructed using the anti-kt algorithm [65] as
implemented in FastJet [66]. We impose transverse momentum cuts of pT,b > 25GeV and
a rapidity threshold of |⌘b| < 2.5 on the b-jets. The definition of potential additional jets
use the same thresholds as those of the b-jets. The dominant background processes are
Z + jets, tt̄, single-top and diboson production. The latter three types of backgrounds can
be substantially reduced by requiring large values of pT,Z [67]. Hence, to improve the signal-
to-background ratio we impose pT,Z 2 [150, 250]GeV. Notice that this pT,Z requirement
corresponds to the second resolved pT,Z bin as recommended in the stage 1.2 simplified
template cross sections (STXS) framework [68–70] which is also implemented in the latest
ATLAS LHC Run II measurements of the pp ! Zh ! `

+
`
�
bb̄ process [71, 72]. We will

also comment on how our results are modified if the other two resolved regions, i.e. pT,Z 2

[75, 150]GeV and pT,Z > 250GeV, are considered.
The two panels in Figure 3 display our predictions for the pp ! Zh ! `

+
`
�
bb̄ cross

section differential in the invariant mass of the two b-jets, employing a jet radius of R = 0.4

in the anti-kt clustering. If more than two b-jets are present the observable m
bb̄

is defined
as the invariant mass of the pair of b-jets closest to mh. The black curves correspond to our
SM NNLO+PSprediction for the 13TeV LHC with central renormalisation scale µR and
factorisation scale µF set according to the MiNNLOPS procedure [73, 74] and the gray band
represents the corresponding perturbative uncertainties. These uncertainties have been
obtained from seven-point scale variations enforcing the constraint 1/2  µR/µF  2 and
keeping the scale variation in production and decay correlated. The same way of estimating
perturbative uncertainties is applied to all kinematic distributions that are provided in this
section. The red histogram in the left and right panel of Figure 3 corresponds to the results
for cbH = 0.15 and cbG = 400, respectively. These values are within the range allowed
by (4.1) and (4.2). All other Wilson coefficients not specified in a given plot are set to zero.

From the left plot in Figure 3 it is evident that BSM effects in the form of a non-
zero Wilson coefficient cbH just lead to a rescaling of the m

bb̄
spectrum. This is expected

because cbH is part of the factorisable corrections in (3.2) that just rescales all kinematic
distributions by an overall factor. On the other hand, a non-zero Wilson coefficient cbG is
more interesting, since cbG 6= 0 alters the shape of the m

bb̄
distribution with respect to the

SM prediction. This can be seen in the right panel of Figure 3. In fact, one observes that for
the choices cbG = 400 and R = 0.4 the m

bb̄
spectrum receives relative corrections of up to

– 14 –

[UH, Scott, Wiesemann, Zanderighi & Zanoli, 2204.00663]
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1-loop threshold corrections involving QbG generate CP-violating Weinberg operator.

This operator leads to a non-zero neutron electric dipole moment at hadronic scale
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