EFT interpretation in multiboson production: experimental overview

June 10, 2024

Roberto Covarelli – Università and INFN Torino (Italy) EFT in multibosons COMETA workshop, Padova

Experimental signatures1. Only gauge2. Also Higgs1A. Dibosons2A. gg → HH production1B. Vector-boson scattering2B. Vector-boson fusion HH1c. Tribosons (Cristiano's talk)2c. VHH (and HHH?)

R. Covarelli - Univ./INFN Torino

Inclusive dibosons

- Golden probe of SMEFT effects in triple gauge couplings at the LHC
 - Fairly large cross-sections (~ pb)
 - Relatively simple signal triggering/selection in leptonic final states
 - γ : stringent identification/isolation criteria against jets rich in π°

 Z/γ

a

- $W \rightarrow Iv$: lepton + $p_{T,miss}$, main background from t events
 - $Z \rightarrow II$: two leptons with $m_{II} = m_z$, very clean signature
- Differential cross-sections available for most channels
 - They require simulation-based unfolding
 - Accurate tests of high-order QCD tools

Vector boson scattering (VBS)

- With the exception of W[±]W[±]jj mode, experimentally challenging
 - Very small cross-sections (~ fb)
 - Background from strong diboson production in association with 2 → large and not very well described by MC
- Selection based on machinelearning techniques (e.g. DNNs)

Control regions left free in the fits to cure theory mismodeling

Vector boson scattering (VBS)

- - Clear trend to be «on the high side» of the SM appears to be cured since strong production is also fit from data

HH production

ggHH: experimentally need to combine many final states

 «Higgs hunter's rule»: larger BRs correspond to lower purity and viceversa

VBF HH and VHH: experimental observation hard even for HL-LHC

- basically only bb final states matter However, SM rates coming from extremely fine-tuned cancellations
- Even a small modification of VVHH coupling leads to huge changes in σ

SM modifier limit summary

EFT experimental constraints

• Standard Model Effective Field Theory (SMEFT):

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda^2} \sum_{i} c_i^{(6)} O_i^{(6)} + \frac{1}{\Lambda^4} \sum_{i} c_i^{(8)} O_i^{(8)} + \dots$$

- Why experimentally appealing?
 - Model-independent
 - A variety of measurements can be combined leading to a more stringent / precise result
- Which main issues in publishing experimental results?
 - Invalid at energies too close to Λ or above (unitarity violation)
 - Lot of freedom to choose O's: power of the data is diluted
 - Not clear how to estimate uncertainties from missing higher orders (e.g. keep or discard Λ^{-4} terms from squared dim-6 amplitudes)

Dim-6 constraints in dibosons

- How to look for SMEFT effects?
 - The simplest way is to search for event excesses at large scattering √s (or proxies thereof if this quantity is not an observable)
- **MC tools**: MadGraph5 + EWDim6 / SMEFTSim UFOs
- Final states: in spite of huge V+jets/tt backgrounds, semileptonic final states slightly better than fully leptonic

Improving on dibosons dim-6

• Use dedicated regions of phase space and/or observables that enhance SM+EFT interference (or cancel destructive effects)

 ATLAS: WW → eµ +high-p_T jet: selection of highly-boosted WW pairs changes helicity composition (more sensitive to EFT)

 $-0.60 < c_{WWW}/\Lambda^2 < 0.58 \,\text{TeV}^{-2}$

CMS: Wγ. Choose specific frame to compute Δφ between γ and lepton → enhances SM+EFT interference

 $-0.062 < c_{WWW}/\Lambda^2 < 0.052 \,\text{TeV}^{-2}$

Dim-6 in multi-Higgs

- Rather simple formalism for ggHH
- Wilson coefficients and coupling modifiers linked by linear relationships:

LHCHSWG-2022-004

HEFT	SILH	Warsaw
c_{hhh}	$1 - \frac{3}{2}\bar{c}_H + \bar{c}_6$	$1 - 2 \frac{v^2}{\Lambda^2} \frac{v^2}{m_h^2} C_H + 3 \frac{v^2}{\Lambda^2} C_{H,\text{kin}}$
c_t	$1 - \frac{\bar{c}_H}{2} - \bar{c}_u$	$1 + \frac{v^2}{\Lambda^2} C_{H,\text{kin}} - \frac{v^2}{\Lambda^2} \frac{v}{\sqrt{2m_t}} C_{uH}$
c_{tt}	$-\frac{\bar{c}_H+3\bar{c}_u}{4}$	$-\frac{v^2}{\Lambda^2}\frac{3v}{2\sqrt{2}m_t}C_{uH} + \frac{v^2}{\Lambda^2}C_{H,\mathrm{kin}}$
c_{ggh}	$128\pi^2 \bar{c}_g$	$\frac{v^2}{\Lambda^2} \frac{8\pi}{\alpha_s} C_{HG}$
c_{gghh}	$64\pi^2 \bar{c}_g$	$\frac{v^2}{\Lambda^2} \frac{4\pi}{\alpha_s} C_{HG}$

ATLAS coll., JHEP 01 (2024) 066 HH \rightarrow bbyy

- MC tools: MadGraph5 LO + dedicated
 UFO models → → → POWHEG ggHH_SMEFT (NLO)
- Compatibility with benchmark scenarios → → →
 actual EFT scans

Dim-6 in VBS

- **VBS:** sensitive to HVV, triple and quartic gauge coupling anomalies simultaneously
- Important question: dim-6 constraints competitive with inclusive dibosons and Higgs production/decay? Few results from CMS/ATLAS
 - Additional operators can be constrained to which dibosons/HVV are not sensitive
 - Studies limited to leptonic final states, what about semileptonic? (both CMS and ATLAS have SM evidence!!!)

Dim-8 in VBS

- VBS: Tree-level contribution of quartic gauge couplings → constraints on specific dim-8 SMEFT operators which only modify those
- MCTOOLS: MadGraph5 LO + «Eboli» model (revised a few times)
- Here showing «transverse» operators (containing 4 gauge field tensors)
 - Semileptonic final states dominating SMEFT dim-8 sensitivity (larger cross-sections and relatively clean signals at high invariant masses) → still no full-Run2 updates!

Other dim-8 probes?

- 1. <u>Triple gauge bosons</u> \rightarrow see dedicated talk by Cristiano
- 2. <u>VBF HH and VHH</u>: only effective VVHH coupling modifiers studied by ATLAS and CMS, no EFT interpretation
 - Phenomenological studies show that VBF HH has in fact similar sensitivities (i.e. world-leading) as semileptonic VBS

	VBS $W^{\pm}V$	semileptonic	VBF HH $\rightarrow b\overline{b}b\overline{b}$		
Coeff.	no unitarity	w/ unitarity	no unitarity	w/ unitarity	
$f_{ m M0}/\Lambda^4$	[-1.0, 1.0]	[-3.3,3.5]	[-0.95, 0.95]	[-3.3, 3.3]	
$f_{ m M1}/\Lambda^4$	[-3.1, 3.1]	[-7.4, 7.6]	[-3.8, 3.8]	[-13, 14]	
$f_{\mathrm{M2}}/\Lambda^4$	[-1.5, 1.5]	[-9.1, 9.0]	[-1.3, 1.3]	[-7.6, 7.3]	
$f_{ m M3}/\Lambda^4$	[-5.5, 5.5]	[-32, 30]	[-5.2, 5.3]	[-29,30]	
$f_{ m M4}/\Lambda^4$	[-3.1, 3.1]	[-8.6, 8.7]	[-4.0, 4.0]	[-14, 14]	
$f_{ m M5}/\Lambda^4$	[-4.5, 4.5]	[-10, 10]	[-7.1, 7.1]	[-26, 26]	
$f_{ m M7}/\Lambda^4$	[-5.1, 5.1]	[-11, 11]	[-7.6, 7.6]	[-27, 27]	
$f_{ m S0}/\Lambda^4$	[-4.2, 4.2]	[-8.5, 9.5]	[-30,29]	/	
$f_{ m S1}/\Lambda^4$	[-5.2, 5.2]	/	[-11, 10]	/	
$f_{ m S2}/\Lambda^4$	-	[-21, 25]	[-17, 16]	/	

A. Cappati et al., JHEP 09 (2022) 038

Unitarity preservation

- Several methods adopted throughout Run2, not all of them really satisfactory
- Common in recent papers: clipping method with variable cutoff
 - Always consider all data
 - Fit model is SM+EFT below E_{cut-off}, just SM above E_{cut-off}
 - Constraints on c_x derived as a function of E_{cut-off}
 - If estimate of the unitarity bound exists, only consider experimental limits not superseded by it

Linear vs. linear+quadratic

- Full dim-6 EFT (including quadratic terms) not completely general without assumptions on dim-8 terms \rightarrow truncation at Λ^{-2} terms?
- Common experimental approach is to derive constraints in both scenarios (linear only and linear+quadratic)
 - With current precisions on c_x, the difference between the two approaches is huge
- In few analyses, correlation between dim-6 quadratic terms and «genuine aQGC» dim-8 operators is tested

Folded vs. unfolded

- EFT-to-data fits can be performed on reconstruction-level or unfolded distributions
- While the two approaches appear similar, at very high-mass the unfolded approach is limited by the number of events in the last bin of the distribution (e.g. cannot be zero)
 - Brings to visible discrepancies in constraints in some cases
 - Mostly a statistical question, not EFT

S coll., PLB 812 (2020) 135992				Wilson	$ \mathcal{M}_{\mathrm{d}8} ^2$	95% confidence
			С	coefficient	Included	Expected
			ATI AS coll	$f_{\mathrm{T},0}/\Lambda^4$	yes	[-0.98, 0.93]
Coupling	Exp. lowor	Exp uppor	.IHEP 01		no	[-23, 17]
	Exp. lower			$f_{\rm T,1}/\Lambda^4$	yes	[-1.2, 1.2]
$f_{\rm T0}/\Lambda^4$	-0.37	0.35	(2024) 004	- , -	no	[-160, 120]
$f_{\mathrm{T1}}/\Lambda^4$	-0.49	0.49	full-Run2	$f_{\rm Tra}/\Lambda^4$	Ves	[-2 5 2 4]
$f_{\rm T2}/\Lambda^4$	-0.98	0.95	ZZjj → 4ljj	J1,2/1 X	no	[-74 56]
$f_{\rm T8}/\Lambda^4$	-0.68	0.68		$f_{\rm T} \circ / \Lambda^4$	ves	[-2, 1, 2, 1]
$f_{\rm T9}/\Lambda^4$	-1.5	1.5		J1,0/11	no	$[-4.6, 3.1] \times 10^4$
				$f_{\mathrm{T},9}/\Lambda^4$	yes	[-4.5, 4.5]
					no	$[-7.5, 5.5] \times 10^4$

CM

Conclusions

- Starting from Run2, LHC data dramatically changed our knowledge of multiboson final states
 - High-precision diboson cross-sections
 - Discovery of VBS in many channels
 - ggHH closing up on SM... etc.
- EFT «best practices» starting to be consolidated / uniform between LHC collaborations
 - Theory-experiment collaboration in various forms (LHC WGs, experiment EFT fora, COST actions...) need to be acknowledged for this
- Still work ahead towards a consensus for an EFT framework which is sufficiently general, while highlighting the constraining power of single analyses / observables

Electro-weak interactions

- The electro-weak sector of the Standard Model (SM): an extremely predictive and successful theory
 - Unified (SU(2)_L x U(1)_Y group)
 - Perturbative down to small energy scale
 - Only very few free parameters
- Tested to high precision by last and nextto-last generation of HEP experiments

Multiboson couplings

- For different reasons, the SM also predicts the existence of multi-boson couplings
- **Multi-gauge** from non-Abelian structure of SU(2)
 - Gauge invariance of vector-boson kinetic terms enforces triple and quartic vertices
 - No vertices with only Z/γ, since they both stem from the same field W₃ after GWS mixing
- **Multi-Higgs** from shape of Higgs potential (quartic) and field expansion around the VEV (triple), after symmetry breaking
- In common:
 - In EW theory, all coupling strengths predicted exactly
 - Very hard to measure experimentally, since relevant processes also occur through competing (dominant) diagrams

June 2024 21

Before the LHC: LEP₂

Access only to WW and ZZ production

- Already interesting constraints on triple-gauge couplings from observation of cancellations
- Non-SM effects constrained using parameterization based on effective vertices

0.5

0.5

f۷

0

-0.5

0.5

1

 f_{Δ}^{Z}

0

$$\mathcal{L}_{NP} = \frac{e}{m_Z^2} \bigg[- [f_4^{\gamma}(\partial_{\mu}F^{\mu\beta}) + f_4^Z(\partial_{\mu}Z^{\mu\beta})]Z_{\alpha}(\partial^{\alpha}Z_{\beta}) + \frac{\mathsf{LEP} \mathsf{ALEPH+}\mathsf{DELPHI+} \mathsf{L3+}\mathsf{OPAL}}{[= 2.5 \\ 2 \\ = 2$$

0.25

0

1.5

1 0.5

0

-0.5

-0.25

R. Covarelli - Univ./INFN Torino

Now and future (experiment)

- No CM-energy increase expected in the next years (decades?)
 - Possibly no direct access to high-energy New Physics (NP) which could modify yet unexplored SM «corners»
- BUT LHC experiments have potential sensitivity to all processes involving multi-gauge and multi-Higgs mediated diagrams
 - First need enough data...

R. Covarelli – Univ./INFN Torino

How is SMEFT challenging direct searches?

- Use best result on c_{WWW} from CMS $W\gamma$
- In an illustrative way, assume that SMEFT becomes relevant when
 - c_{www} ~ g ~ 0.63.
 - $c_{WWW}/\Lambda^2 < 0.052 \text{ TeV}^{-2}$ $\rightarrow \Lambda > 3.5 \text{ TeV}$
- Competitive with direct Z' searches
- Key to best SMEFT limits: smart observables + larger statistics at high VV masses

Polarization (now and future)

• Sensitivity to longitudinal polarization at the moment possible only on inclusive dibosons

 \rightarrow Lay the ground for VBS measurements

ATLAS coll., PLB 843, 137895 ATLAS coll., arXiv:2310.04350

> $W_L Z_L$ observed at 7 σ , Evidence for $Z_L Z_L$ at 4.3 σ ...

R. Covarelli - Univ./INFN Torino

W[±]W[±]jj VBS: perspectives at the HL-LHC

CMS coll., PAS-FTR-21-001

Tribosons

- The «natural» probe for anomalies in quartic gauge couplings
- Experimentally:

Aug 2023

VVV

WWW

WWZ

WZZ

WWγ

Wγγ

Wγγ

Ζγγ

Ζγγ

0 All results at:

http://cern.ch/go/pNj7

Theory

CMS measurements vs

Clean final states \rightarrow main backgrounds from non-prompt particles

 \overline{a}

- 3γ or $2\gamma 1V$: generally well established, good agreement with SM
- $_{2V_{1\gamma}}$ or $_{3V}$: tiny cross-sections, still mostly within LHC Run2 reach •

CMS Preliminary

HOH

Recent 5 σ observations: ATLAS: WZ γ CMS: WW γ

R. Covarelli - Univ./INFN Torino

7 TeV CMS measurement (stat,stat+sys)

140

140 139

139

139

 $\overline{\nu}$

VBS golden channel (W[±]W[±]jj)

- Only case with very small non-VBS physical production
 - Background mainly from non-prompt leptons
 - Finely-binned differential cross-sections already possible

 $W_{x}^{\pm}W_{T}^{\pm}$

 $W_{I}^{\pm}W_{Y}^{\pm}$

 $W_T^{\pm}W_{\tau}$

3.06

 3.13 ± 0.35

 1.63 ± 0.18

 1.94 ± 0.21

A recent CMS analysis

CMS coll., PRL 131, 041803

- Use 4b, boosted final state (p_{T,H} > 300 GeV)
 - Each Higgs boson decay produces a large-radius jet whose constituents' 4-momenta add up to m_H
 - Large rejection factor of multijet events

R. Covarelli - Univ./INFN Torino

- Graph-neural network reconstruction algorithm (PNet)
 - Optimizes b-tagging performances and jet mass resolution
- Events analysed in categories
 - **VBF HH** (2 more jets with large m_{jj} and $\Delta \eta_{jj}$) or **ggHH**
 - b-tagging purity

Limits @ 95% CL $-9.9 < \kappa_{\lambda} < 16.9$ $0.62 < \kappa_{2V} < 1.41$

A recent ATLAS analysis

ATLAS coll., EPJ C 83, 519

- VHH: Use 4b final state + W/Z selection
 - «oL»: target $Z \rightarrow vv$, require very large $p_{T,miss}$
 - **«1L»:** target $W \rightarrow Iv$, require tight e or μ
 - **«2L»**: target Z \rightarrow II, require 2e or 2 μ with mass close to m_z

- Boosted decision trees trained based on:
 - FSR corrected masses of bjet pairs
 - B-tagging scores of b-jets
 - Number and energy of all jets in the event

```
Limits @ 95% CL
-34 < \kappa_{\lambda} < 33
-8.6 < \kappa_{2V} < 10.0
```

HL-LHC perspectives for HH

- Combination of the two most sensitive search channels (bbττ, bbγγ)
 - Expected significance of gg → HH signal: 3.2-4.6σ

- Assess contribution of less sensitive but more pile-up robust channels (WWγγ, ττγγ)
 - o.22σ significance > room for improvement?

More physics channels can be explored:

- New decay modes, e.g. $bb_4 I (\sigma \times BR = o(ab) but pileup-insensitive)$
- New production modes, e.g. ttHH

R. Covarelli - Univ./INFN Torino

Cross-section limit summary

