Exploring HH and HHH at colliders with the Bosonic-HEFT

Maria J. Herrero

Universidad Autónoma de Madrid, IFT-UAM

Effective Field Theory in Multiboson Production Workshop , Padova, 10-11 June 2024

Content of this talk based on results in:

LO 2011.13195, EPJC 81 (2021)3, 260, González-López, Herrero, Martínez-Suárez $(\kappa_V,\kappa_{2V}) \qquad 2312.03877, \text{ EPJC 84 } (2024)5, 503, \text{ Davila, Domenech, Herrero, Morales}$ $\text{NLO}(\eta,\delta) \ 2208.05452, \text{ Phys. Rev. D 106 } (2022)11, 115027, \text{ Domenech, Herrero, Morales, Ramos}$

HH and HHH within HEFT at e^+e^-

NLO

2405.05385 Anisha, Domenech, Englert, Herrero, Morales (gg to HH and HHH)

 (κ_V, κ_{2V})

Preliminar. Cepeda, Domenech, García-Mír, Herrero. Work in progress (2024)

 (η, δ)

Preliminar. Domenech, Herrero, Morales. Work in progress (2024)

HH and HHH within HEFT at pp

Renorm. in R_{ε}

2208.05900, Phy.Rev.D 106 (2022)7, 073008, Herrero, Morales

——

Rad. corrections via 1PIs

Matching Amplitudes

2307.15693, Phys.Rev.D 108 (2023)9, 095013, Arco, Domenech, Herrero, Morales ——

Matching HEFT-2HDM

Tools used: FeynArts, FeynRules, FormCalc, Looptools, MG5, VBFNLO, HEFT model file included

Main motivation: HH and HHH production at colliders

Bosonic HEFT (=EChL): proper tool for BSM MultiHiggs at pp and ee.

Easy connection of HEFT with kappa formalism. Fermionic sector assumed here to be as in the SM. H being a singlet in HEFT gives uncorrelated interactions. In contrast to others (SM, SMEFT, 2HDM,...) Our main focus: 1) sensitivity to LO $(\kappa_V, \kappa_{2V}), (\kappa_3, \kappa_4)$ 2) correlations 3) NLO $(a_i's)$ and rad.corrections). 4) Tests of BSM in specific observables and with specific operators in contrast to global fits

HH and HHH (EW) production with LO-HEFT: $a, b, \kappa_3^{U} \mathcal{C}_{\nu}^{ex} (\frac{i\omega \hat{\tau}}{v})$

$$\mathcal{L}_{\text{HEFT}}^{\text{LO}} = \frac{v^2}{4} \left[1 + 2a \left(\frac{H}{v} \right) + b \left(\frac{H}{v} \right)^2 + c \left(\frac{H}{v} \right)^3 \right] \text{Tr} \left[D_{\mu} U^{\dagger} D^{\mu} U \right] - \kappa_3 v H^3 - \frac{1}{4} \kappa_4 v H^4 - \frac{1}{2} m_H^2 H^2 + \dots$$

SM: $a = b = \kappa_3 = \kappa_4 = 1$ LECs=Anomalous couplings: parametrize possible BSM effects in LO-HEFT

Higgs in Polynomials
Higgs is singlet

 $m_H^2 = 2\lambda v^2$; $m_W = gv/2$; $m_Z = m_W/c_W$

LO uncorrelated coeffs.

a versus b κ_3 versus κ_4

In contrast to SM, SMEFT, 2HDM,... (where H is in a doublet)

^[1]ATLAS, Phys. Rev. D **101** (2020) [1909.02845]

[2a]CMS, PLB 842,137531 (2023) [2206.09401] (2b) CMS, PRL129, 081802(2022) [2202.09617] (2c) ATLAS, PRD108, 052003(2023) [2301.03212]

[3a]ATLAS (PLB 843 (2023)137745 [3b]CMS (Nature 607, 7917, 2022)

 $W^{+} \longrightarrow W^{+} \longrightarrow W^{+$ $W^{-} \sim W^{\pm}$ $W^{-} \sim W^{-} \sim W^{\pm}$ $W^{-} \sim W^{\pm}$ he 6Wree-level Feynman diagrams that contribute to the W^+W^- and W^+W^- are first that contribute to the W^+W^- are soft the ECMH(Eq. $\frac{1}{2}$. $\frac{1}{2}$). As a stree-level Feynman diagrams that contribute to the W^+W^- HH a computation with the rules of bitrary H_{ξ} gauge previously remarked, the only difference with respect to a computation with the rules of the SW is the appearance of the parameters a and b, which are present in the vertices with nanthillearus de gougempute the scattering amplitudes for these diagrams lso have a triple Higgs coupling in rules used to compute the scattering amplitudes for these diagrams Figure 1. The first of the Line and the first of the parameter κ_3 in this solution of the parameter κ_3 in this solution is the parameter κ_3 in this solution is the parameter κ_3 in this solution is the solution of the parameter κ_3 in this solution. The High solution is the solution of the parameter κ_3 in this solution is the solution of the parameter κ_3 in this solution is the solution of the parameter κ_3 in this solution is the solution of the parameter κ_3 in this solution is the solution of the parameter κ_3 in this solution is the solution of the parameter κ_3 in this solution is the solution of the parameter κ_3 in this solution is the solution of the parameter κ_3 in this solution is the solution of the parameter κ_3 in this solution is the solution of the solut carried in the parameter the parameter of the parameter o The contract of the contract o

WW—>HHH gives access to κ_3 and κ_4 (LO-HEFT)

Less available phase space ——-> smaller cross sections than for WW —>HH: But yet possible access to large BSM $\kappa's$

Very small SM ($\kappa_3 = \kappa_4 = 1$) rates: $\sigma^{\text{SM}}(pp \to HHHjj) (14 \,\text{TeV}) = 10^{-7} \,\text{pb}$ $\sigma^{\text{SM}}(e^+e^- \to HHH\nu\bar{\nu}) (3 \,\text{TeV}) = 3 \times 10^{-7} \,\text{pb}$

María Herrero, EFT Multiboson, Padova 10 June 2024

Behavior with energy: subprocess (LO-HEFT)

2011.13195, EPJC 81 (2021)3, 260, González-López, Herrero, Martínez-Suárez

HH: Strong enhancement at large \sqrt{s} for $b \neq a^2$ Pert. unitarity viol above few TeV $\kappa_{2V} = 0$ viol unit. above 2.4 TeV! Max sensitivity to κ_3 close to $2m_H$

HHH: Similar behavior at large \sqrt{s} as in the SM (shifted upwards) No unitarity constraints on κ_3 , κ_4 Max sensitivity to κ_3 close to $3m_H$

HH production: testing $a=\kappa_V$, $b=\kappa_{2V}$ together at colliders (LO-HEFT)

Our Bosonic-HEFT model file is implemented in MG5

$$e^+e^-$$

$$e^+e^- \rightarrow HH\nu\bar{\nu}$$

LHC $q_1 \bar{q}_2 o HH q_3 \bar{q}_4$ (+ diags for $\bar{q}\bar{q}$ and for qq)

both $(a,b)=(\kappa_V,\kappa_{2V})$ involved

Explore in HHjj events. We require WBF cuts, $\Delta\eta_{ii}$ > 4, M_{ii} > 500 GeV

BSM signals means deviations in σ and in $d\sigma's$ respect the SM rates. We also explore correlations.

2312.03877 Davila, Domenech, Herrero, Morales, EPJC 84 (2024)5, 503

Largest sensitivity expected if $a^2 \neq b$

Expected sensitivity at CLIC. : $\Delta b \sim \mathcal{O}(10^{-1})$

Cuts: $E_T > 20 \, \mathrm{GeV}$ (see also ILC 0.5 and 1 TeV in paper)

$auction: e^+e^- and pp$

(all simulations with MG5)

pp (LHC) HHjj

HHHjj

WBF cuts:

 $M_{ii} > 500 \,\mathrm{GeV}$

 $2 < \eta_j < 5 \quad , \, \eta_{j1} \times \eta_{j2} < 0$

Interesting correlation in b!!

Except for factor suppression HHH/HH due to phase space

 $P_{Ti} > 20\,\mathrm{GeV}$, $\Delta R_{ii} > 0.4$ Work in progress: Herrero with Morales, Domenech, ... Englert, Anisha...

Access to (κ_V, κ_{2V}) and correlations in $e^+e^- \rightarrow HH_{1/1/2} \rightarrow \Delta hiets + F^{miss}$

Accessible Regions (in purple) defined as

$$R = \frac{N_{\rm BSM} - N_{\rm SM}}{\sqrt{N_{\rm SM}}} > 3$$

Largest regions in $(a,b)=(\kappa_V,\kappa_{2V})$ in CLIC, up to $\Delta\kappa\sim\mathcal{O}(10^{-1})$

Correlations $b \neq a^2$ defined by lines $\Delta b = C \Delta a$; $b = 1 - \Delta b$; $a = 1 - \Delta a$

Some correlations better tested, for instance C=1/4,1/3,1/2,1 if $\kappa_{V,2V}<1$

In contrast to moving in line $b = a^2$ (equiv to $\Delta b = 2 \Delta a$, yellow lines)

More difficult if $\kappa_{2V} > 1$

Exploring correlations (κ_V, κ_{2V}) at $e^+e^- \to HH\nu\bar{\nu}$ in $d\sigma/dM_{HH}$

 $e^{+}e^{-}(3 \text{ TeV})$

Dávila, Domenech, Herrero, Morales [2312.03877] EPJC 84 (2024)5, 503

In general going BSM with $\kappa_{2V} \neq 1$; $\kappa_{V} \neq 1$ distorts the dist. in M_{HH} producing bumps,

María Herrero, EFT Multiboson, Padova 10 June 2024

IIII

11

Exploring correlations (κ_V, κ_{2V}) at $e^+e^- \to HH\nu\bar{\nu}$ in $d\sigma/d\eta_H$

In general going BSM with $\kappa_{2V} \neq 1$; $\kappa_V \neq 1$ distorts the dist. in η_H producing peaks at $\eta_H = 0$

Except close to $\kappa_{2V} = \kappa_V^2$ $e^{+}e^{-}(3 \text{ TeV})$ $\sigma(e^+ e^- \rightarrow H H \nu \overline{\nu})$ at $\sqrt{s} = 3 \text{ TeV}$ $\sigma(e^+ e^- \rightarrow H H \nu \overline{\nu})$ at $\sqrt{s} = 3 \text{ TeV}$ $\sigma(e^+e^- \rightarrow H H \nu \overline{\nu})$ at $\sqrt{s} = 3 \text{ TeV}$ Maximum sensitivity if do/dη_{H1} ' a=0.6, b=1.2, σ = 0.0083 pb $\kappa_{2V} \neq \kappa_V^2$ 10^{-4} 10^{-5} Minimum sensitivity if 10^{-5} 10^{-5} $\kappa_{2V} = \kappa_V^2$ $\sigma(e^+ e^- \rightarrow H H \nu \overline{\nu})$ at $\sqrt{s} = 3 \text{ TeV}$ $\sigma(e^+ e^- \rightarrow H H \nu \overline{\nu})$ at $\sqrt{s} = 3 \text{ TeV}$ $\sigma(e^+e^- \rightarrow H H \nu \overline{\nu})$ at $\sqrt{s} = 3 \text{ TeV}$ $d\sigma/d\eta_{H1}$ (pb) 10^{-4} Δb = 2∆a $\Delta b = 4\Delta a$ 10^{-6} 10⁻⁵ = 10^{-6}

Very characteristic BSM exents with $q_3 \kappa_V^2 - \kappa_{2V} \neq 0$ larger $(\kappa_V^2 - \kappa_{2V}) \neq 0 \rightarrow \text{higher peaks} \rightarrow \text{more transverse Higgs } !!!$

Dávila, Domenech, Herrero, Morales [2312.03877] EPJC (2024)

Exploring correlations (κ_V, κ_{2V}) at $pp \to HHj_1j_2$ in $d\sigma/d\eta_H$

It looks promising: now we are including pythia and Delphes for a more realistic simulation

Cepeda, Domenech, Garcia-Mir, Herrero (Work in progress)

María Herrero, EFT Multiboson, Padova 10 June 2024

Access to (κ_3, κ_4) in $e^+e^- \to HHH\nu\bar{\nu} \to 6b$ jets + E_T^{miss}

2011.13195, EPJC 81 (2021)3, 260, González-López, Herrero, Martínez-Suárez

$$e^+e^- \rightarrow 6b + E_T^{\text{mis}}$$

10 events required for accessibility

At least 5 btagged jets $\epsilon_b = 0.8$

$$\checkmark p_T^j > 20 \text{ GeV}$$
 $\checkmark N_j \ge 6$

$$\checkmark \mid \eta^j \mid < 2.72$$
 $\checkmark E_T^{\mathrm{mis}} > 20 \ \mathrm{GeV}$

CLIC (3 TeV) where BSM/SM $\gtrsim 10$ for $\kappa_3 \gtrsim 2$ ($\kappa_4 = 1$) BSM/SM $\gtrsim 10$ for $\kappa_4 \gtrsim 4$ ($\kappa_3 = 1$)

The best expectations are for

$$\sigma^{\text{SM}}(e^+e^- \to HHH\nu\bar{\nu}) (3 \text{ TeV}) = 3 \times 10^{-7} \text{ pb}$$

 κ_3 κ_4

Other studies of 5b's \dot{p}_T \$1200 2312.04646 (Stylianou, Weiglein)

Sensitivity at CLIC to both κ_3 and κ_4

+

A recent study (more sophisticated and precise than ours) is in agreement with our previous sensitivities found, solid red contours: reach at CLIC, $\kappa_3 \sim 3.5$, $\kappa_4 \sim 10$

Also compared with ±16 x = \$73 pb = 1 (giving poorer sensitivity)

 $\kappa_4 \sim 60$ already in the non-perturbative regime

Conclusions

Future expected sensitivity to κ_4 yet poor much higher sensitivity to κ_3 expected

María Herrero, EFT Multiboson, Padova 10 June 2024

NLO-HEFT Higgs operators involved in (EW) HH production

$$\begin{split} \mathcal{L}_{\text{HEFT}}^{\text{NLO}} &= \dots_{-a_{dd\mathcal{V}\mathcal{V}1}} \frac{\partial^{\mu}H}{v^{2}} \text{Tr} \Big[\mathcal{V}_{\mu} \mathcal{V}_{\nu} \Big] - a_{dd\mathcal{V}\mathcal{V}2} \frac{\partial^{\mu}H}{v^{2}} \text{Tr} \Big[\mathcal{V}^{\nu} \mathcal{V}_{\nu} \Big] + a_{11} \text{Tr} \Big[\mathcal{D}_{\mu} \mathcal{V}^{\mu} \mathcal{D}_{\nu} \mathcal{V}^{\nu} \Big] \\ &- \frac{m_{\text{H}}^{2}}{4} \left(2a_{H\mathcal{V}\mathcal{V}} \frac{H}{v} + a_{HH\mathcal{V}\mathcal{V}} \frac{H^{2}}{v^{2}} \right) \text{Tr} \Big[\mathcal{V}^{\mu} \mathcal{V}_{\mu} \Big] \\ &- \left(a_{HWW} \frac{H}{v} + a_{HHWW} \frac{H^{2}}{v^{2}} \right) \text{Tr} \Big[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Big] + i \left(a_{d2} + a_{Hd2} \frac{H}{v} \right) \frac{\partial^{\nu}H}{v} \text{Tr} \Big[\hat{W}_{\mu\nu} \mathcal{V}^{\mu} \Big] \\ &+ \left(a_{\square\mathcal{V}\mathcal{V}} + a_{H\square\mathcal{V}\mathcal{V}} \frac{H}{v} \right) \frac{\square H}{v} \text{Tr} \Big[\mathcal{V}_{\mu} \mathcal{V}^{\mu} \Big] + a_{d3} \frac{\partial^{\nu}H}{v} \text{Tr} \Big[\mathcal{V}_{\nu} \mathcal{D}_{\mu} \mathcal{V}^{\mu} \Big] \\ &+ \left(a_{\square\square} + a_{H\square\square} \frac{H}{v} \right) \frac{\square H}{v^{2}} + a_{dd\square} \frac{\partial^{\mu}H}{v^{3}} \frac{\partial_{\mu}H}{\partial_{\mu}H} \frac{\Pi}{H} + a_{Hdd} \frac{m_{H}^{2}}{v^{2}} \frac{H}{v} \partial^{\mu}H \partial_{\mu}H \\ \end{pmatrix}$$

$$\mathcal{V}_{\mu} = (D_{\mu}U)U^{\dagger}$$

e.o.m

$$\Box H = -m_h^2 H - \frac{3}{2} \kappa_3 m_h^2 \frac{H^2}{v}$$

$$- \frac{a}{2} v \text{Tr} \left[\mathcal{V}^{\mu} \mathcal{V}_{\mu} \right] - \frac{b}{2} H \text{Tr} \left[\mathcal{V}^{\mu} \mathcal{V}_{\mu} \right]$$

$$\text{Tr} \left[\tau^j \mathcal{D}_{\mu} \mathcal{V}^{\mu} \right] = - \text{Tr} \left[\tau^j \mathcal{V}^{\mu} \right] \frac{2a}{v} \partial_{\mu} H$$

Full operators list given in the literature (see, for instance, $\,$ Brivio et al 1311.1823) $\,$

$$\mathcal{L}_{\text{HEFT}}^{\text{NLO+e.o.m}} = \dots - \underbrace{\left(a_{ddVV}\right) \frac{\partial^{\mu} H}{v^{2}} \text{Tr} \left[V_{\mu} V_{\nu}\right] - \left(a_{ddVV}\right) \frac{\partial^{\mu} H}{v^{2}} \text{Tr} \left[V^{\nu} V_{\nu}\right]}_{V^{2}} \text{Tr} \left[V^{\nu} V_{\nu}\right]$$

$$- \frac{m_{\text{H}}^{2}}{4} \left(2a_{HVV} \frac{H}{v} + a_{HHVV} \frac{H^{2}}{v^{2}}\right) \text{Tr} \left[V^{\mu} V_{\mu}\right] + a_{Hdd} \frac{m_{\text{H}}^{2}}{v^{2}} \frac{H}{v} \partial^{\mu} H \partial_{\mu} H$$

$$- \left(a_{HWW} \frac{H}{v} + a_{HHWW} \frac{H^{2}}{v^{2}}\right) \text{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu}\right] + i \left(a_{d2} + a_{Hd2} \frac{H}{v}\right) \frac{\partial^{\nu} H}{v} \text{Tr} \left[\hat{W}_{\mu\nu} V^{\mu}\right]$$

Reduction to 9 $a_i's$ NLO coefficients entering into $WW \rightarrow HH$

summarized by: $a_{ddVV1} \leftrightarrow c_8$, $a_{ddVV2} \leftrightarrow c_{20}$, $a_{11} \leftrightarrow c_9$, $a_{HWW} \leftrightarrow a_W$, $a_{HHWW} \leftrightarrow b_W$, $a_{d2} \leftrightarrow c_5$, $a_{Hd2} \leftrightarrow a_5$, $a_{\square VV} \leftrightarrow c_7$, $a_{H\square VV} \leftrightarrow a_7$, $a_{d3} \leftrightarrow c_{10}$, $a_{Hd3} \leftrightarrow a_{10}$, $a_{\square \square} \leftrightarrow c_{\square H}$, $a_{H\square \square} \leftrightarrow a_{\square H}$, $a_{dd\square} \leftrightarrow c_{\Lambda H}$, $a_{HVV} \leftrightarrow a_C$ and $a_{HHVV} \leftrightarrow b_C$.

The most relevant are

 $a_{ddVV1} \equiv \eta$, $a_{ddVV2} \equiv \delta$

Accessibility to NLO-HEFT (η , δ) at e^+e^- (4b+ETmiss)

Minimal detection cuts

$$|\eta^{b}| < 2$$

$$\Delta R_{hh} > 0.4$$

$$\Delta R_{bb} > 0.4$$
 $\cancel{E}_T > 20 \text{ GeV}$

b-tagging efficiency of 80%

2208.05452, Phys. Rev. D 106 (2022) 115027, Domenech, Herrero, Morales, Ramos

Signal with greater statistics: $e^+e^- \rightarrow HH\nu\bar{\nu} \rightarrow bbbb\nu\bar{\nu}$

Greater accessibility in CLIC (3TeV)

Expected reach $\eta, \delta \sim \mathcal{O}(10^{-3})$

Accessibility parameter

$$R = \frac{N_{BSM} - N_{SM}}{\sqrt{N_{SM}}}$$

CLIC

Accesible region: R > 3

Similar work in progress for HL-LHC via $pp \rightarrow HHjj \rightarrow \gamma\gamma bbjj$ Preliminar: BSM expected reach in this channel $\eta, \delta \leq \mathcal{O}(10^{-2})$

Including radiative corrections within bosonic-HEFT

Developed a practical program to include one-loop HEFT radiative corrections via insertions of 1PI's

Easy to implement in physical scattering procceses

Based on computation of one-loop FDs (graphical/intuitive) easy to implement with usual tools FeynRules, FormCalc, Looptools etc..

Renormalization of the involved 1PI Green functions in generic R_{ξ} gauges, with generic off-shell legs (renormalization of the Lagrangian is not enough, running Wilson coffs. is not enough)

Master equation for renormalized 1PI function within NLO HEFT

From \mathscr{L}^{LO} FRs $a, b, \kappa_3, \kappa_4, \dots$ From \mathscr{L}^{NLO} FRs $a_i \to a_i + \delta a_i$

 $a_i \rightarrow a_i + \delta a_i$

From loop diagrams computed with $\mathscr{L}^{\mathrm{LO}}$ FRs

From $\mathscr{L}^{ ext{LO}}$ counterterms $\delta Z_{W,Z,H,..}\delta g, \delta g', \delta a, \delta b, \delta \kappa_3, \delta \kappa_4 \dots$

Finite for all external (off-shell) momenta

needed as new CTs to cancel new divergences from loops

Better not to use e.o.m, all operators needed

Several examples: 2005.03537 and 2208.09334 (H decays), 2107.07890 (WZ to WZ), 2208.09334 (WW to HH) 2405.05385 (gg to HH, gg to HHH)

Radiative corrections in $WW \rightarrow HH$

M.J. Herrero and R.A Morales, PRD106,073008 (2022) 2208.05900

Renormalized one-loop 1PIs $\hat{\Gamma}^{
m NLO}_{
m HEFT}$ computed in the $R_{
m E}$ gauges = black balls inserted in the FDs

We have extracted all

the needed CTs

 ξ independence checked

Size of $\delta_{1-\text{loop}} \in (5, -15) \%$ comparable to SM (-20%)

But different behaviour with energy

We checked some $\delta a_i's$ with previous results in specific limits (pure scalar,

isospin limit $m_W = m_Z$)

Others were unknown

before our work (see paper)

Interesting RGE invariants for $(a^2 = b)$

$$\eta(\mu) = \eta(\mu') - \frac{1}{16\pi^2} \frac{1}{3} (a^2 - b)^2 \log\left(\frac{\mu^2}{\mu'^2}\right),$$

$$\delta(\mu) = \delta(\mu') + \frac{1}{16\pi^2} \frac{1}{12} (a^2 - b)(7a^2 - b - 6) \log\left(\frac{\mu^2}{\mu'^2}\right)$$

(EW) Radiative corrections in $gg \to HH$ and in $gg \to HHH$

Anisha, D.Domenech, C. Englert, M.J. Herrero, R.A. Morales, 2405.05385. (numerical estimates with VBFNLO)

Renormalized one-loop 1PIs $\hat{\Gamma}_{
m HEFT}^{
m NLO}$ computed in Feynman 'tHooft gauge = shaded balls inserted in the FDs

Size of the corrections in $gg \to HH$ and in $gg \to HHH$

Corrections at LHC (13 TeV) cross sections

Anísha, D. Domenech, C. Englert, M.J. Herrero, R.A. Morales, 2405.05385

 $\sigma_{\text{LO}}^{\text{SM}}(HH) = \sigma_{\text{LO}}^{\text{ref}}(HH) = 17.40 \,\text{fb}; \sigma_{\text{LO}}^{\text{SM}}(HHH) = \sigma_{\text{LO}}^{\text{ref}}(HHH) = 0.041 \,\text{fb}$

All simulations done with BVFNLO

Most important message: (EW) radiative corrections within NLO-HEFT change the sensitivity to κ_3 and κ_4 in HH and HHH production at LHC

The most relevant change is in κ_3 For κ_3 <0, we find relevant enhancements in the NLO/LO prediction $\sigma(HH)$ of $\sim 10\,\%$ and in $\sigma(HHH)$ of $\sim 30\,\%$ ($\sim 80\,\%$ if NLO²)

Also large changes in κ_4 For $\kappa_4>0$, we find relevant reductions in the NLO/LO prediction $\sigma(HHH)$ of $\sim 50\,\%$

Large effects from NLO coefficients

Anísha, D.Domenech, C. Englert, M.J. Herrero, R.A. Morales, 2405.05385

$\mathcal{O}_{\square\square}$	$a_{\square\square} \frac{\square H \square H}{v^2}$	$\mathcal{O}_{H\square\square}$	$a_{H\square\square} \left(\frac{H}{v}\right) \frac{\square H\square H}{v^2}$
\mathcal{O}_{Hdd}	$a_{Hdd} \frac{m_{\rm H}^2}{v^2} \left(\frac{H}{v}\right) \partial^{\mu} H \partial_{\mu} H$	\mathcal{O}_{HHdd}	$a_{HHdd} \frac{m_{\rm H}^2}{v^2} \left(\frac{H^2}{v^2}\right) \partial^{\mu} H \partial_{\mu} H$
\mathcal{O}_{ddW}	$a_{ddW} \frac{m_{\rm W}^2}{v^2} \left(\frac{H}{v}\right) \partial^{\mu} H \partial_{\mu} H$	\mathcal{O}_{HddW}	$a_{HddW} \frac{m_{\rm W}^2}{v^2} \left(\frac{H^2}{v^2}\right) \partial^{\mu} H \partial_{\mu} H$
\mathcal{O}_{ddZ}	$a_{ddZ} \frac{m_{\rm Z}^2}{v^2} \left(\frac{H}{v}\right) \partial^{\mu} H \partial_{\mu} H$	\mathcal{O}_{HddZ}	$a_{HddZ} \frac{m_Z^2}{v^2} \left(\frac{H^2}{v^2}\right) \partial^{\mu} H \partial_{\mu} H$
$\mathcal{O}_{dd\square}$	$a_{dd\Box} \ \frac{1}{v^3} \partial^{\mu} H \partial_{\mu} H \Box H$	$\mathcal{O}_{Hdd}\square$	$a_{Hdd\Box} \frac{1}{v^3} \left(\frac{H}{v}\right) \partial^{\mu} H \partial_{\mu} H \Box H$
$\mathcal{O}_{HH\square\square}$	$a_{HH\square\square} \left(\frac{H^2}{v^2}\right) \frac{\square H\square H}{v^2}$	\mathcal{O}_{dddd}	$a_{dddd} \; \frac{1}{v^4} \partial^{\mu} H \; \partial_{\mu} H \; \partial^{\nu} H \; \partial_{\nu} H$

The largest effects are from operators with higher number of derivatives: $a_{dd\Box}$, $a_{H\Box\Box}$, a_{dddd} ...

For instance, for
$$a_{H \square \square} = 0.1$$
 and $\kappa_3 = 1$
$$\sigma^{\rm HEFT}(HH) \sim 1.5 \, \sigma^{\rm SM}(HH) \quad (50\%)$$

$$\sigma^{\rm HEFT}(HHH) \sim 1.8 \, \sigma^{\rm SM}(HHH) \quad (80\%)$$

Other 2D correlation plots in 2405.05385

Conclusions

Multiple Higgs production at colliders (HH, HHH,...) will test the Higgs potential and BSM Higgs couplings to gauge bosons. Some correlations could also be tested:

 V_{HWW} / V_{HHWW} , λ_{HHHH} / λ_{HHHHH} ,...uncorrelated in HEFT because H is a singlet but correlated in other specific scenarios. In particular: 2HDM, SMEFT, where H is part of a doublet

Both HL-LHC (14 TeV) and CLIC (3TeV) will give access to LO and NLO HEFT coefficients. Studying specific difxsections will help in exploring potential correlations: Ex. $d\sigma/d\eta_H$ for $\kappa_V^2\leftrightarrow\kappa_{2V}$

Including radiative corrections within HEFT predictions is important

María Herrero, EFT Multiboson, Padova 10 June 2024

Back up slides

Best prospects for κ_3 are at future e^+e^- colliders

- Proposed high-energy linear e^+e^- colliders: ILC and CLIC
- Projected sensitivity to κ_3 from hhZ and $hh\nu\bar{\nu}$ (better than HL-LHC!):

At ILC:			At CLI		at 68% CL)
	500 GeV (4 ab ⁻¹):	±27%	1.4 TeV (2.5 ab ⁻¹): -29%, -		67%
	500 GeV (4 ab ⁻¹) + 1 TeV (5* ab ⁻¹):		1.4 TeV (2.5 ab ⁻¹) + 3 TeV (5 ab ⁻¹):	-8%, +119	%
[Dürig, 16] [Fujii et al., 15]			[CLICdp Collab., 15]		

Until we have these machines it Pleaty of room for BSM physics!

Sensitivity to κ_3 and κ_4 in $e^+e^- \to HHH\nu\bar{\nu}$

2011.13195, EPJC 81 (2021)3, 260, González-López, Herrero, Martínez-Suárez

The best expectations are for CLIC (3 TeV) where BSM/SM $\gtrsim 10$ for $\kappa_3 \gtrsim 2$ ($\kappa_4 = 1$) BSM/SM $\gtrsim 10$ for $\kappa_4 \gtrsim 4$ ($\kappa_3 = 1$)

Higher sensitivity to κ_3 than to κ_4 !!

Sensitivity to $a=\kappa_V$, $b=\kappa_{2V}$ in $pp\to HHj_1j_2$ (LHC, 14TeV)

Largest sensitivity expected if $a^2 \neq b$ (again)

producing the largest deviations compared to SM predictions

$$\sigma^{\text{BSM}}(a = 1, b = -0.5) / \sigma^{\text{SM}} \simeq 33 !!$$

Stringent exp. constraints on b For 13TeV, in 4b channel:

$$b^{\text{exp}} \in [-0.1, 2.2]^{(1)}, [-0.03, 2.11]^{(2)}$$

(1) CMS, PRL129, 081802(2022) [2202.09617]

(2) ATLAS, PRD108, 052003(2023) [2301.03212]

Applied cuts: $P_{Tj}^{\min} = 20~GeV$, $\eta_{j1}\eta_{j2} < 0$, $2 \le |\eta_j| \le 5$, $M_{jj}^{\min} = 500GeV$, $\Delta R_{jj}^{\min} = 0.4$

Cepeda, Domenech, Garcia-Mir, Herrero (Work in progress)

Models with $a^2 = b$ very difficult to test

Exploring correlations at LHC more difficult than at e^+e^- but yet possible by studying differential xsections with specific variables (angular, rapidity etc..see next)

Matching amplitudes

We do matching at amplitude level (more useful to compare with data). In contrast to other approaches: matching Lagrangians, matching Effective Actions ...etc

Matching amplitudes requires:

$$\mathcal{A}^{\text{HEFT}} = \mathcal{A}^{\text{UV}}(m_{\text{heavy}} \gg m_{\text{light}})$$

Setting the HEFT order (LO, NLO,...)
Setting the n-loop order $\mathcal{O}(\hbar^n)$, same in both sides
Setting the input parameters, in both sides
Setting the proper large mass expansion in the UV theory

2307.15693, Phys.Rev.D 108 (2023)9, 095013, Arco, Domenech, Herrero, Morales

Matching

HEFT and 2HDM

Amplitudes

Matching several amplitudes: Choose input parameters:

(HEFT)
$$m_h, m_W, m_Z, c_i's$$

$$\begin{pmatrix} m_h, m_W, m_Z, m_{12} \text{ (light)} \\ m_H, m_A, m_{H^\pm} \text{ (heavy)} \\ \tan\beta, \cos(\beta-\alpha) \text{ (free)} \end{pmatrix}$$

 $\tan eta, \cos(eta-lpha)$ (free) $\ln \ln h \to \gamma Z$ R_{ξ}^{ς} 1-loop Proper large mass expansion is in $\left(\frac{m_{\mathrm{light}}}{m_{\mathrm{heavy}}}\right)^n$. Other parameters are derived $(\lambda_{h_ih_jh_k},\ldots)$

Solution to the matching equations: HEFT versus 2HDM

2307.15693, Phys.Rev.D 108 (2023)9, 095013, Arco, Domenech, Herrero, Morales

Solving the matching equations implies identifying all momenta and Lorentz structures involved and extracting the corresponding HEFT $c_i^\prime s$ coeffs

$$(a = 1 - \Delta a, b = 1 - \Delta b, \kappa_3 = 1 - \Delta \kappa_3, \kappa_4 = 1 - \Delta \kappa_4)$$

$$\Delta a|_{\rm 2HDM} = 1 - s_{\beta - \alpha}, \\ \Delta b|_{\rm 2HDM} = -c_{\beta - \alpha}^2 (1 - 2c_{\beta - \alpha}^2 + 2c_{\beta - \alpha}s_{\beta - \alpha}\cot 2\beta), \\ \Delta \kappa_3|_{\rm 2HDM} = 1 - s_{\beta - \alpha}(1 + 2c_{\beta - \alpha}^2) - c_{\beta - \alpha}^2 \left(-2s_{\beta - \alpha}\frac{m_{12}^2}{m_h^2s_{\beta}c_{\beta}} + 2c_{\beta - \alpha}\cot 2\beta \left(1 - \frac{m_{12}^2}{m_h^2s_{\beta}c_{\beta}} \right) \right), \\ \Delta \kappa_4|_{\rm 2HDM} = -\frac{c_{\beta - \alpha}^2}{3} \left(-7 + 64c_{\beta - \alpha}^2 - 76c_{\beta - \alpha}^4 + 12 \left(1 - 6c_{\beta - \alpha}^2 + 6c_{\beta - \alpha}^4 \right) \frac{m_{12}^2}{m_h^2s_{\beta}c_{\beta}} \right) \\ + 4c_{\beta - \alpha}s_{\beta - \alpha}\cot 2\beta \left(-13 + 38c_{\beta - \alpha}^2 - 3(-5 + 12c_{\beta - \alpha}) \frac{m_{12}^2}{m_h^2s_{\beta}c_{\beta}} \right) \\ + 4c_{\beta - \alpha}\cot 2\beta \left(3c_{\beta - \alpha}^2 - 16s_{\beta - \alpha}^2 + 3(-1 + 6s_{\beta - \alpha}^2) \frac{m_{12}^2}{m_h^2s_{\beta}c_{\beta}} \right) \right), \\ a_{h\gamma\gamma}|_{\rm 2HDM} = -\frac{8\beta - \alpha}{48\pi^2}, \\ a_{h\gamma Z}|_{\rm 2HDM} = -\frac{(2c_w^2 - 1)s_{\beta - \alpha}}{96c^2\pi^2}.$$

These non-decoupling effects from the heavy bosons are not obtained in the SMEFT where all effects are decoupling

$$\left(\frac{m_{\text{light}}}{m_{\text{heavy}}}\right)^n, n \ge 2$$

Interesting correlations found

These contributions are

$$\mathcal{O}\Big(\frac{m_{ ext{light}}}{m_{ ext{heavy}}}\Big)^0$$
 Leading terms in the large $m_{ ext{heavy}}$ expansion

Summarize the Non-Decoupling effects of the heavy Higgs bosons at low energies

They are valid for arbitrary

$$t_{\beta}$$
, $c_{\beta-\alpha}$

when $c_{\beta-\alpha} \ll 1$ is required (quasi-alignement)

$$\Delta a|_{2\text{HDM}}^{\text{qal}} = -\frac{1}{2}\Delta b|_{2\text{HDM}}^{\text{qal}}$$
$$2\Delta \kappa_3|_{2\text{HDM}}^{\text{qal}} + \Delta \kappa_4|_{2\text{HDM}}^{\text{qal}} = -\frac{2}{3}c_{\beta-\alpha}^2$$

Matching amplitudes: HEFT versus SMEFT

2208.05452, Phys. Rev. D 106 (2022) 115027, Domenech, Herrero, Morales, Ramos

Requiring matching of the amplitudes for WW—>HH (similar for ZZ —>HH) and identifying all momenta and Lorentz structures involved

$$\mathcal{A}(WW \to HH)|_{\mathrm{HEFT}} = \mathcal{A}^{(2)} + \mathcal{A}^{(4)}$$

$$\mathcal{A}(WW \to HH)|_{\text{HEFT}} = \mathcal{A}^{(2)} + \mathcal{A}^{(4)} \iff \mathcal{A}(WW \to HH)_{\text{SMEFT}} = \mathcal{A}_{\text{SM}} + \mathcal{A}^{[6]} + \mathcal{A}^{[8]}$$

$$\mathcal{A}^{(2)}|_{S} = \frac{g^2}{2} 3a\kappa_3 \frac{m_{\mathrm{H}}^2}{S - m_{\mathrm{H}}^2} \epsilon_+ \cdot \epsilon_-$$

$$\mathcal{A}^{(2)}|_{T} = g^{2} a^{2} \frac{m_{\mathbf{W}}^{2} \epsilon_{+} \cdot \epsilon_{-} + \epsilon_{+} \cdot k_{1} \epsilon_{-} \cdot k_{2}}{T - m_{\mathbf{W}}^{2}}$$

$$\mathcal{A}^{(2)}|_{U} = g^2 a^2 \frac{m_{\mathbf{W}}^2 \epsilon_+ \cdot \epsilon_- + \epsilon_+ \cdot k_2 \epsilon_- \cdot k_1}{U - m_{\mathbf{W}}^2}$$

$$\mathcal{A}^{(2)}|_C = \frac{g^2}{2}b\epsilon_+ \cdot \epsilon_-$$

$$\mathcal{A}^{(4)}|_{S} = \frac{g^{2}}{2v^{2}} \frac{1}{S - m_{H}^{2}} (3\kappa_{3}a_{d2}m_{H}^{2}(S\epsilon_{+} \cdot \epsilon_{-} - 2\epsilon_{+} \cdot p_{-}\epsilon_{-} \cdot p_{+})$$

$$+6\kappa_3 a_{HWW} m_{\rm H}^2 ((S-2m_{\rm W}^2)\epsilon_+ \cdot \epsilon_- - 2\epsilon_+ \cdot p_- \epsilon_- \cdot p_+) - (3\kappa_3 a_{HVV} m_{\rm H}^4 + a a_{Hdd} m_{\rm H}^2 (S+2m_{\rm H}^2))\epsilon_+ \cdot \epsilon_-)$$

$$\mathcal{A}^{(4)}|_{T} = \frac{g^{2}}{2v^{2}} \frac{a}{T - m_{W}^{2}} (a_{d2}(4m_{W}^{2}m_{H}^{2}\epsilon_{+} \cdot \epsilon_{-} + 2(T + 3m_{W}^{2} - m_{H}^{2})\epsilon_{+} \cdot k_{1}\epsilon_{-} \cdot k_{2})$$

$$-4m_{\mathrm{W}}^{2}(\epsilon_{+}\cdot k_{1}\epsilon_{-}\cdot p_{+}+\epsilon_{+}\cdot p_{-}\epsilon_{-}\cdot k_{2}))$$

$$-8a_{HWW}m_{\mathrm{W}}^2((T+m_{\mathrm{W}}^2-m_{\mathrm{H}}^2)\epsilon_+\cdot\epsilon_-+\epsilon_+\cdot k_1\epsilon_-\cdot p_++\epsilon_+\cdot p_-\epsilon_-\cdot k_2)$$

$$-4a_{HVV}m_{\rm H}^2(m_{\rm W}^2\epsilon_+\cdot\epsilon_-+\epsilon_+\cdot k_1\epsilon_-\cdot k_2))$$

$$\mathcal{A}^{(4)}|_U = \mathcal{A}^{(4)}|_T$$
 with $T \to U$ and $k_1 \leftrightarrow k_2$

$$\mathcal{A}^{(4)}|_{C} = \frac{g^2}{2n^2} \left(-2a_{dd\mathcal{V}\mathcal{V}1} (\epsilon_+ \cdot k_2 \epsilon_- \cdot k_1 + \epsilon_+ \cdot k_1 \epsilon_- \cdot k_2) \right)$$

$$+ (-2a_{ddVV2}(S - 2m_{H}^{2}) + 4a_{HHWW}(S - 2m_{W}^{2}) + a_{Hd2}S - a_{HHVV}m_{H}^{2})\epsilon_{+} \cdot \epsilon_{-}$$

$$-2(a_{Hd2}+4a_{HHWW})\epsilon_{+}\cdot p_{-}\epsilon_{-}\cdot p_{+})$$

$$\longleftrightarrow$$

$$\mathcal{L}_{6} = \frac{a_{\phi\Box}}{2} (\phi^{\dagger}\phi) \Box (\phi^{\dagger}\phi) + \frac{a_{\phi D}}{2} (\phi^{\dagger}D_{\mu}\phi) ((D^{\mu}\phi)^{\dagger}\phi) + \frac{a_{\phi W}}{2} (\phi^{\dagger}\phi) W^{a} W^{a\mu\nu} +$$

$$\mathcal{L}_{6} = \frac{a_{\phi\Box}}{\Lambda^{2}} (\phi^{\dagger} \phi) \Box (\phi^{\dagger} \phi) + \frac{a_{\phi D}}{\Lambda^{2}} (\phi^{\dagger} D_{\mu} \phi) ((D^{\mu} \phi)^{\dagger} \phi) + \frac{a_{\phi W}}{\Lambda^{2}} (\phi^{\dagger} \phi) W^{a}_{\mu\nu} W^{a\mu\nu} + \dots$$

$$\mathcal{L}_{8} = \frac{a_{\phi^{6}}^{(1)}}{\Lambda^{4}} (\phi^{\dagger}\phi)^{2} (D_{\mu}\phi^{\dagger}D^{\mu}\phi) + \frac{a_{\phi^{6}}^{(2)}}{\Lambda^{4}} (\phi^{\dagger}\phi)(\phi^{\dagger}\sigma^{I}\phi)(D_{\mu}\phi^{\dagger}\sigma^{I}D^{\mu}\phi) + \frac{a_{\phi^{4}}^{(1)}}{\Lambda^{4}} (D_{\mu}\phi^{\dagger}D_{\nu}\phi)(D^{\nu}\phi^{\dagger}D^{\mu}\phi) + \frac{a_{\phi^{4}}^{(2)}}{\Lambda^{4}} (D_{\mu}\phi^{\dagger}D_{\nu}\phi)(D^{\nu}\phi^{\dagger}D^{\mu}\phi) + \frac{a_{\phi^{4}}^{(2)}}{\Lambda^{4}} (D_{\mu}\phi^{\dagger}D_{\nu}\phi)(D^{\nu}\phi^{\dagger}D^{\nu}\phi) + \frac{a_{\phi^{4}}^{(2)}}{\Lambda^{4}} (D_{\mu}\phi^{\dagger}D_{\nu}\phi)(D^{\nu}\phi^{\dagger}D^{\nu}\phi) + \dots$$

$$\mathcal{A}_{SM} = \frac{g^2}{2} 3 \frac{m_{H}^2}{S - m_{H}^2} \epsilon_+ \cdot \epsilon_- + g^2 \frac{m_{W}^2 \epsilon_+ \cdot \epsilon_- + \epsilon_+ \cdot k_1 \epsilon_- \cdot k_2}{T - m_{W}^2}$$

$$+g^{2}\frac{m_{\mathrm{W}}^{2}\epsilon_{+}\cdot\epsilon_{-}+\epsilon_{+}\cdot k_{2}\epsilon_{-}\cdot k_{1}}{U-m_{\mathrm{C}}^{2}}+\frac{g^{2}}{2}\epsilon_{+}\cdot\epsilon_{-} \qquad (2.17)$$

$$\mathcal{A}^{[6]}|_{S} = \frac{g^{2}}{4} \frac{v^{2}}{\Lambda^{2}} \delta a_{\phi D} \frac{S + 8m_{H}^{2}}{S - m_{W}^{2}} \epsilon_{+} \cdot \epsilon_{-} + 6 \frac{v^{2}}{\Lambda^{2}} a_{\phi W} \frac{m_{H}^{2}}{v^{2}} \frac{2\epsilon_{-} \cdot p_{+} \epsilon_{+}}{S - m_{W}^{2}} \frac{- (S - 2m_{W}^{2})\epsilon_{+} \cdot \epsilon_{-}}{S - m_{W}^{2}}; \qquad \delta a_{\phi D} \equiv 4a_{\phi \Box} - a_{\phi D}$$

$$\mathcal{A}^{[6]}|_{T} = \frac{g^2}{2} \frac{v^2}{\Lambda^2} \delta a_{\phi D} \frac{m_{\mathrm{W}}^2 \epsilon_+ \cdot \epsilon_- + (\epsilon_- \cdot p_+ - \epsilon_- \cdot k_1) \epsilon_+ \cdot k_1}{T - m_{\mathrm{W}}^2}$$

$$+2g^2\frac{v^2}{\Lambda^2}a_{\phi W}\frac{\epsilon_+\cdot\epsilon_-(-m_{\rm H}^2+m_{\rm W}^2+T)-\epsilon_-\cdot k_1\epsilon_+\cdot p_-+\epsilon_-\cdot p_+(\epsilon_+\cdot p_-+\epsilon_+\cdot k_1)}{T-m_{\rm W}^2};$$

$$\mathcal{A}^{[6]}|_U = \mathcal{A}^{(6)}|_T$$
 with $T \to U$ and $k_1 \leftrightarrow k_2$

$$\mathcal{A}^{[6]}|_C = \frac{g^2}{4} \frac{v^2}{\Lambda^2} \delta a_{\phi D} \epsilon_+ \cdot \epsilon_- + \frac{v^2}{\Lambda^2} a_{\phi W} \frac{1}{v^2} (-2(S - 2m_W^2) \epsilon_+ \cdot \epsilon_- + 4\epsilon_- \cdot p_+ \epsilon_+ \cdot p_-);$$

$$\mathcal{A}^{[8]}|_{C} = -\frac{g^{2}}{4} \frac{v^{2}}{\Lambda^{4}} ((a_{\phi^{4}}^{(1)} + a_{\phi^{4}}^{(2)})(\epsilon_{-} \cdot p_{+} \epsilon_{+} \cdot k_{1} + \epsilon_{-} \cdot k_{1} (\epsilon_{+} \cdot p_{-} - 2\epsilon_{+} \cdot k_{1})) + a_{\phi^{4}}^{(3)} \epsilon_{+} \cdot \epsilon_{-} (S - 2m_{H}^{2}))$$

Interesting correlations found

Solutions to the matching:

$$a - 1 = \frac{1}{4} \frac{v^2}{\Lambda^2} \delta a_{\phi D}$$

$$a_{HWW} = -\frac{v^2}{2m_W^2} \frac{v^2}{\Lambda^2} a_{\phi W}$$

$$a_{ddVV1} = \frac{v^4}{4\Lambda^4} [a_{\phi^4}^{(1)} + a_{\phi^4}^{(2)}]$$

$$b - 1 = \frac{v^2}{\Lambda^2} \delta a_{\phi D}$$

$$a_{HWW} = -\frac{v^2}{4m_W^2} \frac{v^2}{\Lambda^2} a_{\phi W}$$

$$a_{ddVV1} = \frac{v^4}{4\Lambda^4} [a_{\phi^4}^{(1)} + a_{\phi^4}^{(2)}]$$

$$a_{HHWW} = -\frac{v^2}{4m_W^2} \frac{v^2}{\Lambda^2} a_{\phi W}$$

$$a_{ddVV2} = \frac{v^4}{4\Lambda^4} a_{\phi^4}^{(3)}$$

 $\Delta b \mid_{\text{SMEFT}} = 4\Delta a \mid_{\text{SMEFT}}$ $a_{HWW}|_{\text{SMEFT}} = 2a_{HHWW}|_{\text{SMEFT}}$

CTs in NLO WW o HH and derived RGEs

M.J. Herrero and R.A Morales, PRD106,073008 (2022) 2208.05900

$$\begin{split} & \delta_{c}a = \frac{\Delta_{e}}{16\pi^{2}} \frac{3}{2v^{2}} ((a^{2}-b)(a-\kappa_{3})m_{\mathrm{H}}^{2} + a((1-3a^{2}+2b)m_{\mathrm{W}}^{2} + (1-a^{2})m_{Z}^{2})), \\ & \delta_{e}b = -\frac{\Delta_{e}}{16\pi^{2}} \frac{1}{2v^{2}} ((a^{2}-b)(8a^{2}-2b-12a\kappa_{3}+3\kappa_{4})m_{\mathrm{H}}^{2} \\ & + 6a^{2}b(2m_{\mathrm{W}}^{2}+m_{Z}^{2}) - 6b(m_{\mathrm{W}}^{2}+m_{Z}^{2}) - 6b^{2}m_{\mathrm{W}}^{2}), \\ & \delta_{e}\kappa_{3} = -\frac{\Delta_{e}}{16\pi^{2}} \frac{1}{2m_{\mathrm{H}}^{2}v^{2}} \left(\kappa_{3}(a^{2}-b+9\kappa_{3}^{2}-6\kappa_{4})m_{\mathrm{H}}^{4} - 3(1-a^{2})\kappa_{3}m_{\mathrm{H}}^{2}(m_{\mathrm{W}}^{2}+m_{Z}^{2}) \right. \\ & + 6(-2ab+2a^{2}\kappa_{3}+b\kappa_{3})(2m_{\mathrm{W}}^{4}+m_{Z}^{4})), \\ & \delta_{e}a_{ddvv_{1}} = -\frac{\Delta_{e}}{16\pi^{2}} \frac{a^{4}+a^{2}b+b^{2}}{3}, \qquad \delta_{e}a_{ddvv_{2}} = -\frac{\Delta_{e}}{16\pi^{2}} \frac{(a^{2}-b)(2a^{2}+b+6)}{12}, \\ & \delta_{e}a_{111} = \frac{\Delta_{e}}{16\pi^{2}} \frac{a^{2}}{4}, \qquad \delta_{e}a_{H11} = \frac{\Delta_{e}}{16\pi^{2}} \frac{a(a^{2}-b)}{2}, \qquad \delta_{e}a_{HHM} = \frac{\Delta_{e}}{16\pi^{2}} \frac{4a^{4}-5a^{2}b+b^{2}}{4}, \\ & \delta_{e}a_{Hww} = \frac{\Delta_{e}}{16\pi^{2}} \frac{a(a^{2}-b)}{6}, \qquad \delta_{e}a_{Hww} = -\frac{\Delta_{e}}{16\pi^{2}} \frac{4a^{4}-5a^{2}b+b^{2}}{6}, \\ & \delta_{e}a_{dvv_{2}} = -\frac{\Delta_{e}}{16\pi^{2}} \frac{a(a^{2}-b)}{4}, \qquad \delta_{e}a_{Hwv_{2}} = \frac{\Delta_{e}}{16\pi^{2}} \frac{4a^{4}-5a^{2}b+b^{2}}{6}, \\ & \delta_{e}a_{dvv_{2}} = -\frac{\Delta_{e}}{16\pi^{2}} \frac{a(a^{2}+b)}{4}, \qquad \delta_{e}a_{Huv_{2}} = \frac{\Delta_{e}}{16\pi^{2}} \frac{4a^{4}+a^{2}(4-3b)-2b}{4}, \\ & \delta_{e}a_{dd} = -\frac{\Delta_{e}}{16\pi^{2}} \frac{3a^{2}}{4}, \qquad \delta_{e}a_{Huv_{2}} = \frac{\Delta_{e}}{16\pi^{2}} \frac{3a(2a^{2}-b)}{2}, \\ & \delta_{e}a_{dd} = -\frac{\Delta_{e}}{16\pi^{2}} \frac{3a(a^{2}-b)}{4}, \qquad \delta_{e}a_{Huv_{2}} = \frac{\Delta_{e}}{16\pi^{2}} \frac{3a(2a^{2}-b)}{2}, \\ & \delta_{e}a_{dd} = -\frac{\Delta_{e}}{16\pi^{2}} \frac{3a(a^{2}-b)}{4}, \qquad \delta_{e}a_{Huv_{2}} = \frac{\Delta_{e}}{16\pi^{2}} \frac{3a(2a^{2}-b)}{2}, \\ & \delta_{e}a_{dd} = -\frac{\Delta_{e}}{16\pi^{2}} \frac{3a(a^{2}-b)}{2}, \qquad \delta_{e}a_{Huv_{2}} = \frac{\Delta_{e}}{16\pi^{2}} \frac{3a(a^{2}-b)}{2}, \\ & \delta_{e}a_{ddv_{2}} = \frac{\Delta_{e}}{16\pi^{2}} \frac{3a(a^{2}-b)}{2}, \qquad \delta_{e}a_{Huv_{2}} = \frac{\Delta_{e}}{16\pi^{2}} \frac{3a(a^{2}-b)}{2}, \\ & \delta_{e}a_{Huv_{2}} = \delta_{e}a_{Huv_{2}} = 0, \qquad \delta_{e}a_{Huv_{2}} = 0, \qquad \delta_{e}a_{Huv_{2}} = 0, \\ & \delta_{e}a_{Huv_{2}} = \delta_{e}a_{Huv_{2}} = 0, \qquad \delta_{e}a_{Huv_{2}} = 0, \qquad \delta_{e}a_{Huv_{2}} = 0, \end{cases}$$

Comment: $\delta_{\epsilon} \kappa_4$ and others $\delta_{\epsilon} a_i' s$ are fixed in NLO $gg \to HH$ and $gg \to HHH$ (see next)

Combinations appearing in scattering amplitude : (=use of e.o.m)

$$\begin{split} \delta_{\epsilon}\eta &= \delta_{\epsilon}\tilde{a}_{dd\mathcal{V}\mathcal{V}1} = \delta_{\epsilon}(a_{dd\mathcal{V}\mathcal{V}1} - 4a^2a_{11} + 2aa_{d3}) = -\frac{\Delta_{\epsilon}}{16\pi^2}\frac{(a^2 - b)^2}{3}, \\ \delta_{\epsilon}\delta &= \delta_{\epsilon}\tilde{a}_{dd\mathcal{V}\mathcal{V}2} = \delta_{\epsilon}\left(a_{dd\mathcal{V}\mathcal{V}2} + \frac{a}{2}a_{dd\Box}\right) = \frac{\Delta_{\epsilon}}{16\pi^2}\frac{(a^2 - b)(7a^2 - b - 6)}{12}, \\ \delta_{\epsilon}(a_{H\mathcal{V}\mathcal{V}} - 2a_{\Box\mathcal{V}\mathcal{V}} + 2aa_{\Box\Box}) &= \frac{\Delta_{\epsilon}}{16\pi^2}a(1 - a^2), \\ \delta_{\epsilon}(a_{HH\mathcal{V}\mathcal{V}} - 6\kappa_3a_{\Box\mathcal{V}\mathcal{V}} + 4ba_{\Box\Box} + 6\kappa_3aa_{\Box\Box} + 4aa_{H\Box\Box}) &= \frac{\Delta_{\epsilon}}{16\pi^2}(3\kappa_3a(1 - a^2) + 2b - 2a^2(2 + 3b) + 8a^4), \\ \delta_{\epsilon}(a_{Hdd} - a_{dd\Box}) &= -\frac{\Delta_{\epsilon}}{16\pi^2}\frac{3a(a^2 - b)}{2}. \end{split}$$

RGE easily derived for all these $c_i's$ HEFT coefficients

$$c_i(\mu) = c_i(\mu') + \frac{1}{16\pi^2} \gamma_{c_i} \log\left(\frac{\mu^2}{\mu'^2}\right), \quad \delta_{\epsilon} c_i = \frac{\Delta_{\epsilon}}{16\pi^2} \gamma_{c_i}$$

We checked some $\delta c_i's$ with previous results in specific limits: pure scalar (1311.5993,14091571) isospin limit $m_W=m_Z$ (2109.02673) Others were unknown before our work (see paper)

Comparing SMEFT and HEFT: LO and NLO

Some preliminar results (D. Domenech, M. Herrero, R. Morales, M. Ramos, 2022)

$$\mathcal{L}_6 \supset c_{\phi^6} (\phi^{\dagger} \phi)^3 + c_{\phi\Box} (\phi^{\dagger} \phi) \Box (\phi^{\dagger} \phi) + c_{\phi D} (\phi^{\dagger} D_{\mu} \phi) ((D^{\mu} \phi)^{\dagger} \phi) + c_{\phi W} (\phi^{\dagger} \phi) W_{\mu\nu}^a W^{a\mu\nu}$$

$$c_i \equiv a_i / \Lambda^2$$

 $\Lambda = 1 \, \text{TeV}$

$$\mathcal{L}_{8} \supset c_{\phi^{4}}^{(1)}(D_{\mu}\phi^{\dagger}D_{\nu}\phi)(D^{\nu}\phi^{\dagger}D^{\mu}\phi) + c_{\phi^{4}}^{(2)}(D_{\mu}\phi^{\dagger}D_{\nu}\phi)(D^{\mu}\phi^{\dagger}D^{\nu}\phi) + c_{\phi^{4}}^{(3)}(D_{\mu}\phi^{\dagger}D_{\mu}\phi)(D^{\nu}\phi^{\dagger}D^{\nu}\phi) + \dots \qquad c_{i} \equiv a_{i}/\Lambda^{4}$$

Again: the largest BSM deviations in Longitudinal modes $W_LW_L \to HH$ Transverse modes are less affected. At TeV: dim8 compete with dim6!!

If matching in amplitudes according to behavior with energy: SMEFT dim 8 (6) <—> HEFT chi-dim 4 (2)