EFT interpretation in multiboson production: experimental overview

June 10, 2024

Roberto Covarelli – Università and INFN Torino (Italy) EFT in multibosons COMETA workshop, Padova

R. Covarelli - Univ./INFN Torino June 2024 2

 H

 H

Inclusive dibosons

- Golden probe of SMEFT effects in triple gauge couplings at the LHC
- Z/γ \overline{a} WW
- Fairly large cross-sections (~ pb)
- Relatively simple signal triggering/selection **in leptonic final states**
	- γ : stringent identification/isolation criteria against jets rich in π°
	- $W \rightarrow IV$: lepton + $p_{T,miss}$, main background from tt events
		- $Z \rightarrow$ II: two leptons with $m_{\parallel} = m_Z$, very clean signature
- Differential cross-sections available for most channels
	- They require simulation-based unfolding
	- Accurate tests of high-order QCD tools

Vector boson scattering (VBS)

- With the exception of $W^{\pm}W^{\pm}jj$ mode, experimentally challenging
	- Very small cross-sections (~ fb)
	- Background from strong diboson production in association with $2 \rightarrow$ large and not very well described by MC
- Selection based on machinelearning techniques (e.g. DNNs)

• Control regions left free in the fits to cure theory mismodeling

Vector boson scattering (VBS)

- Basically all final states observed (or at the edge of 5σ observation) using LHC Run2 data ← major achievement of 13 TeV runs
	- Clear trend to be «on the high side» of the SM appears to be cured since strong production is also fit from data

HH production $\int_{\mathbb{R}^{t} \times \mathbb{R}^{H \times N}}^{t}$ (result)

ggHH: experimentally need to combine many final states

• «Higgs hunter's rule»: larger BRs correspond to lower purity and viceversa

VBF HH and VHH: experimental observation hard even for HL-LHC

- basically only bb final states matter However, SM rates coming from extremely fine-tuned cancellations
- Even a small modification of VVHH coupling leads to huge changes in σ

SM modifier limit summary

EFT experimental constraints

• **Standard Model Effective Field Theory (SMEFT):**

$$
\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda^2} \sum_{i} c_i^{(6)} O_i^{(6)} + \frac{1}{\Lambda^4} \sum_{i} c_i^{(8)} O_i^{(8)} + \dots
$$

- Why experimentally appealing?
	- Model-independent
	- A variety of measurements can be combined leading to a more stringent / precise result
- Which main issues in publishing experimental results?
	- Invalid at energies too close to Λ or above (unitarity violation)
	- Lot of freedom to choose O's: power of the data is diluted
	- Not clear how to estimate uncertainties from missing higher orders (e.g. keep or discard Λ ⁻⁴ terms from squared dim-6 amplitudes)

Dim-6 constraints in dibosons

- How to look for SMEFT effects?
	- The simplest way is to search for event excesses at large scattering \sqrt{s} (or proxies thereof if this quantity is not an observable)
- **MC tools**: MadGraph5 + EWDim6 / SMEFTSim UFOs
- **Final states:** in spite of huge V+jets/tt backgrounds, semileptonic final states slightly better than fully leptonic

Improving on dibosons dim-6

Use dedicated regions of phase space and/or observables that enhance SM+EFT interference (or cancel destructive effects)

• ATLAS: WW \rightarrow eµ +high-p_T jet: selection of highly-boosted WW pairs changes helicity composition (more sensitive to EFT)

 $-0.60 < C_{\text{WWW}}/\Lambda^2 < 0.58 \text{ TeV}^{-2}$

CMS: $W\gamma$ Choose specific frame to compute $\Delta\phi$ between γ and lepton \rightarrow enhances SM+EFT interference

 $\frac{1}{2}$
 $\frac{1}{2}$ -0.062 < C_{WWW}/ Λ ² < 0.052 TeV⁻²

R. Covarelli - Univ./INFN Torino $-0.062 < C_{\text{WWW}}/\Lambda^2 < 0.052 \text{ TeV}^{-2}$

Dim-6 in multi-Higgs

- Rather simple formalism for ggHH
- Wilson coefficients and coupling modifiers linked by linear relationships:

LHCHSWG-2022-004

ATLAS coll., JHEP 01 (2024) 066 $HH \rightarrow bb\gamma\gamma$

- **MC tools**: MadGraph5 LO + dedicated UFO models \rightarrow \rightarrow \rightarrow POWHEG ggHH_SMEFT (NLO)
- Compatibility with benchmark scenarios $\rightarrow \rightarrow \rightarrow$ actual EFT scans

Dim-6 in VBS

- **VBS:** sensitive to HVV, triple and quartic gauge coupling anomalies simultaneously
- Important question: dim-6 constraints competitive with inclusive dibosons and Higgs production/decay? Few results from CMS/ATLAS
	- Additional operators can be constrained to which dibosons/HVV are not sensitive
	- Studies limited to leptonic final states, what about semileptonic? (both CMS and ATLAS have SM evidence!!!)

Dim-8 in VBS

- VBS: Tree-level contribution of quartic gauge couplings \rightarrow constraints on specific dim-8 SMEFT operators which only modify those
- **MC TOOLS:** MadGraph5 LO + «Eboli» model (revised a few times)
- Here showing «transverse» operators (containing 4 gauge field tensors)
	- Semileptonic final states dominating SMEFT dim-8 sensitivity (larger cross-sections and relatively clean signals at high invariant masses) \rightarrow still no full-Run2 updates!

Other dim-8 probes?

- 1. Triple gauge bosons \rightarrow see dedicated talk by Cristiano
- 2. <u>VBF HH and VHH</u>: only effective VVHH coupling modifiers studied by ATLAS and CMS, no EFT interpretation
	- Phenomenological studies show that VBF HH has in fact similar sensitivities (i.e. world-leading) as semileptonic VBS

A. Cappati et al., JHEP 09 (2022) 038

Unitarity preservation

- Several methods adopted throughout Run2, not all of them really satisfactory
- Common in recent papers: **clipping method with variable cutoff**
	- Always consider all data
	- Fit model is SM+EFT below $E_{\text{cut-off}}$ just SM above $E_{\text{cut-off}}$
	- Constraints on c_x derived as a function of $E_{\text{cut-off}}$
	- If estimate of the unitarity bound exists, only consider experimental limits not superseded by it

Linear vs. linear+quadratic

- Full dim-6 EFT (including quadratic terms) not completely general without assumptions on dim-8 terms \rightarrow truncation at Λ ⁻² terms?
- Common experimental approach is to derive constraints in both scenarios (linear only and linear+quadratic)
	- With current precisions on c_{x} , the difference between the two approaches is huge
- In few analyses, correlation between dim-6 quadratic terms and «genuine aQGC» dim-8 operators is tested

Folded vs. unfolded

- EFT-to-data fits can be performed on reconstruction-level or unfolded distributions
- While the two approaches appear similar, at very high-mass the unfolded approach is limited by the number of events in the last bin of the distribution (e.g. cannot be zero)
	- Brings to visible discrepancies in constraints in some cases
	- Mostly a statistical question, not EFT

R. Covarelli - Univ./INFN Torino June 2024 17

no

 $[-7.5, 5.5] \times 10^4$

7] $\overline{.2}$

Conclusions

- Starting from Run2, LHC data dramatically changed our knowledge of multiboson final states
	- High-precision diboson cross-sections
	- Discovery of VBS in many channels
	- ggHH closing up on SM... etc.
- EFT «best practices» starting to be consolidated / uniform between LHC collaborations
	- Theory-experiment collaboration in various forms (LHC WGs, experiment EFT fora, COST actions...) need to be acknowledged for this
- Still work ahead towards a consensus for an EFT framework which is sufficiently general, while highlighting the constraining power of single analyses / observables

Electro-weak interactions

- The electro-weak sector of the Standard Model (SM): an extremely predictive and successful theory
	- Unified $(SU(2)_1 \times U(1)_Y$ group)
	- Perturbative down to small energy scale
	- Only very few free parameters
- Tested to high precision by last and nextto-last generation of HEP experiments

Multiboson couplings

- For different reasons, the SM also predicts the existence of multi-boson couplings
- **Multi-gauge** from non-Abelian structure of SU(2)
	- Gauge invariance of vector-boson kinetic terms enforces triple and quartic vertices
	- No vertices with only Z/γ , since they both stem from the same field $\mathsf{W}_{_{\mathsf{3}}}$ after GWS mixing
- **Multi-Higgs** from shape of Higgs potential (quartic) and field expansion around the VEV (triple), after symmetry breaking
- In common:
	- In EW theory, **all coupling strengths predicted exactly**
	- **Very hard** to measure experimentally, since relevant processes also occur through competing (dominant) diagrams

Before the LHC: LEP2

• Access only to WW and ZZ production

- Already interesting constraints on triple-gauge couplings from observation of cancellations
- Non-SM effects constrained using parameterization based on **effective vertices**

$$
\mathcal{L}_{NP} = \frac{e}{m_Z^2} \left[-\left[f_4^{\gamma} (\partial_{\mu} F^{\mu\beta}) + f_4^Z (\partial_{\mu} Z^{\mu\beta}) \right] Z_{\alpha} (\partial^{\alpha} Z_{\beta}) + \frac{1}{2} \left[\sum_{\substack{a=1 \\ a_1b_1 \text{ odd}}} \frac{1}{2} \sum_{\substack{b=1 \\ b_1b_2 \text{ odd}}} \frac{1}{
$$

 f_4^γ

R. Covarelli - Univ./INFN Torino

 f_4^Z

Now and future (experiment)

- No CM-energy increase expected in the next years (decades?)
	- Possibly no direct access to high-energy New Physics (NP) which could modify yet unexplored SM «corners»
- BUT LHC experiments have potential sensitivity to all processes involving multi-gauge and multi-Higgs mediated diagrams
	- **First need enough data...**

R. Covarelli – Univ./INFN Torino June 2024 24 24

How is SMEFT challenging direct searches?

- Use best result on c_{www} from CMS $W\gamma$
- In an illustrative way, assume that SMEFT becomes relevant when
	- c_{WWW} ~ g ~ 0.63.
		- c_{WWW}/Λ^2 < 0.052 TeV⁻² \rightarrow Λ > 3.5 TeV
- **Competitive with direct Z' searches**
- Key to best SMEFT limits: smart observables + larger statistics at high VV masses

Polarization (now and future)

• Sensitivity to longitudinal polarization at the moment possible only on inclusive dibosons

 \rightarrow Lay the ground for VBS measurements

ATLAS coll., PLB 843, 137895 ATLAS coll., arXiv:2310.04350

> W_1Z_1 observed at 70, Evidence for $Z_{L}Z_{L}$ at 4.30...

R. Covarelli - Univ./INFN Torino June 2024 26

• **W[±]W[±] jj VBS: perspectives at the HL-LHC**

CMS coll., PAS-FTR-21-001

Tribosons

- The «natural» probe for anomalies in quartic gauge couplings
- Experimentally:

 $\overline{2}$

Aug 2023

VVV

WWW

WWZ

WZZ

WWy

Wyy

Wγγ

 $Z\gamma\gamma$

 $Z\gamma\gamma$

All results at: http://cern.ch/go/pNj7

Theory

Clean final states \rightarrow main backgrounds from non-prompt particles

 \overline{a}

- 3y or 2y1V: generally well established, good agreement with SM
- $2\sqrt{11}$ or $3\sqrt{11}$ tiny cross-sections, still mostly within LHC Runz reach

Recent 50 observations: ATLAS: WZγ THEN CMS measurements vs. The V CMS measurement (stat, stat+sys) The contract \blacksquare

R. Covarelli - Univ./INFN Torino June 2024 27

L dt

 \mathbf{f} h⁻¹1

 20.2

139

20.3

140

 20.3

 20.2

140

139

 20.3

 20.3

 20.3

79.8

139

20.3

139

20.3

31.4

 $\overline{\nu}$

VBS golden channel (W[±]W[±] jj)

- Only case with very small non-VBS physical production
	- Background mainly from non-prompt leptons
	- Finely-binned differential cross-sections already possible

A recent CMS analysis CMS cMS coll.,

PRL 131, 041803

- Use $4b$, boosted final state ($p_{T,H}$ > 300 GeV)
	- Each Higgs boson decay produces a large-radius jet whose constituents' 4-momenta add up to m_H
	- Large rejection factor of multijet events

R. Covarelli - Univ./INFN Torino **Communist Covarelli - Univ.**/INFN Torino June 2024 29

- Graph-neural network reconstruction algorithm (PNet)
	- Optimizes b-tagging performances and jet mass resolution
- Events analysed in categories
	- **VBF HH** (2 more jets with large m_{ii} and $\Delta \eta_{ii}$) or **ggHH**
	- b-tagging purity

Limits @ 95% CL $-9.9 < \kappa_1 < 16.9$ $0.62 < K_{y} < 1.41$

A recent ATLAS analysis **ATLAS coll.**

EPJ C 83, 519

- **VHH:**Use **4b final state + W/Z selection**
	- «oL»: target $Z \rightarrow v v$, require very large $p_{T,miss}$
	- «1L»: target $W \rightarrow V$, require tight e or μ
	- «2L»: target $Z \rightarrow \mathsf{II}$, require 2e or 2µ with mass close to m_z

- Boosted decision trees trained based on:
	- FSR corrected masses of bjet pairs
	- B-tagging scores of b-jets
	- Number and energy of all jets in the event

Limits @ 95% CL $-34 < \kappa_{\lambda} < 33$ $-8.6 < \kappa_{2V} < 10.0$

HL-LHC perspectives for HH

- Combination of the two most sensitive search channels $(bb\tau\tau, b\bar{b}\gamma\gamma)$
	- **Expected significance of gg → HH signal: 3.2-4.6**

- Assess contribution of less sensitive but more pile-up robust channels (**WW**γγ, ττγγ)
	- **0.22 significance** → **room for improvement?**

- More physics channels can be explored:
	- New decay modes, e.g. bb4l ($\sigma \times BR = o(ab)$ but pileup-insensitive)
	- New production modes, e.g. ttHH

R. Covarelli - Univ./INFN Torino June 2024 31

Cross-section limit summary

95% CL limit on $\sigma(pp \to HH)/\sigma$ _{Theory}