Padova, June 2024

COMETA – Multiboson EFT workshop

EFT in triboson analyses

Cristiano Tarricone

INFN – Sezione di Torino Università degli Studi di Torino

Outline

- Theoretical framework: **SMEFT**
- Motivation for triboson measurements
- Experimental results at LHC
- Sensitivity study to constrain dimension-6 SMEFT operators
 - Triboson processes
 - Analysis Strategy
 - One and Two-dimensional operator constraints
 - Profiled constraints
- Summary and Outlook

R. Bellan et al. "A sensitivity study of **triboson** production processes to dimension-6 EFT operators at the LHC" – published in <u>JHEP08(2023)158</u>

Theory introduction: SMEFT approach

- Triboson processes predicted by the SM to be very rare \rightarrow test of the EWSB
- EW sector still unexplored since several rare processes not yet observed!
 - Any deviation in kinematic observables could point to New Physics

- SMEFT bottom-up approach:
 - Effective Lagrangian with only light SM particles
 - BSM effects incorporated as a momentum expansion

CKen Mimasu

Triboson measurements at LHC

- The ATLAS and CMS collaborations have a rich program of multi-boson analyses
- Many triboson processes have been studied with at least a photon in final state

Triboson measurements at LHC

- Extremely rare processes:
 σ × BR(to leptons) ~O(1fb)
- Observed three massive gauge boson production and in channels with a photon VVγ and two photons Vγγ
- BSM effects as both aTGC/aQGCs and as anomalous Higgs-gauge coupling

Constraints on SMEFT operators

- Triboson processes can be a **tool** to **probe** BSM physics at the **TeV scale**, provided no **new light state** exists
- Combination of **several analyses** is key to fit simultaneously all **59 independent SMEFT operators** to preserve **gauge invariance** and **UV-matching**
 - What is the sensitivity of a **triboson** combination?
 - What is the interplay with other multiboson constraints? (see <u>Roberto's talk</u>)
- The first step towards **global SMEFT fit** is the **sensitivity study** at parton level of anomalies induced by **dimension-6** EFT operators
- Assess sensitivity interplay between multi-boson analyses at LHC
 - in the future global EFT fit will be necessary to provide the most stringent constraints to SMEFT operators (top, Higgs, EW, etc)

EFT in Triboson

Motivation for dim.-6 EFT sensitivity study

- Interpretation of triboson results traditionally in terms of dim-8 SMEFT operators (aQGCs) ATLAS at the LHC Aug 2020 WWW [-1.2e+00, 1.2e+00] 35.9 fb f_{TO}/Λ^4
- However, **dim-6 EFT operators** can have an impact on triboson production processes too!
- First LHE sensitivity study of VBS +WW [JHEP05(2022)039] including $O(\Lambda^{-4})$ dim-6 EFT terms \rightarrow extended to triboson processes

SMEFT Montecarlo generation

- The **triboson** study focuses on a subset of **bosonic** ops
 - 6 bosonic operators affecting a subset of triboson channels (for Yukawa sector see <u>JHEP04(2021)023</u>)
- Generated at the LO: <u>SMEFTsim</u> [JHEP04(2021)073] interfaced with MadGraph5_aMC@NLO (2.6.5)
 - U(3)⁵ flavour symmetry
 - $\circ \{m_W, m_Z, G_F\}$ input scheme
 - **CP-even**
 - $\circ \quad \Lambda = 1 \text{ TeV}$

$Q_{HD} = (H^{\dagger}D_{\mu}H)(H^{\dagger}D^{\mu}H)$	$Q_{H\square} = (H^{\dagger}H)\square(H^{\dagger}H)$
$Q_{HWB} = (H^{\dagger} \sigma^{i} H) W^{i}_{\mu\nu} B^{\mu\nu}$	$Q_{HW} = (H^{\dagger}H)W^{i}_{\mu\nu}W^{i\mu\nu}$
$Q_W = \varepsilon^{ijk} W^{i\nu}_\mu W^{j\rho}_\nu W^{k\mu}_\rho$	Q_{HB} = $(\phi^{\dagger}\phi)B_{\mu u}B^{\mu u}$

• Insertion of one operator per diagram to generate directly single components

Processes of interest

- Modelling of $2 \rightarrow 6(4+\gamma)$ processes including non-resonant diagrams
 - $\circ~$ both EWK and QCD-induced contributions for SM and EFT processes

Processes of interest – EFT sensitivity

- Summary of the sensitivity of each process to the subset of operators
 - \circ empty cells \rightarrow no impact from the EFT

	X^3		φ^6 and $\varphi^4 D^2$		ψ^2	φ^3	o Brac	kets in	dicate	only op	os that o	enter		
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^3$	$Q_{e\varphi}$	(φ	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$								
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}$	$(\overline{q}_p u_r \widetilde{\varphi})$	non-r	esona		IIUUIO		egngit	ne	
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	(φ^{\dagger})	$(\bar{q}_p d_r \varphi)$								
$Q_{\widetilde{W}}$	$\varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$					Operat								
	$X^2 \varphi^2$		$\psi^2 X \varphi$		ψ^2			Q_W	Q_{HB}	Q_{HW}	Q_{HWB}	Q_{HD}	$Q_{H\square}$	
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i$	¥ 1.	IUCESSES							
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i\dot{I}$	V	$\mathbf{NZ}\gamma$	1	1	1	1	1		
$Q_{\varphi W}$	$\varphi^{\dagger}\varphiW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i)$,	7.7.~		1	1	1	1		
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q^{(1)}_{\varphi q}$	$(\varphi^{\dagger}i)$				•	•	•	•		
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q^{(3)}_{\varphi q}$	$(\varphi^{\dagger}i \dot{L}$	No.	$\mathbf{V}\mathbf{Z}\gamma$	1	1	1	1	1		
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\bar{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i)$	00	D-Z~ii				1	1		
$Q_{\varphi WB}$	$\varphi^{\dagger}\tau^{I}\varphiW^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i]$	40	D-Z /JJ				•	•		
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger}\tau^{I}\varphi\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}.$	V	VZZ	1	(1)	1	1	1	(1)	
						QC	D-ZZjj				1	1		

Fit Procedure

• Likelihood scan for each variable varying the Wilson coefficient in a fixed range

- SM expectation for N(c=0)
- Total yield: $N(\mathbf{c}) = SM + \sum_{\mathbf{c}_{\alpha}} \mathbf{c}_{\alpha} \cdot Lin_{\alpha} + \mathbf{c}_{\alpha}^{2} \cdot Quad_{\alpha} + \sum_{\alpha\beta} \mathbf{c}_{\alpha}\mathbf{c}_{\beta}Mix_{\alpha\beta}$
- Single nuisance: proxy LHC luminosity 2% correlated across all yields & samples (flat prior)
- Sensitivity constraint at 68% and 95% CL estimated as -2∆LL <1(2.30) and -2∆LL <3.84(5.99) for single (pair) Wilson coefficient

Template fit analysis

COMETA

C. Tarricone

- Dependence of EFT-induced kinematic anomalies on Wilson coefficients
- Likelihood fit for each variable based on 1σ range (area for 2D fit)

• Optimal variable extracted per operator used in combination

EFT in Triboson

Triboson: fully leptonic $WZ\gamma$

C. Tarricone

- WZγ production extremely rare process ~O(fb) studied in fully leptonic channel
- In the SM, WZ γ depends on QGCs \rightarrow very sensitive to Q_w effects

Triboson: fully leptonic $ZZ\gamma$

- Higgs-gauge boson couplings affect the electroweak vertices in ZZy
- Best variable: total p_T of same-sign leptons \rightarrow non-negligible linear term

Triboson: semi-leptonic VZZ

- Study of inclusive 4ljj production: EWK VZZ QCD-induced background
- Unique Q_w-sensitivity of WZZ channel to WWZZ quartic couplings unlike ZZZ channel

Triboson: semi-leptonic VZZ/VZ γ

- Impact of QCD background on semi-leptonic channels VZZ/VZγ sensitivity
- Q_{HWB} and Q_{HD} induce EWK anomalies in QCD diagrams unlike other operators

Individual constraints

Individual operator constraints with(without) $O(\Lambda^{-4})$ quadratic terms

• For other **operators**, linear interference term dominates

EFT in Triboson

C. Tarricone

C. Tarricone

0.5

- Semi-leptonic VZy leads to strongest constraints for Q_{HWB} and Q_{HD} operators
- Small mutual interference term for • operator pairs Q_w-Q_{HWB}

CHWB

_0

EFT in Triboson

-3 -2 -1 0

COMFTA

 $\Lambda = 1 \text{ TeV}, L = 300 \text{ fb}^1$ (13 TeV)

0.5

-0.5

CHWB 0.5

> 0.3 0.2

-0.

-0.2 -0.3 -0.4

CHD

-1

-0.5

0

-1

-0.5

0

0.5

 $\Lambda = 1 \text{ TeV}, L = 300 \text{ fb}^{-1}$ (13 TeV)

Summary and outlook

C. Tarricone

- Triboson measurements powerful tool to explore BSM physics with the EFT model-independent approach → consistency test of EWK sector
- First phenomenological dim-6 study on tri-boson VZZ/VZγ processes at O(Λ⁻⁴) competitive & complementary constraints w.r.t. combination VBS+di-boson WW

↓ Processes	Operators \rightarrow	Q_W	\mathbf{Q}_{HB}	Q_{HW}	Q _{HWB}	Q_{HD}
Triboson	68% C.L.	[-0.18, 0.19]	[-0.37,0.37]	[-0.40,0.40]	[-0.11, 0.11]	[-0.17,0.17]
	95% C.L.	[-0.27,0.28]	[-0.53,0.53]	[-0.57,0.57]	[-0.21,0.21]	[-0.33,0.33]
VBS	95% C.L.	[-0.19,0.18]	z.	[-1.02,1.08]	[-1.34,0.96]	[-1.98,1.74]

- Expand scope of EFT analysis
 - combination of multi-boson analyses (VBS, di-boson, tri-boson) with Higgs measurements at reco level to constrain both dimension 6 and 8 EFT operators

Thanks for your attention!

OTHER CONTENTS

Motivations

- Triboson production from p-p scatterings at 13 TeV
 - processes predicted by the Standard Model (SM) to be extremely rare
- Fundamental test for the **electroweak sector** of the SM
 - Triple and Quartic Gauge Couplings (TGCs, QGCs), and Higgs-gauge bosons couplings
 - Potentially anomalies in TGCs and QGCs (aTGC, aQGC) may hint to **new physics**
 - SM-EFT studies

– Main Feynman diagrams involved in the $VZ\gamma/VZZ$ channel

EFT in Triboson

C. Tarricone

$VZZ/VZ\gamma$ studies Approach and models

 Sensitivity study [<u>10.1007/JHEP08(2023)158</u>] at the parton level to the dimension-six EFT effects on VZZ/VZγ production processes (focused on <u>Warsaw basis</u> bosonic operators)

WZγ	ZZγ
$pp \to WZ\gamma \to \mu^{\pm} \ \nu_{\mu} e^{+}e^{-}\gamma$	$pp \to Z Z \gamma \to \mu^+ \mu^- e^+ e^- \gamma$
N 177	
VZγ	VZZ

	X^3	φ^6 and $\varphi^4 D^2$				$\psi^2 arphi^3$				
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$Q_{\varphi} \qquad (\varphi^{\dagger}\varphi)^3$		$Q_{e\varphi}$	(4	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}\epsilon_{r}\varphi)$			
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$		$Q_{u\varphi}$	(4	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$			
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$Q_{\varphi D} \left(\varphi^{\dagger} D^{\mu} \varphi\right)^{\star} \left(\varphi^{\dagger} D_{\mu} \varphi\right)$		$Q_{d\varphi}$	(4	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$			
$Q_{\widetilde{W}}$	$\varepsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$									
	$X^2 \varphi^2$	$\psi^2 X \varphi$			$\psi^2 \varphi^2 D$					
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu\nu}G^{A\mu\nu}$				(1)		↔ _			
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$		$\begin{array}{c} \text{Operators} \rightarrow \\ \text{Processes} \end{array} \right) $		Q_W	Q_{HB}	Q_{HW}	Q_{HWB}	Q_{HD}	
$Q_{\varphi W}$	$\varphi^{\dagger}\varphiW^{I}_{\mu\nu}W^{I\mu\nu}$									
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$		$\mathbf{WZ}\gamma$		1	1	1	1	1	
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu u}B^{\mu u}$		ΖΖγ			1	1	1	1	
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\bar{B}_{\mu\nu}B^{\mu\nu}$		· · · · · · · · · · · · · · · · · · ·							
$Q_{\varphi WB}$	$\varphi^{\dagger}\tau^{I}\varphiW^{I}_{\mu\nu}B^{\mu\nu}$		$\mathbf{VZ}\gamma$		1	1	1	1	1	
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger}\tau^{I}\varphi\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$		VZZ		1		1	1	1	

- ✤ MC generation (LO)
 - MadGraph5_aMC@NLO 2.6.5 interfaced with SMEFTsim 3.0
 - > $U(3)^5$ flavor symmetry, $\{m_W, m_Z, G_F\}$ as an input scheme
 - No triboson intermediate states forced
 - ${\rightarrow} EWK$ irreducible bkg. automatically included
 - (+ interference w/ signal processes)
 - →QCD bkg. generated for the semi-leptonic channels (but suppressed by the kinematic selection)

studies based on the EFT <u>framework</u> developed by the **Milano-Bicocca** group (G. Boldrini *et al.*)

CINFN CONTRACT

Interpretation of triboson results *traditionally* in terms of **dim-8 SMEFT** operators (aQGCs)

- Dim-6 EFT operators have an impact too!
- proof of quadratic terms importance!
- very competitive constraints!
- identification of the most sensitive variables
- fundamental role of **combination** of the analyses

C. Tarricone

EFT in Triboson

C. Tarricone

WZ γ , ZZ γ , VZ γ , and VZZ channels Kinematic selection and variables under study

Process	Variables of interest	Selections			
$\begin{array}{c} \mathbf{VZ}\gamma\\ (pp \rightarrow 2j \ 2l \ \gamma) \end{array}$	$ \begin{array}{ll} m_{ll}, \ m_{jj}, \ p_T^Z, \ p_T^V, \ p_T^\gamma, \ p_T^{l_1}, \\ p_T^{l_2}, \ p_T^{j_1}, \ p_T^{j_2}, \ \Delta \eta_{jj}, \ \Delta \phi_{jj}, \ \eta_{j_1}, \\ \eta_{j_2}, \ \eta_{l_1}, \ \eta_{l_2}, \ \phi_{j_1}, \ \phi_{j_2}, \ \eta^\gamma, \ \phi^\gamma, \\ p_{T(Z\gamma)}^{l_1}, \ p_{T(Z\gamma)}^{l_2}, \ p_{T(Z\gamma)}^{l_1}, \ p_{T(Z\gamma)}^{l_2}, \\ p_{T(VZ)}^{l_1}, \ p_{T(YZ)}^{l_2}, \ p_{T(\gamma)}^{l_1}, \ p_{T(\gamma)}^{l_2}, \\ p_{T(\gamma)}^{l_1}, \ p_{T(\gamma)}^{l_2}, \ p_{T(\gamma)}^{l_1}, \ p_{T(\gamma)}^{l_2}, \\ p_{T(Z)}^{l_1}, \ p_{T(Z)}^{l_2}, \ p_{T(\gamma)}^{l_1}, \ p_{T(\gamma)}^{l_2}, \\ p_{T(Z)}^{\gamma}, \ p_{T(Z)}^{\gamma}, \ p_{T(\gamma)}^{\gamma}, \ p_{T(Z\gamma)}^{\gamma}, \\ p_{T(YZ)}^{\gamma}, \ H_{\ell}^x(jj), \ H_{\ell}^x(ll), \\ H_{\ell}^x(2l \ 2j\gamma) \end{array} $	$\begin{array}{l} 50 < m_{jj} < 120 \ \mathrm{GeV} \\ 60 < m_{ll} < 120 \ \mathrm{GeV} \\ p_{T,l^1} > 20 \ \mathrm{GeV} \\ p_{T,l^i} > 5 \ \mathrm{GeV} \\ p_{T,l^i} > 5 \ \mathrm{GeV} \\ p_{T,i} > 20 \ \mathrm{GeV} \\ \eta_{l^i} < 2.5 \\ p_{T,\gamma} > 20 \ \mathrm{GeV} \\ \eta_{\gamma} < 2.5 \\ p_{T,j^{1,2}} > 30 \ \mathrm{GeV} \\ \eta_{ji} < 2.5 \\ \Delta R(l^i,\gamma) > 0.4 \\ \Delta R(l^i,j^k) > 0.4 \ \Delta R(\gamma,j^k) > 0.4 \end{array}$	WZ γ $(pp \rightarrow 3l \ \nu \ \gamma)$	$\begin{array}{l} \text{Variables of interest} \\ \\ \text{MET, } m_{ll}, m_{T,W}, p_{T}^{Z}, p_{T}^{W}, p_{T}^{\gamma}, \\ p_{T}^{ll}, p_{T}^{l}, p_{T}^{l_{2}}, p_{T}^{\gamma}, p_{T}^{e^{+}\mu^{+}}, \eta_{1}, \eta_{2}, \\ \eta^{\gamma}, \phi^{\gamma}, p_{T(Z\gamma)}^{l_{1}}, p_{T(Z\gamma)}^{l_{2}}, p_{T(Z\gamma)}^{l_{1}}, \\ p_{T(Z)}^{l_{2}}, p_{T(WZ)}^{l_{1}}, p_{T(WZ)}^{l_{2}}, p_{T(W)}^{l_{1}}, \\ p_{T(W)}^{l_{2}}, p_{T(Z)}^{\gamma}, p_{T(Z)}^{W}, p_{T(Y)}^{W}, \\ p_{T(WZ)}^{l_{2}}, H_{\ell}^{\chi}(ll), H_{\ell}^{\chi}(3l\nu\gamma) \end{array}$	$\begin{array}{l} \textbf{Selections} \\ & 50 < m_{l\nu} < 110 \text{GeV} \\ & 60 < m_{ll} < 120 \text{GeV} \\ & \text{MET} > 30 \text{GeV} \\ & p_{T,l^1} > 20 \text{GeV} p_{T,l^2} > 10 \text{GeV} \\ & p_{T,l^i} > 5 \text{GeV} \eta_{l^i} < 2.5 \\ & p_{T,\gamma} > 20 \text{GeV} \eta_{\gamma} < 2.5 \\ & \Delta R(l^i,\gamma) > 0.4 \end{array}$
$\begin{array}{l} \mathbf{VZZ} \\ (pp \rightarrow 2j \ 4l) \end{array}$	$ \begin{array}{l} m_{ll}, \ m_{jj}, \ m_{4l}, \ m_{4ljj}, \ p_{T}^{Z}, \ p_{T}^{ll}, \\ p_{T}^{j_{1}}, \ p_{T}^{j_{2}}, \ p_{T}^{l_{1}}, \ p_{T}^{l_{2}}, \ p_{T}^{Y}, \ p_{T}^{e^{\pm}\mu^{\pm}}, \\ \Delta \eta_{jj}, \ \Delta \phi_{jj}, \ \eta_{j1}, \ \eta_{j2}, \ \eta_{1}, \\ \eta_{l2}, \ \phi_{j1}, \ \phi_{j2}, \ p_{T(ZZ)}^{l_{1}}, \ p_{T(ZZ)}^{l_{2}}, \\ p_{T(ZZ)}^{j_{1}}, \ p_{T(Z_{i})}^{j_{2}}, \ p_{T(Z_{i})}^{l_{2}}, \\ p_{T(ZZ)}^{j_{1}}, \ p_{\ell}^{j_{2}}, \\ p_{T(ZZ)}^{j_{2}}, \ H_{\ell}^{j_{2}}(j), \ H_{\ell}^{k}(ll), \\ H_{\ell}^{\ell}(4ljj) \end{array} $	$\begin{array}{l} 50 < m_{jj} < 120 {\rm GeV} \\ 60 < m_{ll} < 120 {\rm GeV} \\ p_{T,l^1} > 20 {\rm GeV} p_{T,l^2} > 10 {\rm GeV} \\ p_{T,l^i} > 5 {\rm GeV} p_{T,j^{1,2}} > 30 {\rm GeV} \\ \eta_{j^i} < 2.5 \eta_{l^i} < 2.5 \\ \Delta R(l^i,j^k) > 0.4 \end{array}$	$ \mathbf{ZZ}\gamma \\ (pp \to 4l \ \gamma) $	$ \begin{array}{l} m_{ll}, \ m_{4l}, \ p_{T}^{Z_{1}}, \ p_{T}^{Z_{2}}, \ p_{T}^{l_{1}}, \ p_{T}^{l_{2}}, \\ p_{T}^{l}, \ p_{T}^{\gamma}, \ p_{T}^{e^{\pm}\mu^{\pm}}, \ m_{l_{1}}, \ m_{2}, \ \eta^{\gamma}, \ \phi^{\gamma}, \\ p_{T(Z\gamma)}^{l_{1}}, \ p_{T(Z\gamma)}^{l_{2}}, \ p_{T(Z\gamma)}^{l_{1}}, \ p_{T(Zz)}^{l_{2}}, \\ p_{T(Z\gamma)}^{l_{1}}, \ p_{T(Z\gamma)}^{l_{2}}, \ p_{T(Z\gamma)}^{l_{1}}, \ p_{T(ZZ)}^{l_{2}}, \\ p_{T(Z\gamma)}^{l_{1}}, \ p_{T(\gamma)}^{l_{2}}, \ p_{T(\gamma)}^{l_{1}}, \ p_{T(Z\gamma)}^{l_{2}}, \ p_{T(Z\gamma)}^{l_{2}}, \\ p_{T(ZZ)}^{l_{2}}, \ p_{T(Z\gamma)}^{l_{2}}, \ p_{T(ZZ)}^{l_{2}}, \ p_{\ell}^{l_{2}}(ll), \ H_{\ell}^{x}(4l\gamma) \end{array} $	$\begin{array}{l} 60 < \!$

WZγ	ZZγ	VZγ	VZZ					
$pp \rightarrow WZ\gamma \rightarrow \mu^+\nu_{\mu}e^+e^-\gamma$	$pp \rightarrow ZZ\gamma \rightarrow \mu^{+}\mu^{-}e^{+}e^{-}\gamma$	pp -> $VZ\gamma$ -> jj' $l^+l^-\gamma$	$pp \rightarrow VZZ \rightarrow jj' \mu^+\mu^- e^+e^-$					
60 < m ₁₁ < 120 GeV								
$p_T^{11} > 20 \text{ GeV}$ $p_T^{12} > 10 \text{ GeV}$ $p_T^{1} > 5 \text{ GeV}$								
	$ \eta_l <2.$	5						
50 < m _{µv} < 110 GeV MET > 30 GeV	TGCs and QGCs not involved ↓ Q _w has no effect on this channel	$50 < m_j$ $p_T^{-j} > \eta_j$ ΔR	$_{j} < 120 \text{ GeV}$ > 30 GeV < 2.5 $m_{j} > 0.4$					
	No Photons Q _{HB} has no effect on this channel							
No hadron jets ⇒ N	o QCD-induced bkg	$\Delta R_{j\gamma} > 0.4$						

Standard Model-Effective Field Theories Dimension-6 operators

Model-independent approach: SM-EFT framework

Effect of an individual dimension-6 operator, e.g. Q_W :

COMETA

$$|\mathcal{A}|^2 = \underbrace{|\mathcal{A}_{\mathrm{SM}}|^2}_{\mathrm{SM}} + \underbrace{2 \frac{c_W}{\Lambda^2} Re(\mathcal{A}_{Q_W}^* \mathcal{A}_{\mathrm{SM}})}_{\mathrm{Linear}} + \underbrace{\frac{c_W^2}{\Lambda^4} |\mathcal{A}_{Q_W}|^2}_{\mathrm{Quadratic}}$$

Further extension to the effects of couple of operators combined

	X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 \varphi^3$	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^{3}$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$	
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$	
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger} D^{\mu} \varphi \right)^{\star} \left(\varphi^{\dagger} D_{\mu} \varphi \right)$	$Q_{d\varphi}$	$(arphi^\dagger arphi) (ar q_p d_r arphi)$	
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$					
$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$		
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$	
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	
$Q_{\varphi W}$	$\varphi^{\dagger}\varphiW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$	
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$	
$Q_{\varphi B}$	$\varphi^{\dagger}\varphiB_{\mu u}B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu u}B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$	
$Q_{\varphi WB}$	$\varphi^\dagger \tau^I \varphi W^I_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$	
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger}\tau^{I}\varphi\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$	

Dim. 6 operators from the Warsaw basis [2]

EFT in Triboson

² B. Grzadkowski et al. Dimension-six terms in the standard model lagrangian. Journal of High Energy Physics, <u>2010(10):1–18</u>, 2010

Standard Model-Effective Field Theories Dimension-6 operators

Model-independent approach: SM-EFT framework

Effect of an individual dimension-6 operator, e.g. Q_W :

COMETA

$$|\mathcal{A}|^{2} = \underbrace{|\mathcal{A}_{\mathrm{SM}}|^{2}}_{\mathrm{SM}} + \underbrace{2 \frac{c_{W}}{\Lambda^{2}} Re(\mathcal{A}_{Q_{W}}^{*}\mathcal{A}_{\mathrm{SM}})}_{\mathrm{Linear}} + \underbrace{\frac{c_{W}^{2}}{\Lambda^{4}} |\mathcal{A}_{Q_{W}}|^{2}}_{\mathrm{Quadratic}}$$

Further extension to the effects of couple of operators combined

	X^3		φ^6 and $\varphi^4 D^2$			ψ	$^{2}\varphi^{3}$		
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$Q_{\varphi} = (\varphi^{\dagger}\varphi)^3$		$Q_{e\varphi}$	(4	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$		
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$		$Q_{u\varphi}$	(φ	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$		
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$)	$Q_{d\varphi}$	(φ	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$		
$Q_{\widetilde{W}}$	$\varepsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$								
	$X^2 \varphi^2$	$\psi^2 X \varphi$				ψ^2			
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu\nu}G^{A\mu\nu}$				(1)		↔ _		
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	0	$\begin{array}{l} \text{Operators} \rightarrow \\ \downarrow \text{Processes} \end{array}$	Q	W	Q_{HB}	Q_{HW}	Q_{HWB}	Q_{HD}
$Q_{\varphi W}$	$\varphi^{\dagger}\varphiW^{I}_{\mu\nu}W^{I\mu\nu}$								
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$		$\mathbf{WZ}\gamma$	~		1	1	1	1
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu u}B^{\mu u}$		$\mathbf{Z}\mathbf{Z}\gamma$			1	1	1	1
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\overline{B}_{\mu u}B^{\mu u}$								
$Q_{\varphi WB}$	$\varphi^{\dagger}\tau^{I}\varphiW^{I}_{\mu\nu}B^{\mu\nu}$	νΖγ		~		1	1		1
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger}\tau^{I}\varphi\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$		VZZ		·		1	1	1

Dim. 6 operators under study from the Warsaw basis [2]

EFT in Triboson

² B. Grzadkowski et al. Dimension-six terms in the standard model lagrangian. Journal of High Energy Physics, <u>2010(10):1–18</u>, 2010

C. Tarricone

Examples of remarkable variables of interest and the corresponding SM and SM+EFT event distributions for the fully leptonic channels $WZ\gamma$ and $ZZ\gamma$

C. Tarricone

Examples of remarkable variables of interest and the corresponding SM and SM+EFT event distributions for the fully leptonic channels WZ γ and ZZ γ

C. Tarricone

Examples of remarkable variables of interest and the corresponding SM and SM+EFT event distributions for the fully leptonic channels $WZ\gamma$ and $ZZ\gamma$

Examples of remarkable variables of interest and the corresponding SM and SM+EFT event distributions for the fully leptonic channels $WZ\gamma$ and $ZZ\gamma$

Likelihood scan relative to c_{HD} for the channel ZZ γ

1D constraints

COMETA

Linear 68% C.L.	Linear 95% C.L.					
Linear+Quadratic 68% C.L.	Linear+Quadratic 95% C.L.					
WZY VZY VZZ Combined	C _W [-0.20(-3.38),0.21(2.84)] [-0.31(-7.14),0.32(5.06)] [-0.26(-5.85),0.26(5.78)] [-0.37(-11.54),0.37(11.26)] [-0.63(<-20),0.63(>20)] [-0.97(<-20),0.97(>20)] [-0.18(-3.28),0.19(2.79)] [-0.27(-6.88),0.28(4.99)]					
WZY ZZY VZY Combined	$ { { $					
WZY ZZY VZY VZZ Combined	$ { { $					
WZY ZZY VZY VZZ Combined	[-0.50(-1.14),0.73(1.03)] [-0.79(-2.34),1.04(1.93)] [-0.81(-2.72),1.06(2.30)] [-1.23(-5.74),1.49(4.11)] [-0.11(-0.12),0.11(0.11)] [-0.22(-0.23),0.23(0.22)] [-0.80(-0.68),0.65(0.73)] [-2.22(-1.28),1.20(1.48)] [-0.11(-0.11),0.11(0.11)] [-0.21(-0.21),0.21(0.21)]					
WZY ZZY VZY VZZ Combined	$\label{eq:character} \begin{array}{ll} [-1.36(-1.57), 1.79(1.42)] & [-2.50(-3.22), 11.19(2.66)] \\ [-1.91(-2.73), 4.55(2.31)] & [-3.27(-5.77), 6.53(4.14)] \\ [-0.17(-0.17), 0.17(0.17)] & [-0.33(-0.34), 0.34(0.33)] \\ [-2.73(-3.31), 1.82(3.67)] & [-3.78(-6.14), 2.82(7.53)] \\ [-0.17(-0.18), 0.17(0.17)] & [-0.33(-0.35), 0.33(0.34)] \end{array}$					
<u>⊌aalaalaalaalaalaalaalaalaalaalaalaalaal</u>	1					

EFT in Triboson

38

1D constraints

EFT in Triboson

C. Tarricone

1D constraints

Examples of contours of the 68 % C.L. exclusion areas for pairs of operators affecting the channels of interest

C. Tarricone

- Performed global fit ensuring SMEFT model independence including all $O(\Lambda^{-4})$ terms
 - single operator fit with all other
 coefficients profiled
 (free-floating in fit)
- Profiled constraints are up to 10x less stringent wrt individual ones
- **Q**_W-induced anomalies uncorrelated with other operators

Global fit Profiled constraints

C. Tarricone

Global fit Profiled constraints

C. Tarricone

Global fit Profiled constraints

C. Tarricone

Motivation for dim.-6 EFT sensitivity study

-20

- Interpretation of triboson results traditionally in terms of dim-8 SMEFT operators (aQGCs) ATLAS at the LHC Aug 2020 WWW [-1.2e+00, 1.2e+00] 35.9 fb f_{TO}/Λ^4 7 40-01 6 90-01
- However, **dim-6 EFT operators** can have an impact on triboson production processes too!
- First LHE sensitivity study of VBS +WW [JHEP05(2022)039] including $O(\Lambda^{-4})$ dim-6 EFT terms \rightarrow extended to triboson processes
- -7.4e-01, 6.9e-01 -3.4e+00, 2.9e+00] -5.4e+00, 5.6e+00 -6.0e-01, 6.0e-01] -4.2e+00, 4.6e+00] -2.8e-01, 3.1e-01 -6.2e-01, 6.5e-01 13 TeV 8 TeV 13 TeV 13 TeV 13 TeV 13 TeV 13 TeV ss WW WWW -3.3e+00, 3.3e+00] 35.9 fb $f_{T,1}/\Lambda^4$ 8 TeV 13 TeV 8 TeV 13 TeV 13 TeV 13 TeV 3.7e+00, 4.0e+00 4.0e-01, 4.0e-01] 19.7 fb 35.9 fb -2.1e+00, 2.4e+00 ss WW ss WW 19.4 fb 137 fb 137 fb 1.2e-01, 1.5e-01 3.7e-01. 4.1e-0 www 35.9 fb⁻¹ -2.7e+00, 2.6e+00] f_{T_2}/Λ^4 -2.0e+00, 1.9e+00 -1.1e+01, 1.2e+01 -1.0e+00, 1.2e+00 -5.9e+00, 7.1e+00 -3.8e-01, 5.0e-01 -1.0e+00, 1.3e+00 -6.3e-01, 5.9e-01 13 TeV 8 TeV 13 TeV 8 TeV 13 TeV 13 TeV 13 TeV ss WW Zyy -2.0e-01, 2.0e-01] -9.3e+00, 9.1e+00] 20.3 fb⁻¹ f_{T5}/Λ^4 Ι 13 TeV 13 TeV 8 TeV 13 TeV 13 TeV $f_{T,6}/\Lambda^4$.8e+00. 3.0e+00 f_{T7}/Λ^4 .3e+00, 7.7e+00 8 TeV $f_{T,8}/\Lambda^4$ 4.7e-01, 4.7e-01 35.9 fb1 13 TeV Żγγ 20.3 fb -7.4e+00, 7.4e+00 f_{TQ} / Λ^4 8 TeV 13 TeV [-3.9e+00, 3.9e+00 [-9.2e-01, 9.2e-01] 20.2 fb 137 fb H 20 40 aQGC Limits @95% C.L. [TeV-4] aC summary plots at: http://cern.ch/go/8ghC - Recently: [JHEP10(2021)174] \rightarrow new stringent EFT constraints from CMS $V\gamma\gamma$ analysis (more details in backup) EFT in Triboson C. Tarricone

13 TeV

13 TeV

13 TeV

8 TeV

8 TeV

Bibliography

- B. Grzadkowski et al. Dimension-six terms in the Standard Model Lagrangian. Journal of High Energy Physics, <u>2010(10):1–18</u>, 2010
- 2. R. Bellan et al., A sensitivity study of VBS and diboson WW to dimension-6 EFT operators at the LHC, <u>10.1007/JHEP05(2022)039</u>.
- 3. C. Degrande et al., Effective Field Theory: a modern approach to anomalous couplings, <u>10.1016/j.aop.2013.04.016</u>
- 4. V. Khachatryan et al., Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the Standard Model predictions using proton collisions at 7 and 8 TeV. The European Physical Journal C, <u>75(5):1–50, 2015</u>.
- 5. I. Brivio, SMEFTsim 3.0 a practical guide. <u>JHEP, 04:073, 2021</u>.

