

MULTI-HIGGS PRODUCTION TO DISTINGUISH HEFT FROM SMEFT

Collaborators: J. Sanz-Cillero, R. Gómez-Ambrosio, R. Delgado-López, J. Martínez-Martín and F. J. Llanes-Estrada.

EFTs in Multiboson production, Padova, Tuesday 11th June, 2024

Alexandre Salas-Bernárdez

Introduction	SMEFT ⊂ HEFT	Amplitudes and Cross sections	Collider estimate and SMEFT limits
Outline			

1 Introduction and motivation.

Outline

1 Introduction and motivation.

2 Distinction of HEFT and SMEFT.

troduction SMEFT ⊂ HEFT Amplitudes and Cross sections Col

Collider estimate and SMEFT limits

Outline

- 1 Introduction and motivation.
- 2 Distinction of HEFT and SMEFT.
- **3** Amplitudes and Cross sections.

 Introduction
 SMEFT C HEFT
 Amplitudes and Cross sections
 Collider estimate and SMEFT limits

 Outline
 Outline
 Outline
 Outline
 Outline

1 Introduction and motivation.

- 2 Distinction of HEFT and SMEFT.
- 3 Amplitudes and Cross sections.
- **4** SMEFT exclusion bounds. Estimation for CLIC e^+e^- collider.

croduction SMEFT ⊂ HEFT Amplitudes and Cross sections Collider estimate and SMEFT limits

Outline

- 1 Introduction and motivation.
- 2 Distinction of HEFT and SMEFT.
- 3 Amplitudes and Cross sections.
- **4** SMEFT exclusion bounds. Estimation for CLIC e^+e^- collider.

Based on *"Production of two, three, and four Higgs bosons: where SMEFT and HEFT depart",* JHEP 03 (2024) 037.

roduction SMEFT ⊂ HEFT Amplitudes and Cross sections Collider estimate and SMEFT limits

Outline

- 1 Introduction and motivation.
- 2 Distinction of HEFT and SMEFT.
- 3 Amplitudes and Cross sections.
- **4** SMEFT exclusion bounds. Estimation for CLIC e^+e^- collider.

Based on *"Production of two, three, and four Higgs bosons: where SMEFT and HEFT depart",* JHEP 03 (2024) 037.

See also: <u>2204.01763</u> (Phys. Rev. D) and <u>2207.09848</u> (Comm. Th. Phys.)

Alexandre Salas-Bernárdez

The Electroweak Sector

One of the most uncharted and promising sectors in SM

Nature of Higgs boson and EW gauge bosons?

The Electroweak Sector

One of the most uncharted and promising sectors in SM

Nature of Higgs boson and EW gauge bosons? Composite or not?

The Electroweak Sector

One of the most uncharted and promising sectors in SM

Nature of Higgs boson and EW gauge bosons? Composite or not?

- Could EW Goldstone bosons (ω_is) resemble a π (pion)?
- SUSY? 2HDM?, etc.

The Electroweak SB Sector

One of the most uncharted and promising sectors in SM

- Nature of Higgs boson and EW gauge bosons? Composite or not?
- Measurable: Higgs self interaction and its coupling to electroweak gauge bosons.

$SMEFT \subset HEFT$

Alexandre Salas-Bernárdez

Amplitudes and Cross sections

Collider estimate and SMEFT limits

The Electroweak Sector Extensions

"Two" EW EFT candidates

Standard Model Effective Field Theory (SMEFT)

"Two" EW EFT candidates

Standard Model Effective Field Theory (SMEFT)

$$\mathcal{L}_{\mathrm{SMEFT}} = \mathcal{L}_{\mathrm{SM}} + \sum_{n=5}^{\infty} \sum_{i} \frac{c_i^{(n)}}{\Lambda^{n-4}} \mathcal{O}_i^{(n)}(H) \;.$$

"Two" EW EFT candidates

Standard Model Effective Field Theory (SMEFT)

$$\mathcal{L}_{ ext{SMEFT}} = \mathcal{L}_{ ext{SM}} + \sum_{n=5}^{\infty} \sum_{i} \frac{c_i^{(n)}}{\Lambda^{n-4}} \mathcal{O}_i^{(n)}(H) \;.$$

■ Higgs Effective Field Theory (HEFT):

"Two" EW EFT candidates

Standard Model Effective Field Theory (SMEFT)

$$\mathcal{L}_{ ext{SMEFT}} = \mathcal{L}_{ ext{SM}} + \sum_{n=5}^{\infty} \sum_{i} rac{c_i^{(n)}}{\Lambda^{n-4}} \mathcal{O}_i^{(n)}(H) \; .$$

 Higgs Effective Field Theory (HEFT): Chiral Lagrangian

$$\mathcal{L}_{\mathrm{HEFT}} = rac{1}{2} \partial_{\mu} h \partial^{\mu} h - V(h) + rac{1}{2} \mathcal{F}(h) \partial_{\mu} \omega^{i} \partial^{\mu} \omega^{j} \left(\delta_{ij} + rac{\omega^{i} \omega^{j}}{v^{2} - \omega^{2}}
ight)$$

"Two" EW EFT candidates

Standard Model Effective Field Theory (SMEFT)

$$\mathcal{L}_{ ext{SMEFT}} = \mathcal{L}_{ ext{SM}} + \sum_{n=5}^{\infty} \sum_{i} rac{c_i^{(n)}}{\Lambda^{n-4}} \mathcal{O}_i^{(n)}(H) \; .$$

 Higgs Effective Field Theory (HEFT): Chiral Lagrangian

$$\mathcal{L}_{\text{HEFT}} = \frac{1}{2} \partial_{\mu} h \partial^{\mu} h - V(h) + \frac{1}{2} \mathcal{F}(h) \partial_{\mu} \omega^{i} \partial^{\mu} \omega^{j} \left(\delta_{ij} + \frac{\omega^{i} \omega^{j}}{v^{2} - \omega^{2}} \right)$$

What is their relation? **"Flare Function"**

In a few words...

Basically, SMEFT assumes the SM EWSB structure, where the Higgs boson is part of an $SU(2)_L$ doublet.

In a few words...

Basically, SMEFT assumes the SM EWSB structure, where the Higgs boson is part of an $SU(2)_L$ doublet.

On the other hand, HEFT casts the Higgs boson h as an $SU(2)_L$ singlet.

In a few words...

Basically, SMEFT assumes the SM EWSB structure, where the Higgs boson is part of an $SU(2)_L$ doublet.

On the other hand, HEFT casts the Higgs boson h as an $SU(2)_L$ singlet.

Geometric distinction HEFT/SMEFT

- Several works have provided field-redefinition invariant criteria to distinguish SMEFT from HEFT:
 - R. Alonso, E. E. Jenkins, and A. V. Manohar, "A Geometric Formulation of Higgs Effective Field Theory: Measuring the Curvature of Scalar Field Space," Phys. Lett. B754 (2016) 335–342, arXiv:1511.00724 [hep-ph].

"Sigma Models with Negative Curvature," Phys.Lett.B756,358(2016),arXiv:1602.00706 [hep-ph].

"Geometry of the Scalar Sector," JHEP 08 (2016) 101, arXiv:1605.03602 [hep-ph]." (Cohen et al., 2021, p. 95)

 T. Cohen, N. Craig, X. Lu, and D. Sutherland: "Is SMEFT Enough?", JHEP 03, 237, arXiv:2008.08597 [hep-ph]. "Unitarity Violation and the Geometry of Higgs EFTs", (2021), arXiv:2108.03240 [hep-ph].

Conditions on $\mathcal{F} = F^2$ for SMEFT's validity

In $\underline{2204.01763}$ we found an easier analytical criterion for SMEFT to be valid:

- **1** $\mathcal{F}(h_1^*) = 0$ must have a double zero.
- 2 At that point h_1^* ,

$$\mathcal{F}'(h_1^*) = 0 \;,\; \mathcal{F}''(h_1^*) = rac{2}{v^2} \; \Bigg| \;.$$

3 Analyticity of the SMEFT Lagrangian: all even derivatives to vanish at the symmetric point, F^(l)(h₁^{*}) = 0 for even l. From the point of view of F this implies the vanishing of all odd derivatives, F^(2l+1)(h₁^{*}) = 0.

 $SMEFT \subset HEFT$

Amplitudes and Cross sections

Collider estimate and SMEFT limits

Origin of SMEFT correlations: just match two Taylor exp.

SMEFT ⊂ HEFT

Amplitudes and Cross sections

Collider estimate and SMEFT limits

SMEFT assumption \Rightarrow HEFT parameters correlation

Correlations among HEFT parameters due to SMEFT structure: (Bands from single Higgs production at ATLAS (ATLAS-CONF-2020-027) and Higgs Pair production at CMS https://arxiv.org/abs/2202.09617) $\mathcal{F}(h) = 1 + a_1 h/v + a_2 h^2/v^2 + ...,$

 $k_{2V} = 4k_V - 3$

Same game with the potential V(h) and the Yukawas... (see 2207.09848)

Amplitudes and Cross sections

Alexandre Salas-Bernárdez

High energy measurements

In the TeV region the potential is subleading. The flare function \mathcal{F} encodes relevant physics (it accompanies the GB kinetic term)

$$\mathcal{F}(h_{ ext{HEFT}}) = 1 + \sum_{n=1}^{\infty} a_n \Big(rac{h_{ ext{HEFT}}}{v}\Big)^n \,.$$

At high energies (Equivalence Theorem) $\omega \simeq W_L$

HEFT Amplitudes and Cross sections

Collider estimate and SMEFT limits

High energy measurements

In the TeV region the potential is subleading. The flare function \mathcal{F} encodes relevant physics (it accompanies the GB kinetic term)

$$\mathcal{F}(h_{ ext{HEFT}}) = 1 + \sum_{n=1}^{\infty} a_n \Big(rac{h_{ ext{HEFT}}}{v}\Big)^n \,.$$

At high energies (Equivalence Theorem) $\omega \simeq W_L$ $\Rightarrow \omega \omega \rightarrow n \times h$ can test SMEFT framework.

SMEFT ⊂ HEFT

Amplitudes and Cross sections

Collider estimate and SMEFT limits

Measure \mathcal{F} expansion in multi-Higgs final states

$$T_{\omega\omega\to h} = -\frac{a_1 s}{2v}$$

$$T_{\omega\omega
ightarrow hh} \, = \, - rac{s}{v^2} \left({a_2} - rac{a_1^2}{4}
ight) ,$$

SMEFT ⊂ HEFT

Amplitudes and Cross sections

Collider estimate and SMEFT limits

Measure ${\mathcal F}$ expansion in multi-Higgs final states

$$T_{\omega\omega\to h} = -\frac{a_1 s}{2v}$$

$$T_{\omega\omega o hh} = -rac{s}{v^2} \left(rac{s}{2} - rac{a_1^2}{4}
ight),$$

$$T_{\omega\omega\to 3h} = -\frac{3s}{v^3} \left(a_3 - \frac{2}{3}a_1 \left(a_2 - \frac{a_1^2}{4} \right) \right) ,$$

SMEFT ⊂ HEF

Amplitudes and Cross sections

Collider estimate and SMEFT limits

Measure \mathcal{F} expansion in multi-Higgs final states

$$T_{\omega\omega\to h}=-\frac{a_1s}{2v}$$

2 0

$$T_{\omega\omega\to hh} = -rac{s}{v^2}\left(rac{a_2}{4}-rac{a_1^2}{4}
ight),$$

$$T_{\omega\omega\to 3h} = -\frac{3s}{v^3} \left(a_3 - \frac{2}{3}a_1 \left(a_2 - \frac{a_1^2}{4} \right) \right) ,$$

$$T_{\omega\omega\to 4h} = -\frac{4s}{v^4} \left(3\hat{a}_4 + \hat{a}_2^2 (B-1)\right) \,,$$

where $\hat{a}_2 = a_2 - a_1^2/4$ and $\hat{a}_4 = a_4 - \frac{3}{4}a_1a_3 + \frac{5}{12}a_1^2(a_2 - a_1^2/4)$.

Amplitudes and Cross sections

Collider estimate and SMEFT limits

Effective $h^n \omega \omega$ vertices (see 2401.18002)

In 2401.18002 we found a very nice field redefinition that eliminated the $h\omega\omega$ vertex. Leaving only the contributing diagrams:

 $SMEFT \subset HEF$

Amplitudes and Cross sections

Collider estimate and SMEFT limits

SMEFT vs HEFT phenomenology

Dimension 6 (8) SMEFT operators contributing to $\mathcal{F}(h)$ are $|H|^{2(4)} \Box |H|^2 / \Lambda^{2(4)}$

$$\begin{aligned} a_1/2 &= a = 1 + \frac{d}{2} + \frac{d^2}{2} \left(\frac{3}{4} + \rho\right) + \mathcal{O}\left(d^3\right) \,, \\ a_2 &= b = 1 + 2d + 3d^2(1+\rho) + \mathcal{O}\left(d^3\right) \,, \\ a_3 &= \frac{4}{3}d + d^2 \left(\frac{14}{3} + 4\rho\right) + \mathcal{O}\left(d^3\right) \,, \\ a_4 &= \frac{1}{3}d + d^2 \left(\frac{11}{3} + 3\rho\right) + \mathcal{O}\left(d^3\right) \,, \end{aligned}$$

with,

$$d = rac{2 v^2 c_{H\square}^{(6)}}{\Lambda^2} \,, \qquad
ho = rac{c_{H\square}^{(8)}}{2 (c_{H\square}^{(6)})^2} \,.$$

SMEFT ⊂ HEF

Amplitudes and Cross sections

Collider estimate and SMEFT limits

Detour: how well does the Eq. Th. perform?

Remember $T_{\omega\omega \to hh} = -\frac{s}{v^2} \left(k_2 - k_1^2\right)$

CMS-B2G-22-003

Collider estimate and SMEFT limits

Detour: how well does the Eq. Th. perform?

SMEFT ⊂ HEF

Amplitudes and Cross sections

Collider estimate and SMEFT limits

Detour: how well does the Eq. Th. perform?

CMS-PAS-HIG-21-005 (with one Higgs boson decaying to $\bar{b}b$ and the other one to $W^+W^-)$

SMEFT ⊂ HEF

Amplitudes and Cross sections

Collider estimate and SMEFT limits

Detour: how well does the Eq. Th. perform?

CMS 2206.09401 (with Higgs bosons $b\bar{b}\tau^+\tau^-$ final states)

SMEFT ⊂ HEF

Amplitudes and Cross sections

Collider estimate and SMEFT limits

Recent combination of analyses: CMS-HIG-23-006

SMEFT ⊂ HEF

Amplitudes and Cross sections

Collider estimate and SMEFT limits

Recent combination of analyses: HEFT regions

 $SMEFT \subset HEF$

Amplitudes and Cross sections

Collider estimate and SMEFT limits

In case you are wondering... D = 8

Benchmark Points for the comparison: SMEFT BP

SMEFT BP (the choice of ρ is not really relevant):

$$d = rac{2 v^2 c_{H\Box}^{(6)}}{\Lambda^2} = 0.1, \qquad
ho = -rac{c_{H\Box}^{(8)}}{2 (c_{H\Box}^{(6)})^2} = 1.$$

within the most precise experimental determinations up to date from **ATLAS 2207.00092**, $a = \kappa_V = 1.035 \pm 0.031$, and **CMS 2207.00043**, $a = \kappa_V = 1.014 \pm 0.029$.

Benchmark Points for the comparison: SMEFT BP

SMEFT BP (the choice of ρ is not really relevant):

$$d = rac{2v^2 c_{H\Box}^{(6)}}{\Lambda^2} = 0.1, \qquad
ho = -rac{c_{H\Box}^{(8)}}{2(c_{H\Box}^{(6)})^2} = 1.$$

within the most precise experimental determinations up to date from **ATLAS 2207.00092**, $a = \kappa_V = 1.035 \pm 0.031$, and **CMS 2207.00043**, $a = \kappa_V = 1.014 \pm 0.029$.

$$\Rightarrow \frac{a_1}{2} = 1.05 \text{ and } a_2 = 1.20.$$

Benchmark Points for the comparison: First HEFT BP

BP1^(a₁): Simplest exponential flare function that matches the D = 6 SMEFT prediction for a_1 :

$$\mathcal{F}(h) = \exp\left\{a_1 \frac{h}{v}\right\} \implies$$

$$a_2 = \frac{a_1^2}{2!} = 2.205, \ a_3 = \frac{a_1^3}{3!} \approx 1.54, \ a_4 = \frac{a_1^4}{4!} \approx 0.81.$$

BP1^(a₁, a₂): Simplest exponential flare function that matches the D = 6 SMEFT prediction for a_1 and a_2 :

$$\mathcal{F}(h) = \exp\left\{a_1\frac{h}{v} + \left(a_2 - \frac{a_1^2}{2}\right)\frac{h^2}{v^2}\right\} \implies$$
$$a_3 = \left(a_1a_2 - \frac{a_1^3}{3}\right) \approx -0.57, \qquad a_4 = \left(\frac{a_2^2}{2} - \frac{a_1^4}{12}\right) \approx -0.90.$$

SMEFT CHEFT Amplitudes

Benchmark Points for the comparison: Second HEFT BP

BP2^(a₁): Simplest rational flare function that matches the D = 6 SMEFT prediction for a_1 :

$$\mathcal{F}(h) = \left(1 - \frac{a_1}{2}\frac{h}{v}\right)^{-2} \implies b = \frac{3}{4}a_1^2 \approx 3.31, \qquad a_3 = \frac{1}{2}a_1^3 \approx 4.63, \qquad a_4 = \frac{5}{16}a_1^4 \approx 6.08,$$

BP2^(a₁, a₂): Simplest rational flare function that matches the D = 6 SMEFT prediction for a_1 and a_2 :

$$\mathcal{F}(h) = \left(1 - \frac{a_1}{2}\frac{h}{v} - \left(\frac{a_2}{2} - \frac{3a_1^2}{8}\right)\frac{h^2}{v^2}\right)^{-2} \implies a_3 = \frac{1}{8}\left(-5a_1^3 + 12a_1a_2\right) \approx -2.01,$$
$$a_4 = \frac{1}{64}\left(-25a_1^4 + 24a_1^2a_2 + 48a_2^2\right) \approx -4.53,$$

SMEFT ⊂ HEFT

Amplitudes and Cross sections

Collider estimate and SMEFT limits

Cross section comparison: two Higgses

 $SMEFT \subset HEF$

Amplitudes and Cross sections

Collider estimate and SMEFT limits

Cross section comparison: three Higgses

SMEFT ⊂ HEFT

Amplitudes and Cross sections

Collider estimate and SMEFT limits

Cross section comparison: three Higgses

Deviating a₃ only 10% of SMEFT value drastically changes XS.

SMEFT ⊂ HEF

Amplitudes and Cross sections

Collider estimate and SMEFT limits

Cross section comparison: four Higgses

Integration performed through new open-source code MaMuPaXS github.com/mamupaxs

SMEFT ⊂ HEF

Amplitudes and Cross sections

Collider estimate and SMEFT limits

Cross section comparison: four Higgses

Deviating a₄ only 10% of SMEFT value drastically changes XS.

Collider estimate and SMEFT limits

Alexandre Salas-Bernárdez

SMEFT ⊂ HEFT

Amplitudes and Cross sections

SMEFT exclusion bounds

Figure 1: SMEFT exclusion plot for the cross sections for 2, 3 and 4 Higgs bosons with $|d| \leq d_{\max} = 0.1$ and $|\rho| \leq \rho_{\max} = 1$.

SMEFT C HEF

Amplitudes and Cross sections

Collider estimate and SMEFT limits

30/36

Exclusion plot: EFT perturbativity

Figure 2: Exclusion plot for the maximum value of the cross sections for 2, 3 and 4 Higgs bosons with the constraint $|\rho| \leq \rho_{\max} = 1$ and EFT-expansion tolerance $\epsilon = 0.1$. $\left|\frac{c_{H\square}^{(6)}s}{\Lambda^2}\right| = \left|\frac{ds}{2v^2}\right| \leq \epsilon \ll 1$

The Effective W approximation

In the Effective W approximation (EWA), W_L are radiated collinear to initial particles (expected to dominate XS).

Collider estimate: 3 TeV CLIC e^+e^-

In the EWA factorization, the total cross section, σ_{tot} , is provided by the hard subprocess cross section times an appropriate W_L -luminosity function of the form,

$$\frac{d\sigma_{tot}}{ds} = \frac{\alpha^2}{8\pi^2 s \ s_{\theta_W}^2} \left[2\left(\frac{s}{s^{\text{tot}}} - 1\right) - \left(\frac{s}{s^{\text{tot}}} + 1\right) \log \frac{s}{s^{\text{tot}}} \right] \times \sigma(s) \bigg|_{W_L^+ W_L^- \to n \times h} \frac{1508.03544}{s^{100}} \right]$$

SMEFT ⊂ HEF

Amplitudes and Cross sections

Collider estimate and SMEFT limits

Differential XS in the EWA

SMEFT ⊂ HE

Amplitudes and Cross sections

Collider estimate and SMEFT limits 000000000

$e^+e^- ightarrow e^+e^- \,+\, n imes h$ cross section in the EWA

SMEFT ⊂ HE

Amplitudes and Cross sections

Collider estimate and SMEFT limits 000000000

$e^+e^- ightarrow e^+e^- + n imes h$ cross section in the EWA

CLIC at 3 TeV expected to have $5000 fb^{-1}$ luminosity. <u>1812.02093</u>

We have delved deeper into the distinction of SMEFT and HEFT scenarios.

 We have delved deeper into the distinction of SMEFT and HEFT scenarios.

Amplitudes and Cross sections

2 Computed $\omega \omega \rightarrow hhh$ and $\omega \omega \rightarrow hhhh$ at LO HEFT amplitudes and cross sections.

 We have delved deeper into the distinction of SMEFT and HEFT scenarios.

Amplitudes and Cross sections

- 2 Computed $\omega \omega \rightarrow hhh$ and $\omega \omega \rightarrow hhhh$ at LO HEFT amplitudes and cross sections.
- **3** HEFT cross sections can be both small and big. SMEFT ones are usually suppressed.

 We have delved deeper into the distinction of SMEFT and HEFT scenarios.

Amplitudes and Cross sections

- 2 Computed $\omega \omega \rightarrow hhh$ and $\omega \omega \rightarrow hhhh$ at LO HEFT amplitudes and cross sections.
- **3** HEFT cross sections can be both small and big. SMEFT ones are usually suppressed.
- 4 Observation of three and four *h*s final states at CLIC 3 TeV e^+e^- could signal SMEFT is not enough.

Acknowledgments

Funded by research grant PID2022-137003NB-I00 from Spanish MCIN/AEI/10.13039/501100011033/ and EU FEDER.

