

Karlsruhe Institute of Technology

Di-Higgs production in HEFT and SMEFT

Workshop on **EFT in Multi-Boson Production**

June 10, 2024

Collaborative Research Center TRR 257

Particle Physics Phenomenology after the Higgs Discovery

Gudrun Heinrich

Institute for Theoretical Physics Karlsruhe Institute of Technology

- Jens Braun, Ramona Gröber, Marius Höfer, Stephen Jones, Matthias Kerner, Jannis Lang, Stefano Di Noi, Ludovic Scyboz, Marco Vitti
 - https://arxiv.org/abs/2311.15004 GH, Jannis Lang
 - https://arxiv.org/abs/2310.18221 Stefano Di Noi, Ramona Gröber, GH, Jannis Lang, Marco Vitti
 - https://arxiv.org/abs/2204.13045 GH, Jannis Lang, Ludovic Scyboz

and work in progress

based on work in collaboration with

Jens Braun, GH, Marius Höfer, Jannis Lang

Higgs boson pair production

prime process to explore the Higgs potential

at energies much larger than the electroweak scale:

after EW symmetry breaking:

Di-Higgs in HEFT and SMEFT

Effective Field Theory expansion schemes

SMEFT (Standard Model Effective Field Theory):

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{\text{dim6}} + \mathcal{O}(\frac{1}{\Lambda^{3}})$$

- assumes that Higgs field transforms linearly as a doublet under SU(2)_L
- canonical (mass) dimension counting
- weakly coupled UV completion

Di-Higgs in HEFT and SMEFT

Effective Field Theory expansion schemes

HEFT (Higgs Effective Field Theory):

Feruglio '93; Grinstein, Trott '07; Contino et al. '10, Alonso et al. '13, Brivio et al. '13, Buchalla et al. '13

counting of loop orders, expansion parameter f similar to chiral perturbation theory; $d_{\chi} = 2L + 2$ chiral dimension

$$\mathcal{L}_{2} \supset \left\{ \frac{v^{2}}{4} \left\langle D_{\mu} U^{\dagger} D^{\mu} U \right\rangle \left(1 + F_{U}(h)\right) + \frac{1}{2} \partial_{\mu} h \partial^{\mu} h - V(h) \right\}$$

$$F_{U}(h) = \sum_{n=1}^{\infty} f_{U,n} \left(\frac{h}{v}\right)^{n}; \quad V(h) = v^{4} \sum_{n=2}^{\infty} f_{V,n} \left(\frac{h}{v}\right)^{n} \qquad \underset{f_{U,1} = 2, f_{U,2} = 1, f_{V,2} = f_{V,3} = 4f_{V,4} = \frac{n}{2}$$

$$Higgs field his an electroweak singlet = h is a prioring correlations between the first field here is a singlet here. If the priori is a perior is a correlation of the field here. If the prior is a singlet here. If the prior is a priori is a correlation of the field here. If the prior is a prior is a perior is a correlation of the field here. If the prior is a perior is a correlation of the field here. If the prior is a perior is a perior is a correlation of the field here. If the prior is a perior is a perior.$$

niggs lield h is an electroweak singlet a priori no correlations between the $J_{U,n}$; $J_{V,n}$

different in SMEFT [Brivio et al. 1311.1832, 1604.06801, Gomez-Ambrosio et al. 2204.01763, 2207.09848, ...]

$$\mathcal{L}_{d_{\chi}} = \mathcal{L}_{(d_{\chi}=2)} + \sum_{L=1}^{\infty} \sum_{i} \left(\frac{1}{16\pi^2}\right)^L c_i^{(L)} O_i^{(L)}$$

$$^2/\Lambda^2 \approx 1/(16\pi^2)$$

Di-Higgs in HEFT and SMEFT

Lagrangians relevant for HH production

HEFT:

Di-Higgs in HEFT and SMEFT

SMEFT: Warsaw basis Grzadkowski et al. 1008.4884

$$\Delta \mathcal{L}_{\text{Warsaw}} = \frac{C_{H,\Box}}{\Lambda^2} (\phi^{\dagger} \phi) \Box (\phi^{\dagger} \phi) + \frac{C_{H,\Box}}{\Lambda^2} + \left(\frac{C_{uH}}{\Lambda^2} \phi^{\dagger} \phi \bar{q}_L \phi^c t_R + h.c.\right)$$

canonical normalisation

$$C_{H,\mathrm{kin}} := C_{H,\Box} - \frac{1}{4}C_{HD}$$

 $\frac{D}{2}(\phi^{\dagger}D_{\mu}\phi)^{*}(\phi^{\dagger}D^{\mu}\phi) + \frac{C_{H}}{\Lambda^{2}}(\phi^{\dagger}\phi)^{3}$ $+ \frac{C_{HG}}{\Lambda^2} \phi^{\dagger} \phi G^a_{\mu\nu} G^{\mu\nu,a}$

SMEFT: Warsaw basis Grzadkowski et al. 1008.4884

$$\Delta \mathcal{L}_{\text{Warsaw}} = \frac{C_{H,\Box}}{\Lambda^2} (\phi^{\dagger} \phi) \Box (\phi^{\dagger} \phi) + \frac{C_{HD}}{\Lambda^2} (\phi^{\dagger} D_{\mu} \phi)^* (\phi^{\dagger} D^{\mu} \phi) + \frac{C_H}{\Lambda^2} (\phi^{\dagger} \phi)^3 + \left(\frac{C_{uH}}{\Lambda^2} \phi^{\dagger} \phi \bar{q}_L \phi^c t_R + h.c.\right) + \frac{C_{HG}}{\Lambda^2} \phi^{\dagger} \phi G^a_{\mu\nu} G^{\mu\nu,a}$$

?

canonical normalisation

$$C_{H,\mathrm{kin}} := C_{H,\Box} - \frac{1}{4}C_{HD}$$

$$+\frac{\mathcal{O}_{\boldsymbol{u}\boldsymbol{G}}}{\Lambda^2}\left(\bar{q}_L\sigma^{\mu\nu}T^a\boldsymbol{G}^a_{\mu\nu}\phi^c\,\boldsymbol{t}_R+\text{h.c.}\right)$$

(chromomagnetic operator)

SMEFT: Warsaw basis Grzadkowski et al. 1008.4884

$$\Delta \mathcal{L}_{\text{Warsaw}} = \frac{C_{H,\Box}}{\Lambda^2} (\phi^{\dagger} \phi) \Box (\phi^{\dagger} \phi) + \frac{C_{HD}}{\Lambda^2} (\phi^{\dagger} D_{\mu} \phi)^* (\phi^{\dagger} D^{\mu} \phi) + \frac{C_H}{\Lambda^2} (\phi^{\dagger} \phi)^3 + \left(\frac{C_{uH}}{\Lambda^2} \phi^{\dagger} \phi \bar{q}_L \phi^c t_R + h.c.\right) + \frac{C_{HG}}{\Lambda^2} \phi^{\dagger} \phi G^a_{\mu\nu} G^{\mu\nu,a}$$

?

canonical normalisation

$$C_{H,\mathrm{kin}} := C_{H,\Box} - \frac{1}{4}C_{HD}$$

$$+\frac{\mathcal{O}_{\boldsymbol{u}\boldsymbol{G}}}{\Lambda^2}\left(\bar{q}_L\sigma^{\mu\nu}T^a\boldsymbol{G}^a_{\mu\nu}\phi^c\,\boldsymbol{t}_R+\text{h.c.}\right)$$

+ 4-fermion operators? (chromomagnetic operator)

SMEFT: Warsaw basis Grzadkowski et al. 1008.4884

$$\Delta \mathcal{L}_{\text{Warsaw}} = \frac{C_{H,\square}}{\Lambda^2} (\phi^{\dagger} \phi) \square (\phi^{\dagger} \phi) + \frac{C_{HD}}{\Lambda^2} (\phi^{\dagger} D_{\mu} \phi)^* (\phi^{\dagger} D^{\mu} \phi) + \frac{C_H}{\Lambda^2} (\phi^{\dagger} \phi)^3 + \left(\frac{C_{uH}}{\Lambda^2} \phi^{\dagger} \phi \bar{q}_L \phi^c t_R + h.c.\right) + \frac{C_{HG}}{\Lambda^2} \phi^{\dagger} \phi G^a_{\mu\nu} G^{\mu\nu,a}$$
anonical normalisation
$$P_{H,\text{kin}} := C_{H,\square} - \frac{1}{4} C_{HD}$$

$$P_{H,\text{kin}} := C_{H,\square} - \frac{1}{4} C_{HD}$$

CS

$$C_{H,\mathrm{kin}} := C_{H,\Box} - \frac{1}{4}C_{HD}$$

(chromomagnetic operator) + 4-fermion operators? sub-leading here if UV completion is a weakly coupled, renormalisable gauge theory

Wilson coefficients relevant for HH production

naive translation HEFT -> SMEFT at dim6 (comparing coefficients at Lagrangian level):

HEFT	Warsaw
c_{hhh}	$1 - 2 \frac{v^2}{\Lambda^2} \frac{v^2}{m_h^2} C_H + 3 \frac{v^2}{\Lambda^2}$
c_t	$1 + \frac{v^2}{\Lambda^2} C_{H,\mathrm{kin}} - \frac{v^2}{\Lambda^2} \frac{v}{\sqrt{2n}}$
c_{tt}	$-\frac{v^2}{\Lambda^2}\frac{3v}{2\sqrt{2}m_t}C_{uH}+\frac{v^2}{\Lambda^2}C_{uH}$
c_{ggh}	$\left {{{{ \frac {{v^2 }}{{\Lambda ^2 }}}\frac {{8\pi }}{{{lpha _s }}}} C_{HG}} } ight.$
c_{gghh}	$rac{v^2}{\Lambda^2}rac{4\pi}{lpha_s}C_{HG}$

problems:

- two field theories with different assumptions
- valid HEFT point can be invalid after translation to SMEFT
- translation depends on Λ
- treatment of strong coupling

Wilson coefficients relevant for HH production

naive translation HEFT -> SMEFT at dim6 (comparing coefficients at Lagrangian level):

problems:

- two field theories with different assumptions
- valid HEFT point can be invalid after translation to SMEFT
- translation depends on Λ
- treatment of strong coupling

HEFT benchmark points

consider benchmark points characteristic for a certain mHH shape

-					-
benchmark (* = modified)	c_{hhh}	c_t	c_{tt}	c_{ggh}	c_g
SM	1	1	0	0	
1*	5.105	1.1	0	0	
3*	2.21	1.05	$-\frac{1}{3}$	0.5	0.
6*	-0.684	0.9	$-\frac{1}{6}$	0.5	0

modified: to fulfil SMEFT relation $c_{ggh} = 2c_{gghh}$ and constraints after 2019

Di-Higgs in HEFT and SMEFT

Naive translation HEFT to SMEFT

benchmark (* = modified)	c_{hhh}	c_t	c_{tt}	c_{ggh}	c_{gghh}	$C_{H,\mathrm{kin}}$	C_{H}	C_{uH}	C_{HG}	Λ
SM	1	1	0	0	0	0	0	0	0	1 Te
1*	5.105	1.1	0	0	0	4.95	-6.81	3.28	0	1 Te
3*	2.21	1.05	$-\frac{1}{3}$	0.5	0.25^{*}	13.5	2.64	12.6	0.0387	1 Te
6*	-0.684	0.9	$-\frac{1}{6}$	0.5	0.25	0.561	3.80	2.20	0.0387	1 Te

benchmark	$\sigma_{ m NLO}$ [fb] option (b)	K-factor option (b)	ratio to SM option (b)	$\sigma_{ m NLO}$ [fb] option (a)	$\sigma_{ m NLO} \; [m fb] \ m HEFT$
SM	$27.94^{+13.7\%}_{-12.8\%}$	1.67	1	_	-
$\Lambda = 1 \ {\rm TeV}$					
1	$71.95^{+20.1\%}_{-15.7\%}$	2.06	2.58	-57.64	91.62
3	$68.69^{+9.4\%}_{-9.5\%}$	1.80	2.46	30.15	70.20
6	$70.18^{+18.8\%}_{-15.5\%}$	1.83	2.51	50.82	87.9

 $E^2 \, rac{|C_i|}{\Lambda^2} \ll 1 \, \, {
m not \, fulfilled} \, \, {
m for} \, \Lambda \simeq 1 \, {
m TeV}$

can lead to negative cross sections

SMEFT truncation

 $= \mathcal{M}_{SM} + \mathcal{M}_{\dim 6} + \mathcal{M}_{(\dim 6)^2}$

all options available in **ggHH_SMEFT** code

Di-Higgs in HEFT and SMEFT

Truncation effects on Higgs boson pair invariant mass

benchmark point 6 $c_{hhh} = -0.684, c_t = 0.9, c_{tt} = -1/6, c_{ggh} = 0.5, c_{gghh} = 0.25$

characteristic shape not present in SMEFT,

large difference between linear and quadratic truncation

differences between truncation options smaller, but

can hardly be distinguished from SM within NLO scale uncertainties

EFT expansion + higher orders in QCD

(SM)EFT expansion parameters:

 $\Lambda^{-d_c} (g_s^2 L)^{l_{\rm QCD}} \mathbf{L}^{l_{\rm not}-QCD}$

 d_{c} : canonical dimension

This is an expansion in several parameters

 g_s : strong coupling

- $L = (16\pi)^{-1}$: loop factor (QCD)
- $\mathbf{L} = (16\pi)^{-1}$: loop factor (new physics)
- l_{OCD} : number of QCD loops

 l_{not_QCD} : number of loops involving new particles or new interactions (or EW corrections)

EFT expansion + higher orders in QCD

(SM)EFT expansion parameters:

 $\Lambda^{-d_c}(g_s^2 L)^{l_{\rm QCD}} \mathbf{L}^{l_{\rm not}QCD}$

 d_c : canonical dimension

This is an expansion in several parameters

In renormalisable, weakly coupled UV completions: **Operators containing field strength tensors are loop-generated** \Rightarrow get a loop suppression factor Arzt, Einhorn Wudka '94; Buchalla, GH, Müller-Salditt, Pandler 2204.11808

 g_s : strong coupling

- $L = (16\pi)^{-1}$: loop factor (QCD)
- $\mathbf{L} = (16\pi)^{-1}$: loop factor (new physics)
- $l_{\rm QCD}$: number of QCD loops

 l_{not_QCD} : number of loops involving new particles or new interactions (or EW corrections)

Loop-generated operators

Isidori, Wilsch, Wyler, Review Mod. Phys. 2303.16922

5–7: Fermion Bilinears (ψ^2)

PTG: Potentially Tree Generated

LG: Loop Generated

$\operatorname{hermitian} + Q_{Hud}$	l [PTG]
$(ar{R}R)$	$(ar{R}R')+ ext{h.c.}$
$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$	$ig Q_{Hud} \; i(\widetilde{H}^{\dagger}D_{\mu}H)(ar{u}_p\gamma^{\mu}d_r)$
$H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$	
$H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(ar{d}_{p}\gamma^{\mu}d_{r})$	

Loop-generated operators

Isidori, Wilsch, Wyler, Review Mod. Phys. 2303.16922

5–7: Fermion Bilinears (ψ^2)

PTG: Potentially Tree Generated

LG: Loop Generated

$\operatorname{hermitian} + Q_{Hud}$	l [PTG]
$(ar{R}R)$	$(ar{R}R')+ ext{h.c.}$
$H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$	$Q_{Hud} \ i(\widetilde{H}^{\dagger}D_{\mu}H)(ar{u}_p\gamma^{\mu}d_r)$
$H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(ar{u}_p\gamma^{\mu}u_r)$	
$H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(ar{d}_{p}\gamma^{\mu}d_{r})$	

 $16\pi^2 \quad l_{\rm QCD} = 1$

 $\overline{\Lambda^2} \, \overline{16\pi^2}$

EFT in Multiboson Production 15

Di-Higgs in HEFT and SMEFT

$\frac{1}{\Lambda^2} \frac{16\pi^2}{16\pi^2} \quad l_{\text{not}_QCD} = 1$

$\frac{1}{\Lambda^2} \frac{16\pi^2}{16\pi^2} \quad l_{\rm not_QCD} = 1$

Di-Higgs in HEFT and SMEFT

$\frac{1}{\Lambda^2} \frac{16\pi^2}{16\pi^2} \quad l_{\text{not}_QCD} = 1$

Di-Higgs in HEFT and SMEFT

Subleading operators in SMEFT

in a renormalisable, weakly coupling UV completion

$$\mathcal{L}_{tG} = \frac{C_{tG}}{\Lambda^2} \left(\bar{Q}_L \sigma^{\mu\nu} T^a G^a_{\mu\nu} \tilde{\phi} t_R + \text{h.c.} \right)$$

$$\mathcal{L}_{4t} = \frac{C_{Qt}^{(1)}}{\Lambda^2} \bar{Q}_L \gamma^\mu Q_L \bar{t}_R \gamma_\mu t_R + \frac{C_{Qt}^{(8)}}{\Lambda^2} \bar{Q}_L \gamma^\mu T^a Q_L \bar{t}_L \bar{t}_R \gamma_\mu t_R + \frac{C_{QQ}^{(1)}}{\Lambda^2} \bar{Q}_L \gamma^\mu T^a Q_L \bar{t}_R \gamma_\mu t_R + \frac{C_{QQ}^{(1)}}{\Lambda^2} \bar{Q}_L \gamma^\mu T^a Q_L \bar{t}_R \gamma^\mu t_R \bar{t}_R \gamma_\mu t_R$$

 $\overline{T}_R \gamma_\mu T^a t_R$

 $L_L \bar{Q}_L \gamma_\mu T^a Q_L$

Di-Higgs in HEFT and SMEFT

Subleading operators in SMEFT

in a renormalisable, weakly coupling UV completion

$$\mathcal{L}_{tG} = \frac{C_{tG}}{\Lambda^2} \left(\bar{Q}_L \sigma^{\mu\nu} T^a G^a_{\mu\nu} \tilde{\phi} t_R + \text{h.c.} \right)$$

$$\begin{aligned} \mathcal{L}_{4t} &= \frac{C_{Qt}^{(1)}}{\Lambda^2} \bar{Q}_L \gamma^\mu Q_L \bar{t}_R \gamma_\mu t_R + \frac{C_{Qt}^{(8)}}{\Lambda^2} \bar{Q}_L \gamma^\mu T^a Q_L \bar{t}_L \\ &+ \frac{C_{QQ}^{(1)}}{\Lambda^2} \bar{Q}_L \gamma^\mu Q_L \bar{Q}_L \gamma_\mu Q_L + \frac{C_{QQ}^{(8)}}{\Lambda^2} \bar{Q}_L \gamma^\mu T^a Q_L \\ &+ \frac{C_{tt}}{\Lambda^2} \bar{t}_R \gamma^\mu t_R \bar{t}_R \gamma_\mu t_R \end{aligned}$$

Four-top operators

- 4-top operators occur in 2-loop diagrams
- treatment of γ_5 matters!
- translation between schemes also affects other operators and parameters

$\mathcal{L}_{4t} = \frac{C_{Qt}^{(1)}}{\Lambda^2} \bar{t}_L \gamma^\mu t_L \ \bar{t}_R \gamma_\mu t_R + \frac{C_{Qt}^{(8)}}{\Lambda^2} \bar{t}_L \gamma^\mu T^a t_L \ \bar{t}_R \gamma_\mu T^a t_R + \dots$

 $t\mathbb{P}_R\gamma^{\mu}\mathbb{P}_Lt\ t\mathbb{P}_L\gamma_{\mu}\mathbb{P}_Rt \quad \mathbb{P}_{L/R} = (\mathbb{I}\mp\gamma_5)/2$

Di-Higgs in HEFT and SMEFT

Four-top operators $\mathcal{L}_{4t} = \frac{C_{Qt}^{(1)}}{\Lambda^2} \bar{t}_L \gamma^\mu t_L \ \bar{t}_R \gamma_\mu t_R + \frac{C_{Qt}^{(8)}}{\Lambda^2} \bar{t}_L \gamma^\mu T^a t_L \ \bar{t}_R \gamma_\mu T^a t_R + \dots$

- 4-top operators occur in 2-loop diagrams
- treatment of γ_5 matters!
- translation between schemes also affects other operators and parameters

 $t\mathbb{P}_R\gamma^{\mu}\mathbb{P}_Lt\ t\mathbb{P}_L\gamma_{\mu}\mathbb{P}_Rt \quad \mathbb{P}_{L/R} = (\mathbb{I}\mp\gamma_5)/2$

talk by Stefano Di Noi at HEFT

Di-Higgs in HEFT and SMEFT

gamma5 in 4 dimensions

$$\gamma_5 = i\gamma^0\gamma^1\gamma^2\gamma^3$$

definition in 4 space-time dimensions

in 4 dimensions:

$$\{\gamma_5, \gamma^{\mu}\} = 0$$
 (1)
 $\operatorname{Tr}[\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}\gamma_5] = -4i\epsilon^{\mu\nu\rho\sigma}$ (2)
 $\operatorname{Tr}[\Gamma_1\Gamma_2\gamma_5] = \operatorname{Tr}[\gamma_5\Gamma_1\Gamma_2]$ cyclicity of

in $D = 4 - 2\epsilon$ dimensions: (1), (2) and (3) cannot be maintained simultaneously

Di-Higgs in HEFT and SMEFT

gamma5 in D dimensions

different schemes to extend γ_5 to D dimensions:

"naive dimensional regularisation" (NDR):

keep
$$\{\gamma_5,\gamma^\mu\}=0$$

abandon cyclicity of trace (or fix inconsistencies by hand)

"Kreimer scheme" reading point for traces:

but: ambiguities observed at high loop orders L. Chen, 2304.13814, J. Davies et al 2110.05496, ...

Breitenlohner, Maison; 't Hooft, Veltman (**BMHV**):

$$\gamma^{\mu} = \underline{\bar{\gamma}}^{\mu} + \underline{\hat{\gamma}}^{\mu}; \{\gamma_5, \bar{\gamma}^{\mu}\} = 0; [\gamma_5, \hat{\gamma}^{\mu}] = 4$$
-dim. (D-4) dim.

- spurious breaking of gauge invariance
- needs symmetry restoring counterterms
- the latter can be derived algorithmically

Scheme dependence induced by 4t operators

Di-Higgs in HEFT and SMEFT

Scheme (in)dependence

The renormalised physical amplitude must be scheme-independent

 $\mathcal{M}^{\mathrm{ren}} = \mathcal{M}^{\mathrm{scheme indep.}}$

scheme dependence of K-terms must be cancelled by scheme dependence of Wilson coefficients and parameters

Scheme (in)dependence

The renormalised physical amplitude must be scheme-independent

 $\mathcal{M}^{\mathrm{ren}} = \mathcal{M}^{\mathrm{scheme indep.}}$

scheme dependence of K-terms must be cancelled by scheme dependence of Wilson coefficients and parameters

> define combinations absorbing the scheme dependence or translation table

Di Noi, Gröber, GH, Lang, Vitti 2310.18221

Example: $C_{Ot}^{(1)}$ in different gamma5 schemes

large effect and very different behaviour in the two schemes

Di-Higgs in HEFT and SMEFT

Running Wilson coefficients

coming soon in the ggHH_SMEFT code (Powheg-Box-V2): [GH, Jannis Lang]

$$\mu rac{\partial \mathcal{C}_i}{\partial \mu} = rac{\gamma^{\mathcal{C}_j}_{\mathcal{C}_i}}{16\pi^2} \, \mathcal{C}_j \,\,,\,\,\,\,\gamma^{\mathcal{C}_j}_{\mathcal{C}_i}$$
 : anomalous dim

$$\begin{split} \mu \frac{\mathrm{d}\mathcal{C}_{tH}}{\mathrm{d}\mu} &= -2\beta_0^y \frac{\alpha_s}{4\pi} \mathcal{C}_{tH} + \gamma_{\mathcal{C}_{tH}}^{\mathcal{C}_{Qt}} \frac{1}{16\pi^2} \left(\mathcal{C}_{Qt}^{(1)} + c_F \mathcal{C}_{Qt}^{(8)} \right) \\ \mu \frac{\mathrm{d}\mathcal{C}_{HG}}{\mathrm{d}\mu} &= -2\beta_0 \frac{\alpha_s}{4\pi} \mathcal{C}_{HG} + \gamma_{\mathcal{C}_{HG}}^{\mathcal{C}_{tG}} \frac{g_s}{16\pi^2} \mathcal{C}_{tG} + \gamma_{\mathcal{C}_{HG}}^{\mathcal{C}_{Qt}} \frac{\alpha_s}{4\pi} \left(\mathcal{C}_{Qt}^{(1)} + (c_{Qt}) \right) \\ \mu \frac{\mathrm{d}\mathcal{C}_{tG}}{\mathrm{d}\mu} &= -\beta_{tG} \frac{\alpha_s}{4\pi} \mathcal{C}_{tG} \qquad \underbrace{+ \gamma_{\mathcal{C}_{tG}}^{\mathcal{C}_{HG}} \frac{g_s}{16\pi^2} \mathcal{C}_{HG}}_{\text{neglected}} \\ \begin{pmatrix} \mu \frac{\mathrm{d}\mathcal{C}_{Qt}^{(1)}}{\mathrm{d}\mu} \\ \mu \frac{\mathrm{d}\mathcal{C}_{Qt}^{(1)}}{\mathrm{d}\mu} \\ \mu \frac{\mathrm{d}\mathcal{C}_{Qt}^{(1)}}{\mathrm{d}\mu} \end{pmatrix} &= -\hat{\beta}_{Qt} \frac{\alpha_s}{4\pi} \begin{pmatrix} \mathcal{C}_{Qt}^{(1)} \\ \mathcal{C}_{Qt}^{(8)} \\ \mathcal{C}_{Qt}^{(8)} \end{pmatrix} \qquad \hat{\beta}_{Qt} = \begin{pmatrix} 0 & 3\frac{N_c^2 - 1}{N_c^2} \\ 12 & \frac{6N_c^2 - 2N_c - 12}{N_c} \end{pmatrix} \end{split}$$

see also Gröber, Di Noi 2312.11327 Aoude et al. 2212.05067 Battaglia, Grazzini, Spira, Wiesemann 2109.02987 Deutschmann, Duhr, Maltoni, Vryonidou 1708.00460 Maltoni, Vryonidou, Zhang 1607.05330

new options for users:

WCscaledependence: Switches the WC scaledependence between three modes, 0: $\mu_{EFT} = \mu_R$ but without any running effects (default, represents) previous implementation)

> 1: static EFT scale $\mu_{EFT} = \mu_{EFTinput} \times \text{EFTscfact}$ with running for EFTscfact $\neq 1$

2: dynamic EFT scale $\mu_{EFT} = \frac{m_{hh}}{2} \times \text{EFTscfact}$ with running.

- inputscaleEFT: defines the input scale/measurement scale $\mu_{EFTinput}$ of the Wilson coefficients, from which the running starts (only relevant for WCscaledependence > 0)
- **EFTscfact:** varies the EFT scale μ_{EFT} around the central scale, to be used for uncertainty assessment.

Running Wilson coefficients

benchmark point 6:

effect of running on CHG only:

Di-Higgs in HEFT and SMEFT

Running Wilson coefficients

sign change for large $\,\mu_0$

Di-Higgs in HEFT and SMEFT

VBF HH production in HEFT

uncorrelated in HEFT (LO): C_{ggh} and C_{gghh} . C_{VVh} and C_{VVhh}

gluon fusion

• The figure shows the kappa-framework

 A priori O(20) operators in HEFT Buchalla et al. 1307.5017, Brivio et al. 1604.06891

138 fb⁻¹ (13 TeV)

SM Higgs boson

Observed

Gudrun Heinrich

 \triangleleft 10³ N

2205.06667

VBF HH production in HEFT

Jens Braun, GH, Marius Höfer (work on NLO in progress)

shape very sensitive to trilinear coupling (other couplings set to SM values)

400 600

 $\sqrt{s} = 13 \,\mathrm{TeV} \,, \, \mu = 2m_h$

di-Higgs mass

 $M(j_1, j_2) > 600 \,\mathrm{GeV}$

VBF cuts $|\eta(j_1, j_2)| > 4$

Summary & outlook

- mHH shape benchmarks in HEFT: partially invalid in SMEFT and depend on truncation scheme and on value of Λ
- chromomagnetic operator and 4-top operators are linked through renormalisation $\Rightarrow \gamma_5$ scheme dependence talk by Stefano Di Noi at HEFT
- $\blacksquare \Rightarrow \text{ consider } O_{tG}$ and $O_{Ot}^{(1),(8)}$ together or document the scheme
- coming soon in ggHH_SMEFT: running of Wilson coefficients
- work in progress: HH in vector boson fusion at NLO QCD+HEFT

Thank you for your attention !

Di-Higgs in HEFT and SMEFT

age: Laura Vogiatzis

ggHH and ggHH_SIMEFT codes

• both codes: NLO QCD with full top quark mass dependence Borowka et al. 2016

HEFT: ggHH code available at

http://powhegbox.mib.infn.it/User-Process-V2

5 anomalous couplings: GH, Jones, Kerner, Scyboz, 2006.16877

SMEFT:

leading operators, different truncation options ggHH_SMEFT GH, J. Lang, L. Scyboz, 2204.13045

+ 6 subleading operators GH, J. Lang, 2311.15004

note: bug in 2-loop triangle contribution (in both codes) corrected September 2023 (thanks to Ramona Gröber, Emanuele Bagnaschi, Guiseppe Degrassi, 2309.10525)

Di-Higgs in HEFT and SMEFT

Effect of different gamma5-schemes

within the ellipse

Effects of chromomagnetic operator

variation ranges: from global fit (marginalised), Ethier et al, 2105.00006 [SMEFiT coll.]

Effect larger than SM scale uncertainties

Effect of linear+quadratic truncation smaller than linear only due to destructive interference

Operators contributing to VBF HH before application of custodial symmetry arguments

$$\begin{split} \Delta \mathcal{L} &= -\frac{m_h^2}{2v} g_{hhh} h^3 \\ &+ g_{h\gamma\gamma} A_{\mu\nu} A^{\mu\nu} \frac{h}{v} \\ &+ g_{hZZ}^{(1)} A_{\mu\nu} Z^{\mu} \frac{\partial^{\nu} h}{v} + g_{hZZ}^{(2)} A_{\mu\nu} Z^{\mu\nu} \frac{h}{v} \\ &+ g_{hZZ}^{(1)} Z_{\mu\nu} Z^{\mu} \frac{\partial^{\nu} h}{v} + g_{hZZ}^{(2)} Z_{\mu\nu} Z^{\mu\nu} \frac{h}{v} \\ &+ g_{hWW}^{(1)} (W_{\mu\nu}^+ W^{-,\mu} + \text{h.c.}) \frac{\partial^{\nu} h}{v} + g_{hWW}^{(2)} W_{\mu\nu}^+ W^{-,\mu\nu} \frac{h}{v} + 2M_W^2 g_{hWW}^{(3)} W_{\mu}^+ W^{-,\mu} \frac{h}{v} \\ &+ g_{hh\gamma\gamma}^{(1)} A_{\mu\nu} Z^{\mu} \frac{h\partial^{\nu} h}{v^2} \\ &+ g_{hhZZ}^{(1)} Z_{\mu\nu} Z^{\mu} \frac{h\partial^{\nu} h}{v^2} + g_{hhZZ}^{(2)} Z_{\mu\nu} Z^{\mu\nu} \frac{h^2}{v^2} \\ &+ g_{hhZZ}^{(1)} Z_{\mu\nu} Z^{\mu} \frac{h\partial^{\nu} h}{v^2} + g_{hhZZ}^{(2)} Z_{\mu\nu} Z^{\mu\nu} \frac{h^2}{v^2} \\ &+ g_{hhZZ}^{(1)} Z_{\mu\nu} Z^{\mu} \frac{h\partial^{\nu} h}{v^2} + g_{hhZZ}^{(2)} Z_{\mu\nu} Z^{\mu\nu} \frac{h^2}{v^2} \\ &+ g_{hhZZ}^{(1)} Z_{\mu\nu} Z^{\mu} \frac{h\partial^{\nu} h}{v^2} + g_{hhZZ}^{(2)} Z_{\mu\nu} Z^{\mu\nu} \frac{h^2}{v^2} \\ &+ g_{hhZZ}^{(1)} W \left(W_{\mu\nu}^+ W^{-,\mu} + \text{h.c.} \right) \frac{h\partial^{\nu} h}{v^2} + g_{hhWW}^{(2)} W_{\mu\nu}^+ W^{-,\mu\nu} \frac{h^2}{v^2} \\ &+ g_{hhWW}^{(1)} \left(W_{\mu\nu}^+ W^{-,\mu} + \text{h.c.} \right) \frac{h\partial^{\nu} h}{v^2} + g_{hhWW}^{(2)} W_{\mu\nu}^+ W^{-,\mu\nu} \frac{h^2}{v^2} \\ &+ g_{hhWW}^{(1)} W \left(W_{\mu\nu}^+ W^{-,\mu} + \text{h.c.} \right) \frac{h\partial^{\nu} h}{v^2} + g_{hhWW}^{(2)} W_{\mu\nu}^+ W^{-,\mu\nu} \frac{h^2}{v^2} \\ &+ g_{hhWW}^{(1)} W \left(W_{\mu\nu}^+ W^{-,\mu} + \text{h.c.} \right) \frac{h\partial^{\nu} h}{v^2} + g_{hhWW}^{(2)} W_{\mu\nu}^+ W^{-,\mu\nu} \frac{h^2}{v^2} \\ &+ g_{hhWW}^{(1)} W \left(W_{\mu\nu}^+ W^{-,\mu} + \text{h.c.} \right) \frac{h\partial^{\nu} h}{v^2} + g_{hhWW}^{(2)} W_{\mu\nu}^+ W^{-,\mu\nu} \frac{h^2}{v^2} \\ &+ g_{hhWW}^{(1)} W \left(W_{\mu\nu}^+ W^{-,\mu} + \text{h.c.} \right) \frac{h\partial^{\nu} h}{v^2} + g_{hhWW}^{(2)} W_{\mu\nu}^+ W^{-,\mu\nu} \frac{h^2}{v^2} \\ &+ g_{hhWW}^{(1)} W \left(W_{\mu\nu}^+ W^{-,\mu} + \text{h.c.} \right) \frac{h\partial^{\nu} h}{v^2} \\ &+ g_{hhWW}^{(1)} W \left(W_{\mu\nu}^+ W^{-,\mu} + \text{h.c.} \right) \frac{h\partial^{\nu} h}{v^2} \\ &+ g_{hhWW}^{(1)} W \left(W_{\mu\nu}^+ W^{-,\mu} + \text{h.c.} \right) \frac{h\partial^{\nu} h}{v^2} \\ &+ g_{hhWW}^{(1)} W \left(W_{\mu\nu}^+ W^{-,\mu} + \text{h.c.} \right) \frac{h\partial^{\nu} h}{v^2} \\ &+ g_{hhWW}^{(1)} W \left(W_{\mu\nu}^+ W^{-,\mu} + \text{h.c.} \right) \frac{h\partial^{\nu} h}{v^2} \\ &+ g_{hhWW}^{(1)} W \left(W_{\mu\nu}^+ W^{-,\mu} + \text{h.c.} \right) \frac{h\partial^{\nu} h}{v^2} \\ &+ g_{hhWW}^{(1)} W \left(W_{\mu\nu}^+ W^{-,\mu} + \text{h.c.} \right) \frac{h\partial^{\nu} h}{v^2} \\ &+ g_{hhWW}^$$

Di-Higgs in HEFT and SMEFT

Scheme (in)dependence

possible solution: redefine parameters, absorbing scheme dependent parts

$$\tilde{C}_{tG} = C_{tG} + \left(C_{Qt}^{(1)} + (c_F - \frac{c_A}{2})C_{Qt}^{(8)}\right)K_{tG}$$
$$\tilde{C}_{tH} = C_{tH} + \left(C_{Qt}^{(1)} + c_F C_{Qt}^{(8)}\right)K_{tH}$$
$$\tilde{m}_t = m_t \left(1 + \frac{C_{Qt}^{(1)} + c_F C_{Qt}^{(8)}}{\Lambda^2}K_{m_t}\right)$$

known e.g. in flavour physics Ciuchini et al. '93 Herrlich, Nierste '94

Scheme (in)dependence

possible solution: redefine parameters, absorbing scheme dependent parts

$$\tilde{C}_{tG} = C_{tG} + \left(C_{Qt}^{(1)} + (c_F - \frac{1}{2})\right)$$
$$\tilde{C}_{tH} = C_{tH} + \left(C_{Qt}^{(1)} + c_F C_Q^{(2)}\right)$$
$$\tilde{m}_t = m_t \left(1 + \frac{C_{Qt}^{(1)} + c_F C_{Qt}^{(8)}}{\Lambda^2} K_m\right)$$

more flexible: derive a translation dictionary by requiring

 $-\Lambda$

Translation between BMHV and NDR

4-top operators are linked to other operators through a scheme translation

$$m_t^{\text{BMHV}} = m_t^{\text{NDR}} - \frac{m_t^3}{8\pi^2 \Lambda^2} \left(C_{Qt}^{(1)} + c_F C_{Qt}^{(8)} \right)$$
$$C_{tH}^{\text{BMHV}} = C_{tH}^{\text{NDR}} + \frac{\sqrt{2}m_t (4m_t^2 - m_h^2)}{16\pi^2 v^3} \left(C_{Qt}^{(1)} + c_F C_{Qt}^{(8)} \right)$$
$$C_{tG}^{\text{BMHV}} = C_{tG}^{\text{NDR}} + \frac{\sqrt{2}m_t g_s}{16\pi^2 v} \left(C_{Qt}^{(1)} + (c_F - \frac{c_A}{2}) C_{Qt}^{(8)} \right)$$

note: loop suppression factor for C_{tG} not included here (Warsaw basis conventions)

Translation between BMHV and NDR

4-top operators are linked to other operators through a scheme translation

note: loop suppression factor for C_{tG} not included here (Warsaw basis conventions)

shift can be of same order as Wilson coefficient itself

$$\frac{(1)}{2} + c_F C_{Qt}^{(8)} + c_F C_{Qt}^{(8)} + c_F C_{Qt}^{(8)} + c_F C_{Qt}^{(8)} + (c_F - \frac{c_A}{2}) C_{Qt}^{(8)} + (c_F - \frac{$$

Di-Higgs in HEFT and SMEFT

