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Indirect detection of NP

• Assumption : NP scale >> energies probed in experiments 
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p2 ≪ m2
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A basis of dimension-eight operators for anomalous neutral

triple gauge boson interactions

Celine Degrande
Department of Physics, University of Illinois at Urbana-Champaign

1110 W. Green Street, Urbana, IL 61801, USA

Abstract

Four independent dimension-eight operators give rise to anomalous neutral triple
gauge boson interactions, one CP-even and three CP-odd. Only the CP-even operator
interferes with the Standard Model for the production of a pair of on-shell neutral
bosons. However, the effects are found to be tiny due mainly to the mismatch of the Z
boson polarization between the productions from the SM and the new operator.

1 Introduction

The recent discovery of the Higgs boson has increased the confidence in the validity of
the Standard Model (SM). On the other hand, the remaining issues of the SM like the
absence of a dark matter candidate claim for new physics. This dilemma can only be solved
experimentally by either directly searching for new particles or by looking for deviations
from the SM predictions. In this article, we use the well motivated effective field theory
(EFT) approach to pin down the expected first deviations from heavy new physics on the
neutral triple gauge couplings (nTGC).
Anomalous neutral gauge couplings have been actively searched for at LEP [1, 2, 3], at the
Tevatron [4, 5] and at the LHC [6, 7]. The constraints are given following the parametrization
of the anomalous vertices for the neutral gauge bosons [8, 9, 10, 11]

ieΓαβµ
ZZV (q1, q2, q3) =

−e(q23 −m2
V )

M2
Z

[
fV
4 (qα3 g

µβ + qβ3g
µα)− fV

5 ϵµαβρ(q1 − q2)ρ
]
, (1)

ieΓαβµ
ZγV (q1, q2, q3) =

−e(q23 −m2
V )

M2
Z

{

hV1 (q
µ
2g

αβ − qα2 g
µβ) +

hV2
M2

Z

qα3 [(q3q2)g
µβ − qµ2qβ3 ]

− hV3 ϵ
µαβρq2ρ −

hV4
M2

Z

qα3 ϵ
µβρσq3ρq2σ

}

(2)

where V is a photon or a Z boson and is off-shell while the two other bosons are on-shell.
The parametrization of those vertices has been extended for off-shell bosons in ref. [10]. So
far, the size of the fV

i and hVi coefficients is unknown. They have be computed or estimated
for some extensions of the SM [10, 12]. Alternatively, their size as well as their dependence
in a smaller number of parameters can be obtained for any heavy new physics model using
EFT [13]. As a matter of fact, any extension the SM can be parametrized at low energy by
the effective Lagrangian

L = LSM +
∑

d>4

∑

i

Ci

Λd−4
Od

i (3)

1

SM fields & sym.
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EFT 

• Assumption : Eexp <<Λ	

• Model independent (i.e. parametrize a large class of 
models) : any HEAVY NP 

• SM is the leading term : EFT for precision physics 

• higher the exp. precision => smaller EFT error 
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far, the size of the fV

i and hVi coefficients is unknown. They have be computed or estimated
for some extensions of the SM [10, 12]. Alternatively, their size as well as their dependence
in a smaller number of parameters can be obtained for any heavy new physics model using
EFT [13]. As a matter of fact, any extension the SM can be parametrized at low energy by
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∑
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Λd−4
Od

i (3)

1

L = LSM +
�

i

Ci

�2
O6

i

a finite number of 
coefficients 

=>Predictive!

Parametrize any NP but an ∞ number of coefficients

SM fields & sym.
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The recent discovery of the Higgs boson has increased the confidence in the validity of
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Figure 9: Comparison of the template fits to the observed meµ distributions in the 0-jet (left)
and 1-jet (right) categories. The non-SM contributions for cWWW/L2 = 3.2 TeV�2, cW/L2 =

4.9 TeV�2, and cB/L2 = 15.0 TeV�2 are shown, not stacked on top of the other contributions.
In the plot on the right, the decrease in the non-SM contribution at low meµ is not statistically
significant and results from limited precision in the subtraction of two large yields (SM and
SM+non-SM). The last bin contains all events with reconstructed meµ > 1 TeV. The error bars
on the data points represent the statistical uncertainties for the data, and the hatched areas
represent the total uncertainty for the predicted yield in each bin.

Table 9: Expected and observed 68 and 95% confidence intervals on the measurement of the
Wilson coefficients associated with the three CP-conserving, dimension-6 operators.

Coefficients 68% confidence interval 95% confidence interval
( TeV�2) expected observed expected observed

cWWW/L2 [�1.8, 1.8] [�0.93, 0.99] [�2.7, 2.7] [�1.8, 1.8]
cW/L2 [�3.7, 2.7] [�2.0, 1.3] [�5.3, 4.2] [�3.6, 2.8]
cB/L2 [�9.4, 8.4] [�5.1, 4.3] [�14, 13] [�9.4, 8.5]

to cWWW and cW is similar to the CMS WZ analysis [59] and is much better for cB. Finally,
the sensitivity is slightly weaker than for the CMS analysis of W+W� and WZ production in
lepton and jets events [60]. Figure 10 (right) shows the expected and observed 68 and 95%
confidence level contours for pairs of Wilson coefficients.

13 Summary
Measurements of W+W� boson pair production in proton-proton collisions at

p
s = 13 TeV

was performed. The analysis is based on data collected with the CMS detector at the LHC cor-
responding to an integrated luminosity of 35.9 fb�1. Candidate events were selected that have
two leptons (electrons or muons) with opposite charges. Two analysis methods were described.
The first method imposes a sequence of requirements on kinematic quantities to suppress back-
grounds, while the second uses a pair of random forest classifiers. The total production cross
section is stot

SC = 117.6 ± 1.4 (stat) ± 5.5 (syst) ± 1.9 (theo) ± 3.2 (lumi) pb = 117.6 ± 6.8 pb, where
the individual uncertainties are statistical, experimental systematic, theoretical, and of inte-

2009.00119

Cross-sections 
and precision  
plummet at high 
energy 
EFT/SM is larger at 
H.E. but so are the 
EFT errors
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Errors : higher power of 1/Λ

|M(x)|2 = |MSM (x)|2 + 2< (MSM (x)M⇤
d6(x)) + |Md6(x)|2 + . . .

⇤0 ⇤�2 O
�
⇤�4

�

• Contains : 
• 1 dim6 insertion squared 
• interference with 2 dim6 insertions  
• interference with  1 dim8  insertion 
• … at  1/  

• Error (estimate)
Λ−6

usually 
not  
included

Dimension 8  basis: Li et  al., 2005.00008

https://arxiv.org/abs/2005.00008
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interference suppression
2

A4 |h(ASM
4 )| |h(ABSM

4 )|

V V V V 0 4,2

V V �� 0 2

V V   0 2

V   � 0 2

    2,0 2,0

  �� 0 0

���� 0 0

TABLE I: Four-point amplitudes A4 that do not vanish in
the massless limit and the total helicity h(A4) of their SM
and BSM contributions. V = V ±,  =  ± and � denote,
respectively, transversely-polarized vectors, fermions (or
antifermions) and scalars in the SM. For processes with
at least one transversely-polarized vector (listed above the
double line in the table), SM and BSM contributions do
not interfere in the massless limit because have di↵erent
total helicity.

terference term in the amplitude squared. Obviously,
interference is possible only if SM and BSM give non-
vanishing contribution to the same helicity ampli-
tude. In this section we study the helicity structure
of scattering amplitudes at tree-level, in the SM and
at leading order in the e↵ective field theory expan-
sion, i.e. at the level of D=6 operators. We will
denote the corresponding new-physics contribution
as BSM6 in the following. We focus first on the phe-
nomenologically relevant case of 2 ! 2 scatterings
and work in the massless limit; the massive case and
higher-points amplitudes are discussed below. We
use the spinor-helicity formalism (see Refs. [9, 10]
for a review), where the fundamental objects which
define the scattering amplitudes are Weyl spinors
 ↵ and  ̄↵̇, transforming as (1/2, 0) (undotted in-
dices) and (0, 1/2) (dotted indices) representations
of SU(2) ⇥ SU(2) ' SO(3, 1), and Lorentz vectors
Aµ�

µ

↵↵̇
, transforming as (1/2, 1/2). 2 In this lan-

guage, the field strength is written as

Fµ⌫�
µ

↵↵̇
�⌫

��̇
⌘ F↵� ✏̄↵̇�̇ + F̄

↵̇�̇
✏↵� (2)

in terms of its self-dual and anti-self dual parts F
and F̄ (transforming respectively as (1, 0) and (0, 1)
representations).

2
We will not distinguish between fermions and anti-fermions

except where explicitly mentioned, as this distinction is not

crucial to our analysis. We will denote a Weyl fermion or

anti-fermion of helicity + (�) with  +
( �

). When indi-

cating a scattering amplitude, the symbol  will stand for

either  +
or  �

.

Am Am0

± ⌥

FIG. 1: When the factorization channel goes on-shell, it
propagates a well-defined helicity eigenstate and Eq. (3)
holds.

Our analysis will be in terms of complex momenta
p 2 C: this allows one to make sense of 3-point ampli-
tudes on-shell, even though these vanish for massless
states with real kinematics. We will need three well-
known results, that we summarize here and discuss
in the Appendices, see Refs. [9–11]. These are:

1. Consider an amplitude An with n external legs
(n-point amplitude), and let Am and Am0 be any two
sub-amplitudes, with m+m0

� 2 = n, see Fig. 1. We
define the net helicity of an on-shell amplitude, h(A),
as the sum of the helicities of all its external states,
where all momenta are taken to be outgoing. Then
one has:

h(An) = h(Am) + h(Am0) (3)

for all possible sub-amplitudes Am and Am0 . This re-
lation is a consequence of the fact that the amplitude
has a pole when the intermediate line goes on-shell,
and that in this limit it factorizes into the product of
the two sub-amplitudes. While in the SM there are
no exceptions to Eq. (3), in the D=6 e↵ective theory
this relation fails if an e↵ective operator gives a con-
tribution to the vertex attached to the intermediate
line that vanishes on shell. In this case the pole from
the propagator is canceled by the vertex, and factor-
ization does not hold. When this occurs the operator
can be rewritten through the equations of motion in
terms of other operators with more fields. We will
discuss below how this complication is avoided.

2. Dimensional analysis, Little group scaling and
the 3-particle special kinematics fix completely the
form of the 3-point amplitudes, and in particular re-
late their total helicity h(A3) to the dimensionality
of the coupling g characterizing the 3-point vertex:

|h(A3)| = 1� [g] . (4)

For instance, the triple gauge interaction of the SM
is characterized by a dimensionless coupling, and the
corresponding 3-point on-shell amplitude has |h| = 1.
The D=6 operator O3W = tr(Wµ⌫W ⌫

⇢
W ⇢µ) instead

Azatov et al., Helicity Selection Rules and Non-Interference for 
BSM Amplitudes, 1607.05236 
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Our analysis will be in terms of complex momenta
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tudes on-shell, even though these vanish for massless
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in the Appendices, see Refs. [9–11]. These are:

1. Consider an amplitude An with n external legs
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for all possible sub-amplitudes Am and Am0 . This re-
lation is a consequence of the fact that the amplitude
has a pole when the intermediate line goes on-shell,
and that in this limit it factorizes into the product of
the two sub-amplitudes. While in the SM there are
no exceptions to Eq. (3), in the D=6 e↵ective theory
this relation fails if an e↵ective operator gives a con-
tribution to the vertex attached to the intermediate
line that vanishes on shell. In this case the pole from
the propagator is canceled by the vertex, and factor-
ization does not hold. When this occurs the operator
can be rewritten through the equations of motion in
terms of other operators with more fields. We will
discuss below how this complication is avoided.

2. Dimensional analysis, Little group scaling and
the 3-particle special kinematics fix completely the
form of the 3-point amplitudes, and in particular re-
late their total helicity h(A3) to the dimensionality
of the coupling g characterizing the 3-point vertex:

|h(A3)| = 1� [g] . (4)

For instance, the triple gauge interaction of the SM
is characterized by a dimensionless coupling, and the
corresponding 3-point on-shell amplitude has |h| = 1.
The D=6 operator O3W = tr(Wµ⌫W ⌫

⇢
W ⇢µ) instead

https://arxiv.org/abs/1607.05236
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FIG. 1: When the factorization channel goes on-shell, it
propagates a well-defined helicity eigenstate and Eq. (3)
holds.

Our analysis will be in terms of complex momenta
p 2 C: this allows one to make sense of 3-point ampli-
tudes on-shell, even though these vanish for massless
states with real kinematics. We will need three well-
known results, that we summarize here and discuss
in the Appendices, see Refs. [9–11]. These are:

1. Consider an amplitude An with n external legs
(n-point amplitude), and let Am and Am0 be any two
sub-amplitudes, with m+m0

� 2 = n, see Fig. 1. We
define the net helicity of an on-shell amplitude, h(A),
as the sum of the helicities of all its external states,
where all momenta are taken to be outgoing. Then
one has:

h(An) = h(Am) + h(Am0) (3)

for all possible sub-amplitudes Am and Am0 . This re-
lation is a consequence of the fact that the amplitude
has a pole when the intermediate line goes on-shell,
and that in this limit it factorizes into the product of
the two sub-amplitudes. While in the SM there are
no exceptions to Eq. (3), in the D=6 e↵ective theory
this relation fails if an e↵ective operator gives a con-
tribution to the vertex attached to the intermediate
line that vanishes on shell. In this case the pole from
the propagator is canceled by the vertex, and factor-
ization does not hold. When this occurs the operator
can be rewritten through the equations of motion in
terms of other operators with more fields. We will
discuss below how this complication is avoided.

2. Dimensional analysis, Little group scaling and
the 3-particle special kinematics fix completely the
form of the 3-point amplitudes, and in particular re-
late their total helicity h(A3) to the dimensionality
of the coupling g characterizing the 3-point vertex:

|h(A3)| = 1� [g] . (4)

For instance, the triple gauge interaction of the SM
is characterized by a dimensionless coupling, and the
corresponding 3-point on-shell amplitude has |h| = 1.
The D=6 operator O3W = tr(Wµ⌫W ⌫

⇢
W ⇢µ) instead
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sion, i.e. at the level of D=6 operators. We will
denote the corresponding new-physics contribution
as BSM6 in the following. We focus first on the phe-
nomenologically relevant case of 2 ! 2 scatterings
and work in the massless limit; the massive case and
higher-points amplitudes are discussed below. We
use the spinor-helicity formalism (see Refs. [9, 10]
for a review), where the fundamental objects which
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FIG. 1: When the factorization channel goes on-shell, it
propagates a well-defined helicity eigenstate and Eq. (3)
holds.

Our analysis will be in terms of complex momenta
p 2 C: this allows one to make sense of 3-point ampli-
tudes on-shell, even though these vanish for massless
states with real kinematics. We will need three well-
known results, that we summarize here and discuss
in the Appendices, see Refs. [9–11]. These are:

1. Consider an amplitude An with n external legs
(n-point amplitude), and let Am and Am0 be any two
sub-amplitudes, with m+m0

� 2 = n, see Fig. 1. We
define the net helicity of an on-shell amplitude, h(A),
as the sum of the helicities of all its external states,
where all momenta are taken to be outgoing. Then
one has:

h(An) = h(Am) + h(Am0) (3)

for all possible sub-amplitudes Am and Am0 . This re-
lation is a consequence of the fact that the amplitude
has a pole when the intermediate line goes on-shell,
and that in this limit it factorizes into the product of
the two sub-amplitudes. While in the SM there are
no exceptions to Eq. (3), in the D=6 e↵ective theory
this relation fails if an e↵ective operator gives a con-
tribution to the vertex attached to the intermediate
line that vanishes on shell. In this case the pole from
the propagator is canceled by the vertex, and factor-
ization does not hold. When this occurs the operator
can be rewritten through the equations of motion in
terms of other operators with more fields. We will
discuss below how this complication is avoided.

2. Dimensional analysis, Little group scaling and
the 3-particle special kinematics fix completely the
form of the 3-point amplitudes, and in particular re-
late their total helicity h(A3) to the dimensionality
of the coupling g characterizing the 3-point vertex:

|h(A3)| = 1� [g] . (4)

For instance, the triple gauge interaction of the SM
is characterized by a dimensionless coupling, and the
corresponding 3-point on-shell amplitude has |h| = 1.
The D=6 operator O3W = tr(Wµ⌫W ⌫
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W ⇢µ) instead
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at least one transversely-polarized vector (listed above the
double line in the table), SM and BSM contributions do
not interfere in the massless limit because have di↵erent
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interference is possible only if SM and BSM give non-
vanishing contribution to the same helicity ampli-
tude. In this section we study the helicity structure
of scattering amplitudes at tree-level, in the SM and
at leading order in the e↵ective field theory expan-
sion, i.e. at the level of D=6 operators. We will
denote the corresponding new-physics contribution
as BSM6 in the following. We focus first on the phe-
nomenologically relevant case of 2 ! 2 scatterings
and work in the massless limit; the massive case and
higher-points amplitudes are discussed below. We
use the spinor-helicity formalism (see Refs. [9, 10]
for a review), where the fundamental objects which
define the scattering amplitudes are Weyl spinors
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FIG. 1: When the factorization channel goes on-shell, it
propagates a well-defined helicity eigenstate and Eq. (3)
holds.

Our analysis will be in terms of complex momenta
p 2 C: this allows one to make sense of 3-point ampli-
tudes on-shell, even though these vanish for massless
states with real kinematics. We will need three well-
known results, that we summarize here and discuss
in the Appendices, see Refs. [9–11]. These are:

1. Consider an amplitude An with n external legs
(n-point amplitude), and let Am and Am0 be any two
sub-amplitudes, with m+m0

� 2 = n, see Fig. 1. We
define the net helicity of an on-shell amplitude, h(A),
as the sum of the helicities of all its external states,
where all momenta are taken to be outgoing. Then
one has:

h(An) = h(Am) + h(Am0) (3)

for all possible sub-amplitudes Am and Am0 . This re-
lation is a consequence of the fact that the amplitude
has a pole when the intermediate line goes on-shell,
and that in this limit it factorizes into the product of
the two sub-amplitudes. While in the SM there are
no exceptions to Eq. (3), in the D=6 e↵ective theory
this relation fails if an e↵ective operator gives a con-
tribution to the vertex attached to the intermediate
line that vanishes on shell. In this case the pole from
the propagator is canceled by the vertex, and factor-
ization does not hold. When this occurs the operator
can be rewritten through the equations of motion in
terms of other operators with more fields. We will
discuss below how this complication is avoided.

2. Dimensional analysis, Little group scaling and
the 3-particle special kinematics fix completely the
form of the 3-point amplitudes, and in particular re-
late their total helicity h(A3) to the dimensionality
of the coupling g characterizing the 3-point vertex:

|h(A3)| = 1� [g] . (4)

For instance, the triple gauge interaction of the SM
is characterized by a dimensionless coupling, and the
corresponding 3-point on-shell amplitude has |h| = 1.
The D=6 operator O3W = tr(Wµ⌫W ⌫

⇢
W ⇢µ) instead
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FIG. 1: When the factorization channel goes on-shell, it
propagates a well-defined helicity eigenstate and Eq. (3)
holds.

Our analysis will be in terms of complex momenta
p 2 C: this allows one to make sense of 3-point ampli-
tudes on-shell, even though these vanish for massless
states with real kinematics. We will need three well-
known results, that we summarize here and discuss
in the Appendices, see Refs. [9–11]. These are:

1. Consider an amplitude An with n external legs
(n-point amplitude), and let Am and Am0 be any two
sub-amplitudes, with m+m0

� 2 = n, see Fig. 1. We
define the net helicity of an on-shell amplitude, h(A),
as the sum of the helicities of all its external states,
where all momenta are taken to be outgoing. Then
one has:

h(An) = h(Am) + h(Am0) (3)

for all possible sub-amplitudes Am and Am0 . This re-
lation is a consequence of the fact that the amplitude
has a pole when the intermediate line goes on-shell,
and that in this limit it factorizes into the product of
the two sub-amplitudes. While in the SM there are
no exceptions to Eq. (3), in the D=6 e↵ective theory
this relation fails if an e↵ective operator gives a con-
tribution to the vertex attached to the intermediate
line that vanishes on shell. In this case the pole from
the propagator is canceled by the vertex, and factor-
ization does not hold. When this occurs the operator
can be rewritten through the equations of motion in
terms of other operators with more fields. We will
discuss below how this complication is avoided.

2. Dimensional analysis, Little group scaling and
the 3-particle special kinematics fix completely the
form of the 3-point amplitudes, and in particular re-
late their total helicity h(A3) to the dimensionality
of the coupling g characterizing the 3-point vertex:

|h(A3)| = 1� [g] . (4)

For instance, the triple gauge interaction of the SM
is characterized by a dimensionless coupling, and the
corresponding 3-point on-shell amplitude has |h| = 1.
The D=6 operator O3W = tr(Wµ⌫W ⌫
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W ⇢µ) instead
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Interference revival: Formalism

2012.06595C.D., M. Maltoni

2

pT > 50 GeV pT > 200 GeV pT > 1000 GeV
proc. ‡ [pb] w>0 ‡ [pb] w>0 ‡ [pb] w>0

tt̄ 1.384 85% 1.384 85% 1.384 85%
tt̄j 5.20·10≠1 62% 1.13·10≠1 60% 1.37·10≠3 62%
jjj 2.98·101 52% 5.90·10≠1 52% 4.91·10≠4 61%
jjjj -2.89·101 45% -2.50·10≠1 44% -4.12·10≠6 39%

TABLE I. O(�≠2) cross-sections and percentages of positive-
weighted events for processes with a non-null interference be-
tween the SM and the OG operator and a large cross-section.
These results are calculated for jets separated by �R >0.4
and with di�erent minimum values for their transverse mo-
mentum pT

corrections, parton shower and detector e�ects for future
studies.
The cancellation over the phase space is e�cient if the in-
tegrals of the interference in the phase space part where
its matrix element is positive and negative are almost
equal in absolute value. Those two integrals are obtained
from the sum of the weights of events generated accord-
ing to the interference, keeping respectively only positive
or negative weighted events. In table I, we use the per-
centage of positive unweighted events to quantify the e�-
ciency of this cancelation for top and jet processes. Since
the strongest cancellation occurs for three-jets and this
process has the large cross-section necessary for accurate
di�erential measurement, in the remaining of this letter,
we will restrict ourself to this process and leave the other
for future analyses. The integral of the absolute valued
interference di�erential cross-section,

‡
|int|

©

⁄
d�

----
d‡int

d�

---- (5)

is computed from the sum of the absolute values of the
weights and is an upper bound of the total measurable
e�ect of the interference over the whole phase space �.
This quantity is given in table II together with the SM,
the interference and the O

!
1/�4"

total cross-sections.
The comparison of those four quantities shows the strong
suppression of the interference total cross-section, and
how it is lifted by ‡

|int|. Unfortunately, ‡
|int| is not a

measurable quantity as it requires to measure not only
the momenta of the jets, but also their flavours and helic-
ities, as well as those of the incoming partons. Therefore,
we define the measurable absolute value cross-section,

‡
|meas|

©

⁄
d�meas

------

ÿ

{um}

d‡

d�

------
(6)

where {um} is the set of unmeasurable quantities of the
events. For other processes, the sum can be replaced,
at least partially, by integrals over continuous unmea-
surable quantities, such as the longitudinal momenta of
a neutrino. This is the di�erence between the positive

and negative contributions of the interference to the to-
tal cross-section using all the information experimentally
available (and assuming perfect measurements of the jets
momenta). As a result, this is an upper bound for any
asymmetry build on one or a few kinematic variables aim-
ing at restoring the interference, and therefore can be
used to assess the e�ciency of such asymmetry. ‡

|meas|

is estimated by

‡
|meas| = lim

NæŒ

Nÿ

i=1
wi ú sign

A
ÿ

um

ME(p̨i, um)
B

(7)

where ME is the part of the squared amplitude due to
the interference and wi and p̨i label the weight and the
momenta of the jets of the event i. Therefore, this can be
seen as a matrix element method [14–19] at the partonic
level to revive the interference. The values of ‡

|meas|

for the three-jet final state and di�erent cuts are given
in table II. The cancellation among positive and negative
weighted events decreases with the pT cut while the ratio
‡

|meas|
/‡

|int| remains roughly constant.

Di�erential distributions We tested the ability to
separate positive and negative weight for various di�er-
ential and double di�erential cross-sections. Tested dis-
tributions include the transverse momenta pT and the
pseudorapidities ÷ of the jets, their angular distances
�R, their invariant masses, the normalised triple product
among the three-momenta of the jets, and some event-
shape variables, including the transverse thrust, the jet
broadening [20] and the transverse sphericity [21]. Sev-
eral variables such as the pT of the first jet, pT [j1], the
transverse trust and the angular distance between the
two lowest pT jets , �R[j2j3] achieve an e�ciency of
about 40% compared to ‡

|meas|. For comparison, the
e�ciency of the total cross-section is about 2%. The
best e�ciency, however, is obtained for the transverse
sphericity and is about 80%. Moreover, this e�ciency
barely varies with the global lower cut on each of the
three jets pT . The transverse sphericity SphT is defined
by using the eigenvalues ⁄1 Ø ⁄2 of the transverse mo-
mentum tensor:

Mxy =
Njetsÿ

i=1

A
p

2
x,i px,ipy,i

py,ipx,i p
2
y,i

B
, SphT = 2⁄2

⁄2 + ⁄1
.

(8)
Therefore, sign flip occurs between the events that are
more two-jets like (SphT ≥ 0) and those that are three
well separated and balanced jets (SphT ≥ 1). This ex-
plains why the phase space cancellation is lower with the
high pT cut, as strong hierarchy between the jets be-
comes then unlikely. The separations of the negative and
positive contributions for some of those variables are il-
lustrated in figure 1, where the full distributions as well
as those of the positive and negative weighted events are
drawn separately. Contrarily to ine�cient variables, the
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tween the SM and the OG operator and a large cross-section.
These results are calculated for jets separated by �R >0.4
and with di�erent minimum values for their transverse mo-
mentum pT

corrections, parton shower and detector e�ects for future
studies.
The cancellation over the phase space is e�cient if the in-
tegrals of the interference in the phase space part where
its matrix element is positive and negative are almost
equal in absolute value. Those two integrals are obtained
from the sum of the weights of events generated accord-
ing to the interference, keeping respectively only positive
or negative weighted events. In table I, we use the per-
centage of positive unweighted events to quantify the e�-
ciency of this cancelation for top and jet processes. Since
the strongest cancellation occurs for three-jets and this
process has the large cross-section necessary for accurate
di�erential measurement, in the remaining of this letter,
we will restrict ourself to this process and leave the other
for future analyses. The integral of the absolute valued
interference di�erential cross-section,

‡
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d‡int

d�

---- (5)

is computed from the sum of the absolute values of the
weights and is an upper bound of the total measurable
e�ect of the interference over the whole phase space �.
This quantity is given in table II together with the SM,
the interference and the O

!
1/�4"

total cross-sections.
The comparison of those four quantities shows the strong
suppression of the interference total cross-section, and
how it is lifted by ‡

|int|. Unfortunately, ‡
|int| is not a

measurable quantity as it requires to measure not only
the momenta of the jets, but also their flavours and helic-
ities, as well as those of the incoming partons. Therefore,
we define the measurable absolute value cross-section,
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where {um} is the set of unmeasurable quantities of the
events. For other processes, the sum can be replaced,
at least partially, by integrals over continuous unmea-
surable quantities, such as the longitudinal momenta of
a neutrino. This is the di�erence between the positive

and negative contributions of the interference to the to-
tal cross-section using all the information experimentally
available (and assuming perfect measurements of the jets
momenta). As a result, this is an upper bound for any
asymmetry build on one or a few kinematic variables aim-
ing at restoring the interference, and therefore can be
used to assess the e�ciency of such asymmetry. ‡

|meas|

is estimated by
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where ME is the part of the squared amplitude due to
the interference and wi and p̨i label the weight and the
momenta of the jets of the event i. Therefore, this can be
seen as a matrix element method [14–19] at the partonic
level to revive the interference. The values of ‡

|meas|

for the three-jet final state and di�erent cuts are given
in table II. The cancellation among positive and negative
weighted events decreases with the pT cut while the ratio
‡

|meas|
/‡

|int| remains roughly constant.

Di�erential distributions We tested the ability to
separate positive and negative weight for various di�er-
ential and double di�erential cross-sections. Tested dis-
tributions include the transverse momenta pT and the
pseudorapidities ÷ of the jets, their angular distances
�R, their invariant masses, the normalised triple product
among the three-momenta of the jets, and some event-
shape variables, including the transverse thrust, the jet
broadening [20] and the transverse sphericity [21]. Sev-
eral variables such as the pT of the first jet, pT [j1], the
transverse trust and the angular distance between the
two lowest pT jets , �R[j2j3] achieve an e�ciency of
about 40% compared to ‡

|meas|. For comparison, the
e�ciency of the total cross-section is about 2%. The
best e�ciency, however, is obtained for the transverse
sphericity and is about 80%. Moreover, this e�ciency
barely varies with the global lower cut on each of the
three jets pT . The transverse sphericity SphT is defined
by using the eigenvalues ⁄1 Ø ⁄2 of the transverse mo-
mentum tensor:
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B
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Therefore, sign flip occurs between the events that are
more two-jets like (SphT ≥ 0) and those that are three
well separated and balanced jets (SphT ≥ 1). This ex-
plains why the phase space cancellation is lower with the
high pT cut, as strong hierarchy between the jets be-
comes then unlikely. The separations of the negative and
positive contributions for some of those variables are il-
lustrated in figure 1, where the full distributions as well
as those of the positive and negative weighted events are
drawn separately. Contrarily to ine�cient variables, the

2

pT > 50 GeV pT > 200 GeV pT > 1000 GeV
proc. ‡ [pb] w>0 ‡ [pb] w>0 ‡ [pb] w>0
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dominant CP operators

(X3) ( 2�3) ( 2�2D)

OG̃GG fABC eGA⌫
µ GB⇢

⌫ GCµ
⇢ Ot� (�†�)(q3t�̃) O�tb i(�̃†Dµ�)(t̄�µb)

OW̃WW ✏IJKfW I⌫
µ W J⇢

⌫ WKµ
⇢ Ob� (�†�)(q3b�)

(X2�2) ( 4) (X 2�)

O�G̃ �†� eGA
µ⌫G

Aµ⌫ O(1)
qtqb (q̄j3t)✏jk(q̄

k
3b) OtG (q3�

µ⌫TAt)�̃GA
µ⌫

O�W̃ �†�fW I
µ⌫W

Iµ⌫ O(8)
qtqb (q̄j3TAt)✏jk(q̄k3TAb) OtW (q3�

µ⌫t)⌧ I �̃W I
µ⌫

O�B̃ �†� eBµ⌫Bµ⌫ OtB (q3�
µ⌫t)�̃Bµ⌫

O�W̃B �†⌧ I�fW I
µ⌫B

µ⌫ ObG (q3�
µ⌫TAb)�GA

µ⌫

ObW (q3�
µ⌫b)⌧ I�W I

µ⌫

ObB (q3�
µ⌫b)�Bµ⌫

Table 4: List of CP-odd dimension-6 operators in our reduced basis under the U(1)13

symmetry.

The (L̄R)(R̄L) configuration involves only leptons so we do not have CP-odd opera-
tors from those either. Finally, (L̄R)(L̄R) has two operators without leptons which
can be CP-odd :

{O
(1)
qtqb, O

(8)
qtqb}.

Here, 17 CP-odd operators remain under U(1)13 and they are listed in Table 4
following the class ordering from Table 1.

2.4 Sign of the interference
We concluded in the previous section that our reduced basis is effective to track
leading CP violating effects if we consider ⇤�2 interference effects (Mint,i) from
one dimension-6 operator at a time. Those interferences are always odd under CP
symmetry since we neglect the SM CP phase and therefore do not contribute to
CP-even observables , such as the total cross-section of C-even processes like gg ! tt̄
for example,

�gg!tt̄
tot =

Z
d�LIPS

⇥
|MSM |

2 + 2Re {M
⇤

SMMi} + O(⇤�4)
⇤

= �gg!tt̄
SM + 0 + O(⇤�4),

(12)

where �LIPS is the CP-even Lorentz-invariant phase-space. As a result, the operators
in Tables 2(and 4) have often been constrained thanks to a part of their ⇤�4 con-
tributions, kMOi

k
2 in Eq.(7). This has been done at LEP [33] and at LHC [34, 35].

10
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mt ≠ 0 ≠ mbat the interference level
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Basis reductionLSMEFT such that phases of Wilson coefficients are absorbed. We take as an ex-
ample the ObG operator from the dipole class and its Wilson coefficient CbG. This
operator introduces a new vertices contributing to pp ! bb̄h. Let us define the phase
'i of the Wilson coefficient Ci, Ci ⌘ ei'i |Ci|. We rephase the right-handed bottom
field bR with the opposite phase of CbG, namely

bR ! e�i'bGb0R, (9)

such that LSM(mf ! 0) is unaffected but the ObG operator together with its Wilson
coefficient becomes

ei'bG |CbG|(Q̄�µ⌫TAb)�̃GA
µ⌫ ! |CbG|(Q̄�µ⌫TAb0)�̃GA

µ⌫ . (10)

Due to its real Wilson coefficient, when added to its self-conjugate in LSMEFT , the
ObG operator no longer gives a CP violating contribution at ⇤�2 order. We can apply
the rephasing to all operators one at a time and reduce the list of CP-odd operators
from Table 1. We are allowed to do so because we are restricting ourselves ⇤�2

corrections, i.e. the interferences between the SM and one CP-odd operator, which
are linear in the Wilson coefficients. This simplification would not stand if we were
looking at ⇤�4 corrections.

As stated above, at the ⇤�4 order, the amplitude can simultaneously depend on
two Wilson coefficients in the interference between 2 dimension-six operators. In this
case, the extra phase cannot be absorbed and will be transferred from one operator
to other instead. For instance, still in pp ! bb̄h, ObG and Ob� are two relevant
operators and, under the transformation outlined in Eq.(9), they become

ei'bG |CbG|(Q̄�µ⌫TAb)�̃GA
µ⌫ ! |CbG|(Q̄�µ⌫TAb0)�̃GA

µ⌫ ,

ei'b� |Cb�|(Q̄b�)
�
�†�

�
! ei('b��'bG)

|Cb�|(Q̄b0�)
�
�†�

�
. (11)

We still obtain a real CbG as in (10) but this time its phase is passed to Cb�, therefore
transferring the CP violating effects.

Sticking to the ⇤�2 order, we use the rephasing trick independently to every
operator containing light fermion fields. The massless approximation does not affect
the hermitian operators in the bosonic classes X3 and X2�2, and they remain present
in the reduced basis:

{O eGGG, OfWWW , O� eG, O�fW , O� eB, O�fWB}.

In fact, those operators are even invariant under the full U(1)15 symmetry, which
remove all the other CP odd operators, as well as under the full flavour symmetry of
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CPV

 are  not  C-even processes but WZ/γ σint ≈ 0

Large enough cross-sections for accurate meas.

Leptonic and mostly visible decays
q

q0

Z/�

W

W

(a)

q Z/�

q0 W

(b)

q

q0

Z/�

W

W

(c)

Figure 3: Feynman diagrams for diboson production in the SM (the s-channel in
(a) and the t-channel in (b), u-channel is not displayed) and with the new WWZ/�
vertex from the dimension-six operators OfWWW and O�fWB in (c).

3 Analysis
We focus here on the case of diboson production with a W boson and a neutral boson,
Z or �. We choose to decay each massive gauge boson into leptonic channels with
different flavours: W ! e±⌫ and Z ! µ�µ+. There are four reasons for this choice.
Firstly, those channels, even if they are not C-even processes, almost behave as such.
Namely, the interference cross-section is heavily suppressed due to a cancellation
between the different regions of the phase space. Therefore our aim is to test which
observables could disentangle those regions and estimate their efficiency in doing so
by using the sign of the matrix element as proposed in Ref. [15]. We will propose
our own observables but also compare them to those of previous studies. Secondly,
those processes have been measured at different center-of-mass energies at the LHC
[69–75] and the cross-sections are relatively large resulting in expected large numbers
of events which are necessary to measure accurately CP-odd observables such as
asymmetries. Thirdly, these final states can be easily reconstructed resulting in a
quite clean signal and a relatively low background. Finally, their leptonic channels
contain only one neutrino compared to the C-even process W+W� and the two
different lepton flavours ensure that there is no confusion between the Z and W
decays product¶ which makes our analysis easier. We leave the study of other leptonic
decays for future work as well as the semi-leptonic and hadronic decays.

Out of the list of 10 operators from Table 2, the relevant operators in WZ and
W� production are OfWWW and O�fWB. Those operators modify the WWZ/� cou-
pling present in the s-channel diagram. As a matter of fact, no CP-odd dimension-six
contribution arises in the light quark interaction or in the weak bosons decay thanks

¶
We ignore detector effects such as misidentification.

26

𝒪W̃WW, OϕW̃B

OCP−odd
SM ≈ 0}

Approximatively like CP-evenAsymmetries

No FFV when 
 mf → 0
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Interference suppression

Process W+Z ! µ�µ+e+⌫e W�Z ! µ�µ+e�⌫̃e
�(SM) 15.74(2) fb 9.88(1) fb
�PDF 3.45% 3.78%

�(OfWWW ) 0.047(4) fb -0.033(3) fb
Schwartz Bound 16.13 fb 8.85 fb
�|int|(OfWWW ) 3.302(4) fb 2.028(3) fb

�|meas|(OfWWW ) 1.084(4) fb 0.634(3) fb
�⇤�4(OfWWW ) 4.133(5) fb 1.982(3) fb

�(O�fWB) 0.0086(7) fb -0.0066(4) fb
Schwartz Bound 1.21 fb 0.76 fb

�|int|(O�fWB) 0.5467(7) fb 0.3533(4) fb
�|meas|(O�fWB) 0.1807(7) fb 0.1100(4) fb
�⇤�4(O�fWB) 0.0231(3) fb 0.0145(2) fb

Table 8: cross-sections in 2 dileptonic decay channels of WZ production for the
ATLAS fiducial phase space at

p
s = 13TeV for the SM, the interference with

one dimension-six operator, �(Oi) and for the square of the O (⇤�2) amplitudes,
�⇤�4(Oi). Errors are from the numerical integration and written in the brackets.
For the interferences, we also display the absolute value cross-sections �|int| and the
measurable absolute value cross-sections �|meas|. �PDF represents the uncertainty
associated with PDFs taken as the envelope of the replicas for the SM. The Wilson
coefficients CfWWW and C�fWB are set to 1 and the NP scale ⇤ is 1 TeV but the results
can be re-scaled for any other value.

of the final three leptons are investigated. We are forced the use the longitudinal
component of one lepton as the triple product using the three complete momenta
almost cancels. By taking the sum of the electron and either the muon or anti-muon
we can approach 50% of the best configuration. The difference does not improve the
asymmetries either.

Henceforth the rest of the triple products are only built with the electron and the
Z momenta and the three aforementioned approximations for the quark momenta:
the longitudinal component of the electron, of the Z boson and of the sum over all
the final visible lepton. The largest asymmetries are obtained with the latest for
both operators and for both channels as shown in Table 10.

As mentioned in Subsection 3.3, our generic triple product asymmetry is also
compared to the asymmetry of sin �WZ from Ref. [16] and of the signed azimuthal
angle difference which has also been studied in WZ and W� production. The values

33
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C = 1, Λ = 1TeV
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�|int|(O�fWB) 0.5467(7) fb 0.3533(4) fb
�|meas|(O�fWB) 0.1807(7) fb 0.1100(4) fb
�⇤�4(O�fWB) 0.0231(3) fb 0.0145(2) fb

Table 8: cross-sections in 2 dileptonic decay channels of WZ production for the
ATLAS fiducial phase space at

p
s = 13TeV for the SM, the interference with

one dimension-six operator, �(Oi) and for the square of the O (⇤�2) amplitudes,
�⇤�4(Oi). Errors are from the numerical integration and written in the brackets.
For the interferences, we also display the absolute value cross-sections �|int| and the
measurable absolute value cross-sections �|meas|. �PDF represents the uncertainty
associated with PDFs taken as the envelope of the replicas for the SM. The Wilson
coefficients CfWWW and C�fWB are set to 1 and the NP scale ⇤ is 1 TeV but the results
can be re-scaled for any other value.

of the final three leptons are investigated. We are forced the use the longitudinal
component of one lepton as the triple product using the three complete momenta
almost cancels. By taking the sum of the electron and either the muon or anti-muon
we can approach 50% of the best configuration. The difference does not improve the
asymmetries either.

Henceforth the rest of the triple products are only built with the electron and the
Z momenta and the three aforementioned approximations for the quark momenta:
the longitudinal component of the electron, of the Z boson and of the sum over all
the final visible lepton. The largest asymmetries are obtained with the latest for
both operators and for both channels as shown in Table 10.

As mentioned in Subsection 3.3, our generic triple product asymmetry is also
compared to the asymmetry of sin �WZ from Ref. [16] and of the signed azimuthal
angle difference which has also been studied in WZ and W� production. The values
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Towards asymmetries

Those squared amplitudes are CP-even and do contribute to CP-even observables
but are more suppressed in 1/⇤. Therefore, analyzing CP-odd operators with the
total cross-section is expected to lead to less stringent constraints on their Wilson
coefficients but the main drawback is that they do not test whether CP is actually
broken. In general, conventional CP-even observables are not suited to efficiently
probe CP violating effects since they present no or small variations from expected
SM simulations by relying on ⇤�4-suppressed effects [33–35].
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p p ! µ�µ+e+⌫e for CWW fW = 1 and � =1TEV at 13 TEV
10*interference

SM

square

Figure 1: Differential cross-sections of pp ! µ�µ+e+⌫e in ATLAS at
p

s = 13
TeV with respect to the triple product p? (the observable is defined and discussed
hereafter). The operator considered here is OfWWW and its Wilson coefficient has
been set to 1. The NP scale ⇤ is 1 TeV.

The vanishing interference cross-section is due to flips of the sign of the inter-
ference over the phase space. On Figure 1, we compare the SM and interference
differential cross-sections with respect to an almost CP-odd observable, which will
be described in the review below, called the triple product p?. The interference con-
tribution does not vanish over the whole phase space but actually modulates between

11

⃗pe .
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Comparison with other variable

Process W+Z ! µ�µ+e+⌫e
Operators SM OfWWW O�fWB

�p?(pe, pq) -0.04(2) -1.612(4) -0.3888(7)
�p?(pe, pzP) -0.02(2) -0.628(4) -0.1207(7)
�p?(pe, pze) 0.0(2) -0.535(4) -0.1173(7)
�p?(pe, pzZ) -0.01(2) -0.527(4) -0.0874(7)
� sin �WZ -0.03(2) -0.321(4) 0.0031(7)
� (��eZ) 0.07(2) 0.196(4) 0.0688(7)

SM stat err 30 fb�1 0.7
SM stat err 100 fb�1 0.4
SM stat err 3000 fb�1 0.07

Process W�Z ! µ�µ+e�⌫̃e
Operators SM OfWWW O�fWB

�p?(pe, pq) -0.08(1) 1.006(3) 0.2522(4)
�p?(pe, pzP) -0.03(1) -0.331(3) 0.0810(4)
�p?(pe, pze) -0.01(1) 0.295(3) 0.0514(4)
�p?(pe, pzZ) 0.00(1) 0.295(3) 0.0627(4)
� sin �WZ -0.02(1) -0.190(3) 0.0013(4)
� (��eZ) -0.05(1) 0.022(3) 0.0109(4)

SM stat err 30 fb�1 0.6
SM stat err 100 fb�1 0.3
SM stat err 3000 fb�1 0.06

Table 10: Asymmetries in fb in the WZ ! µ�µ+e+⌫e and WZ ! µ�µ+e�e⌫e channels
by using different reference axes for the triple product and sin �WZ , in the ATLAS
fiducial phase space at

p
s = 13TeV at the LHC. The statistical errors are displayed

using the LO SM cross-sections and several integrated luminosities.

ables are not purely CP-violating since the processes are not C-even and taking the
sum of the two final state is not enough as also the initial state is not C-even at the
LHC. Therefore, the SM contribution (effects from the CKM phase are negligible)
to those asymmetries does not have to vanish. However, we found that the asymme-
tries were well below the percent level and consistent with zero with our numerical
precision. This would have to be checked in higher order computations. Similarly,
the asymmetries from the square of the O(⇤�2) amplitudes are consistent with zero,
so they are not shown in Table 10. Overall OfWWW produces larger CP violating
effects than O�fWB. However, the normalisation of the operators is arbitrary as long
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HE behaviour

Figure 4: Differential cross-sections of SM and interferences with respect to
p

ŝ in
WZ production in the ATLAS fiducial phase space are displayed in light blue and
purple respectively while we represent the asymmetries following the true matrix
elements in red. The differential triple product asymmetries are drawn in blue and
the differential asymmetries for sin 'WZ in green. For O�fWB, these asymmetries
are too small and dominated by numerical errors. The dashed lines correspond to
negative values.

37
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Constraints
combined. Thirdly, the NLO correction increase the SM cross-sections by roughly a
factor 2. It this is true also for the SMEFT contributions to our observables, this
could further enhance the sensitivity. Moreover, for the large contribution with an
extra radiation, the jet could be used to better approximate the quark direction.
Finally, the cross-sections are sufficiently large either to use differential asymmetries
or to cut the phase space in order to improve the sensitivities.

Figure 6: Sensitivity at 95%CL as a function of the integrated luminosity for each
process and each operator using the best observable in each case and the SM at LO
as the only background and assuming it to be symmetric.

5 Discussion and Conclusion
Our aim is to explore which observables could shed some light or constrain the pres-
ence of new sources of CP violation. From the SMEFT Lagrangian in the Warsaw
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• ME/ML trained vs Observable  

• Efficient observables 

• more sensitive 

• smaller errors 

• CP-odd on their own 

• running 

• global fit if CP-odd observables only
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Observables vs ML trained  on model
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Figure 7. Comparison of the significances (defined as the mean value divided by the standard devia-
tion) of all the observables considered in this work with respect to k̃ and at fixed k = 1. The results
correspond to 1M events per k̃ at 14 TeV. Plain w6 in gray, w14 in black, phase-space optimized w6
and w14 (59) in purple and orange, anti-symmetrized neural network F(w; a) (Section 3.2.2) in blue
and the first order approximation of the latter a · w in red (Section 3.2.3). See text for details on each
observable [27].

We used this approach to extract the optimal weights aj from 107 events generated
with k̃ = k = 1 at 14, 27, and 100 TeV. We also estimated the uncertainty associated with the
optimal weights using the following procedure: First we estimate the statistical spread of
the significance obtained with optimal a. Next we allow a single aj to float in the intervals
[aj � sj, aj + sj], where sj is chosen such that the decrease of the significance due to the
change in aj corresponds to the statistical spread of the significance. We perform an efficient
scan around the optimal vector a in its 22-dimensional neighborhood using spherical
coordinates to trivially fulfill the normalization constraint Âj a2

j = 1. We approximate
the significance with a quadratic function around the extremum to find independent,
uncorrelated directions in the a-space. With this procedure we determine how sharply the
optimal aj are defined. In practice, we estimated the statistical error of the significance
using 107 events. Clearly the uncertainties sj are larger for smaller chosen sample size.
The results of this approach are shown in Figure 8, where the upper (lower) panel shows
the estimated error (significance) for each aj at 14, 27, and 100 TeV. A comparison of the
observable a · w to other approaches discussed previously is shown in Figure 7. We reach
a similar level of improvement compared to the full F(w; a) network with significantly
fewer parameters.

Faroughy, Bortolato, Kamenik, Kosnik Smolkovic,
Symmetry 13 (2021) no.7, 1129
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observables which are invariant under pb $ pb̄ transformation. We construct these
observables from 3-vector quantities with well defined C and P eigenvalues, that are given
in Table 1.

Table 1. Vector quantities with well-defined C and P eigenvalues in 3 dimensional Euclidean space.
More complicated objects with well-defined C and P eigenvalues can be constructed using variables
in this table.

ph p`� + p`+ p`� � p`+ pb + pb̄ pb � pb̄

C + + � + �

P � � � � �

CP � � + � +

We use quantities in Table 1 to construct CP-odd variables w of mass-dimension 5, that
are C-even and invariant under pb $ pb̄ transformation. In order to systematically obtain
all distinct w’s we proceed as follows. First, we construct variables of the form w ⇠ V1 ⇥V2 ·

V3 V4 · V5 (Notice that the possibility of a nested cross product (((V1 ⇥ V2)⇥ V3)⇥ V4) · V5
can also be reduced to this form) using Vj 2 {ph, p`� + p`+ , p`� � p`+ , pb + pb̄, pb � pb̄}

for j 2 {1, ..., 5}. Doing so, we find 150 potential quintuple products. We symmetrize
them with respect to C-conjugation and pb $ pb̄ transformation. The non-zero quintuple
products are w variables, however they may be linearly dependent. Indeed some of the
obtained w’s are connected via the following Euclidean identity

dabecde � dacedeb + dadeebc � daeebcd = 0 , (27)

which can be written as:

a (b ⇥ c · d)� b (c ⇥ d · a) + c (d ⇥ a · b)� d (a ⇥ b · c) = 0 , (28)

where a, b, c and d are four arbitrary vectors in 3 dimensional Euclidean space. The sign of
individual terms in the last expression corresponds to the sign of the cyclic permutation of
the four vectors.

The first class of w’s involves p`+ and p`� in the mixed product, p`� � p`+ in the
scalar product. Both products are invariant under pb $ pb̄:

w1 ⇠ [(p`� ⇥ p`+) · ph][(p`� � p`+) · ph], (29)
w2 ⇠ [(p`� ⇥ p`+) · ph][(p`� � p`+) · (p`� + p`+)], (30)
w3 ⇠ [(p`� ⇥ p`+) · ph][(p`� � p`+) · (pb + pb̄)], (31)
w4 ⇠ [(p`� ⇥ p`+) · (pb + pb̄)][(p`� � p`+) · ph], (32)
w5 ⇠ [(p`� ⇥ p`+) · (pb + pb̄)][(p`� � p`+) · (p`� + p`+)], (33)
w6 ⇠ [(p`� ⇥ p`+) · (pb + pb̄)][(p`� � p`+) · (pb + pb̄)]. (34)

The second class involves pb ⇥ pb̄ and/or pb � pb̄ in both mixed and scalar products:

w7 ⇠ [(pb ⇥ pb̄) · ph][(pb � pb̄) · ph], (35)
w8 ⇠ [(pb ⇥ pb̄) · ph][(pb � pb̄) · (p`� + p`+)], (36)
w9 ⇠ [(pb ⇥ pb̄) · ph][(pb � pb̄) · (pb + pb̄)], (37)

w10 ⇠ [(pb ⇥ pb̄) · (p`� + p`+)][(pb � pb̄) · ph], (38)
w11 ⇠ [(pb ⇥ pb̄) · (p`� + p`+)][(pb � pb̄) · (p`� + p`+)], (39)
w12 ⇠ [(pb ⇥ pb̄) · (p`� + p`+)][(pb � pb̄) · (pb + pb̄)], (40)
w13 ⇠ [(pb ⇥ pb̄) · (p`� � p`+)][(pb � pb̄) · (p`� � p`+)], (41)
w14 ⇠ [(p`� ⇥ p`+) · (pb � pb̄)][(pb � pb̄) · (p`� � p`+)] . (42)
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