Dim-8 operators in double Higgs production Vector Boson Fusion

Michał Ryczkowski

in collaboration with: A. Dedes, J. Rosiek based on project in progress

Effective Field Theory in Multiboson Production Padova 11.06.2024

Outline

- 1. Double Higgs production introduction
- 2. Di-Higgs production via ggF and VBF
- 3. Dim-6 and dim-8 bosonic SMEFT operators relevant for VBF di-Higgs
- 4. Assumptions & constraints
- 5. Helicity amplitudes & cross sections
- 6. Numerical simulations
- 7. Summary and next steps

Double Higgs production

Double Higgs production #1

- Understanding Higgs sector and mechanism of EWSB
- Probing Higgs self-coupling λ

$$V(\phi) = -m^2 \phi^\dagger \phi + \lambda \left(\phi^\dagger \phi
ight)^2$$

• Potential sensitivity to BSM physics, with current constraints (LHC $\sqrt{s} = 13$ TeV):

$$\sigma(pp \rightarrow hh) < 2.4 \times \sigma^{SM}(pp \rightarrow hh)$$
 [2211.01216] ATLAS
 $\sigma(pp \rightarrow hh) < 3.4 \times \sigma^{SM}(pp \rightarrow hh)$ [2207.00043] CMS

Double Higgs production via gluon fusion (ggF)

Main di-Higgs production channel:

SM & LHC with $\sqrt{s} = 14$ TeV at NNLO [2008.11626]:

$$\sigma^{ggF}_{SM}(pp
ightarrow hh)=36.69^{+6\%}_{-23\%}$$
 fb

Double Higgs production via Vector Boson Fusion (VBF)

SM & LHC with $\sqrt{s} = 14$ TeV at N³LO [1811.07906]:

$$\sigma_{SM}^{VBF}(pp
ightarrow hhjj)=2.055^{+0.001}_{-0.001}$$
 fb

Double Higgs production via VBF

$$\sigma^{V\!BF}_{SM}(pp
ightarrow hhjj) < 10\% imes \sigma^{ggF}_{SM}(pp
ightarrow hh)$$

Di-Higgs production via VBF (see e.g. [1611.03860]):

- Very sensitive to BSM physics, small changes of the SM couplings can lead to striking increase in σ
- Can give us further insight into the EW sector and mechanism of EWSB e.g. by constraining *hhVV* couplings

What is the maximal enhancement of VBF di-Higgs production in SMEFT at $\mathcal{O}\left(\frac{1}{\Lambda^4}\right)$ order of the EFT expansion?

Double Higgs production via VBF in SMEFT Strategy of analysis

- 1. Identify & classify relevant dim-6 $\mathcal{O}\left(\frac{1}{\Lambda^2}\right)$ and dim-8 $\mathcal{O}\left(\frac{1}{\Lambda^4}\right)$ operators
- 2. Formulate analysis assumptions, take into account existing constraints on WCs
- 3. Calculate helicity amplitudes & cross sections
- 4. Identify leading behaviour and main SMEFT contributions
- 5. Run numerical MC simulations to formulate more precise predictions

Introducing: SMEFT

$$\mathcal{L}_{ ext{SMEFT}} = \mathcal{L}_{ ext{SM}} + \sum_i rac{C_i Q_i}{\Lambda^{d_i - 4}}$$

- Q_i higher dimensional gauge invariant operators in terms of SM fields
- C_i Wilson coefficients
- Λ new physics scale

Model independent way of studying BSM phenomena!

Double Higgs production via VBF in SMEFT #1

We're looking at *hVV*, *hhVV* and *hhh* interactions!

Double Higgs production via VBF in SMEFT #2 Dim-6 operators

$X^2 \varphi^2$		$arphi^{6}$ and $arphi^{4}D^2$		
$Q_{arphi W}$	$arphi^\daggerarphi W^I_{\mu u} W^{I\mu u}$	Q_arphi	$(arphi^{\dagger}arphi)^3$	
$Q_{\varphi \widetilde{W}}$	$arphi^\daggerarphi\widetilde{W}^I_{\mu u}W^{I\mu u}$	$Q_{arphi\square}$	$(arphi^\daggerarphi) \Box (arphi^\daggerarphi)$	
$Q_{arphi B}$	$arphi^\daggerarphi {\cal B}_{\mu u} {\cal B}^{\mu u}$	$Q_{arphi D}$	$\left(arphi^{\dagger} D^{\mu} arphi ight)^{*} \left(arphi^{\dagger} D_{\mu} arphi ight)$	
$Q_{arphi \widetilde{B}}$	$arphi^\daggerarphi\widetilde{B}_{\mu u}B^{\mu u}$			
$Q_{arphi WB}$	$arphi^\dagger au^I arphi W^I_{\mu u} B^{\mu u}$			
$Q_{arphi \widetilde{W}B}$	$arphi^\dagger au^{\prime} arphi \widetilde{W}^{\prime}_{\mu u} B^{\mu u}$			

Table: Dimension-6 operators affecting $VV \rightarrow hh$ process (notation of 1704.03888)

$$\begin{split} \varphi &= \begin{pmatrix} \Phi^+ \\ \frac{1}{\sqrt{2}} \left(v + h + i \Phi^0 \right) \end{pmatrix}, \quad D_\mu = \partial_\mu + i \bar{g} B_\mu Y + i \bar{g} W_\mu^I T^I \\ W_{\mu\nu}^I &= \partial_\mu W_\nu^I - \partial_\nu W_\mu^I - g \epsilon^{IJK} W_\mu^J W_\nu^K, \quad B_{\mu\nu} = \partial_\mu B_\nu - \partial_\nu B_\mu \end{split}$$

Double Higgs production via VBF in SMEFT #3 Dim-8 operators

Table: Classes of dimension-8 operators affecting $VV \rightarrow hh$ process (from [2005.00059])

Naive Dimensional Analysis (NDA)

Naive Dimensional Analysis (NDA) for WCs (followig 1604.06444):

$$\frac{C_i}{\Lambda^{D-4}} = \frac{g_*^{n_i-2}}{\Lambda^{D-4}}$$

- D dimension of SMEFT operator
- *n_i* number of fields involved
- $g_* \leq 4\pi$ UV coupling to the SM

$$\text{e.g.} \ \ C_{\varphi}=g_*^4c_{\varphi}, \quad C_{\varphi\square}=g_*^2c_{\varphi\square}, \quad C_{\varphi^8}=g_*^6\,c_{\varphi^8}\,, \quad C_{\varphi^6\square}=g_*^4\,c_{\varphi^6\square}$$

• $c_i \leq 1$ - numbers that can be further suppressed e.g. by symmetries

Values of WCs

• Dim-6 - constraints from fits, assuming $\Lambda = 1$ TeV and following [2105.00006]

 $|C_{arphi \Box}| \lesssim \pi, \quad |C_{arphi D}| \lesssim 1, \quad |C_{arphi W}| \lesssim 0.5, \quad |C_{arphi B}| \lesssim 0.5, \quad |C_{arphi WB}| \lesssim 0.5$

• C_{φ} from di-Higgs production data, [2304.01968]:

$$-\pi^2 \lesssim \mathcal{C}_arphi \lesssim 2\pi$$

• Dim-8 - NDA without additional assumptions or constraints, with $c_i = 1$

Let's produce helicity amplitudes using ...

SmeftFR v3 - [2302.01353]

Comput.Phys.Commun. 294 (2024) 108943

SmeftFR v3 – Feynman rules generator for the Standard Model Effective Field Theory

A. Dedes^a, J. Rosiek^{b,*}, M. Ryczkowski^b, K. Suxho^a, L. Trifyllis^a

^aDepartment of Physics, University of Ioannina, GR 45110, Ioannina, Greece ^bFaculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland

SmeftFR available at:

www.fuw.edu.pl/smeft

SmeftFR v3 - relevant features

- 1. Mathematica package using FeynRules [1310.1921]
- 2. Consistent calculation of SMEFT vertices up to $\frac{1}{\Lambda^4}$: all dim-6 operators in the Warsaw basis [1008.4884] all bosonic dim-8 operators in the basis of [2005.00059]
- 3. Output to LATEX, FeynArts, UFO, ...
- 4. Predefined input schemes for the EW sector and CKM matrix

Di-Higgs via VBF Process and setup

 $W^+(p_1,\lambda_1)+W^-(p_2,\lambda_1)
ightarrow h(p_3)+h(p_4)$

Dim-6 operators with maximal allowed values:

 $Q_arphi \propto \mathcal{O}\left(1
ight), \quad Q_{arphi D} \propto \mathcal{O}\left(s
ight), \quad Q_{arphi \Box} \propto \mathcal{O}\left(s
ight), \quad Q_{arphi W} \propto \mathcal{O}\left(s
ight)$

• Dim-8 operators:

 $Q_{arphi^8} \propto \mathcal{O}\left(1
ight), \quad Q^{\left(1
ight)}_{arphi^4 D^4} \propto \mathcal{O}\left(s^2
ight), \quad Q^{\left(1
ight)}_{W^2 arphi^4} \propto \mathcal{O}\left(s
ight), \quad Q^{\left(1
ight)}_{W^2 arphi^2 D^2} \propto \mathcal{O}\left(s^2
ight)$

with Λ to ensure validity of EFT:

$$|C| imes rac{s}{\Lambda^2} \ll 1$$

• \pm chosen to maximize enhancement

SM amplitudes

$$\mathcal{M}_{\lambda_1\lambda_2} \equiv \mathcal{M}_{\lambda_1\lambda_2}^{WWHH}(\theta, s, G_F, M_W, M_Z, M_H, C_i)$$

$$\mathcal{M}_{00}^{SM} = \sqrt{2}G_F M_H^2 \left[1 + 2\left(1 - \frac{4}{\sin^2 heta}\right) \frac{M_W^2}{M_H^2}
ight]$$

 $\mathcal{M}_{\pm\pm}^{SM} = 2\sqrt{2}G_F M_W^2, \quad \mathcal{M}_{\pm\mp}^{SM} = 0, \quad \mathcal{M}_{0\pm}^{SM} = \mathcal{M}_{\pm0}^{SM} = 0$

At most constant contribution plus terms $\mathcal{O}(1/s)$

SMEFT dim-6 and dim-6² amplitudes

$$\begin{split} \mathcal{M}_{OO} &= -3\sqrt{2}C_{\varphi}\left(\frac{1}{G_{F}\Lambda^{2}}\right) - 20C_{\varphi W}\left(\frac{M_{W}^{2}}{\Lambda^{2}}\right) + \frac{1}{2}(4C_{\varphi \Box} - C_{\varphi D})\left(\frac{s}{\Lambda^{2}}\right) \quad \text{LO EFT} \\ &-28\sqrt{2}C_{\varphi W}^{2}\left(\frac{M_{W}^{2}}{\Lambda^{2}}\right)\left(\frac{1}{G_{F}\Lambda^{2}}\right) + \sqrt{2}(4C_{\varphi \Box}^{2} + \frac{1}{4}C_{\varphi D}^{2})\left(\frac{1}{G_{F}\Lambda^{2}}\right)\left(\frac{s}{\Lambda^{2}}\right) \quad \text{NLO EFT} \\ \mathcal{M}_{TT} &= \left(4C_{\varphi \Box} - C_{\varphi D}\right)\left(\frac{M_{W}^{2}}{\Lambda^{2}}\right) \\ &+\sqrt{2}(4C_{\varphi \Box}^{2} + \frac{1}{4}C_{\varphi D}^{2})\left(\frac{M_{W}^{2}}{\Lambda^{2}}\right)\left(\frac{1}{G_{F}\Lambda^{2}}\right) + 2\sqrt{2}C_{\varphi W}^{2}\left(\frac{1}{G_{F}\Lambda^{2}}\right)\left(\frac{s}{\Lambda^{2}}\right) \\ \mathcal{M}_{T_{1}T_{2}} &= -\left(4C_{\varphi \Box} - C_{\varphi D}\right)\left(\frac{M_{W}^{2}}{\Lambda^{2}}\right) + 2C_{\varphi W}\left(\frac{s}{\Lambda^{2}}\right) \\ &-2\sqrt{2}(4C_{\varphi \Box}^{2} + \frac{1}{4}C_{\varphi D}^{2})\left(\frac{M_{W}^{2}}{\Lambda^{2}}\right)\left(\frac{1}{G_{F}\Lambda^{2}}\right) + 6\sqrt{2}C_{\varphi W}^{2}\left(\frac{1}{G_{F}\Lambda^{2}}\right)\left(\frac{s}{\Lambda^{2}}\right) \\ \mathcal{M}_{OT} &= 16i\cot\theta C_{\varphi W}\left(\frac{\sqrt{s}M_{W}}{\Lambda^{2}}\right) + 16\sqrt{2}iC_{\varphi W}^{2}\cot\theta\left(\frac{1}{G_{F}\Lambda^{2}}\right)\left(\frac{\sqrt{s}M_{W}}{\Lambda^{2}}\right) \end{split}$$

SMEFT dim-6 and dim-6² cross sections

SMEFT dim-6 and dim-6² cross sections

SMEFT dim-8 amplitudes

$$\begin{split} \mathcal{M}_{OO} &= -6C_{\varphi^8} \left(\frac{1}{G_F^2 \Lambda^4}\right) - \frac{1}{8} C_{\varphi^4 D^4}^{(1)} \left(\cos^2 \theta + 1\right) \left(\frac{s^2}{\Lambda^4}\right) \\ &- 14\sqrt{2} C_{W^2 \varphi^4}^{(1)} \left(\frac{M_W^2}{\Lambda^2}\right) \left(\frac{1}{G_F \Lambda^2}\right) + \frac{1}{2} C_{W^2 \varphi^2 D^2}^{(1)} (\sin^2 \theta + 1) \left(\frac{M_W^2}{\Lambda^2}\right) \left(\frac{s}{\Lambda^2}\right) \\ \mathcal{M}_{TT} &= -\frac{1}{4} C_{\varphi^4 D^4}^{(1)} \sin^2 \theta \left(\frac{M_W^2}{\Lambda^2}\right) \left(\frac{s}{\Lambda^2}\right) + \frac{1}{8} C_{W^2 \varphi^2 D^2}^{(1)} \sin^2 \theta \left(\frac{s^2}{\Lambda^4}\right) \\ \mathcal{M}_{T_1 T_2} &= -\frac{1}{4} C_{\varphi^4 D^4}^{(1)} \sin^2 \theta \left(\frac{M_W^2}{\Lambda^2}\right) \left(\frac{s}{\Lambda^2}\right) + 3\sqrt{2} C_{W^2 \varphi^4}^{(1)} \left(\frac{1}{G_F \Lambda^2}\right) \left(\frac{s}{\Lambda^2}\right) + \frac{1}{4} C_{W^2 \varphi^2 D^2}^{(1)} \left(\frac{s^{3/2} M_W}{\Lambda^4}\right) \\ \mathcal{M}_{OT} &= -\frac{i}{4} C_{\varphi^4 D^4}^{(1)} \sin 2\theta \left(\frac{s^{3/2} M_W}{\Lambda^4}\right) - 4 C_{W^2 \varphi^4}^{(1)} \cot \theta \left(\frac{s^{1/2} M_W}{\Lambda^2}\right) \left(\frac{1}{G_F \Lambda^2}\right) - \frac{i}{4} C_{W^2 \varphi^2 D^2}^{(1)} \sin 2\theta \left(\frac{s^{3/2} M_W}{\Lambda^4}\right) \end{split}$$

SMEFT dim-8 cross sections

SMEFT dim-8 cross sections

Initial conclusions

- 1. Potential strong enhancement at dim-6 and dim-6² especially $C_{arphi\square}$
- 2. Importance of terms $\propto s$ for larger energies
- 3. Effects of dim-6² terms can be important
- 4. At dim-8 enhancement much more moderate
- 5. For dim-8 NDA more important than energy dependence

Let's see how it translates to MC simulations! Work in progress...

Numerical analysis

p p > h h j j

- 1. MG5 [1106.0522] with UFO models generated using SmeftFR
- 2. Only one non-zero C_i at time
- 3. Dim-6 maximal WCs allowed by constraints from fits
- 4. Dim-8 NDA
- 5. HL-LHC with $\sqrt{s} = 14$ TeV and $\mathcal{L} = 3000$ fb $^{-1}$
- 6. VBS cuts (following [1611.03860] and [1802.02366]:)

 $M_{jj} > 500 \text{ GeV}, \quad \Delta \eta_{jj} > 3, \quad M_{hh} > 400 \text{ GeV}, \dots$

Numerical analysis HL-LHC dim-6 and dim-6²

WC	Cross section (pb)	Events
SM	0.000198	594
C_{arphi}	0.00618	1852
$C_arphi+C_arphi^2$	0.00618	1852
$C_{arphi\square}$	0.000469	1408
$C_{arphi\square}+C_{arphi\square}^2$	0.001291	3873
$C_{\varphi D}$	0.000203	609
$C_{arphi D} + C_{arphi D}^2$	0.000203	609
$C_{\varphi W}$	0.000241	724
$C_{\varphi W} + C_{\varphi W}^2$	0.000263	789

Table: p p > h h j j cross sections for HL-LHC with $\sqrt{s} = 14$ TeV and $\mathcal{L} = 3000$ fb⁻¹.

Numerical analysis dim-8

$$\frac{C^{(1)}_{W^2\varphi^4}}{\Lambda^4} = \frac{(4\pi)^4}{\Lambda^4}, \quad \frac{C^{(1)}_{W^2\varphi^2D^2}}{\Lambda^4} = \frac{(4\pi)^2}{\Lambda^4}$$

	$\Lambda=6~{ m TeV}$		$\Lambda = 10 { m TeV}$	
WC	Cross section (pb)	No events	Cross section (pb)	No events
SM	0.000465	13	0.000465	13
$C^{(1)}_{W^2 arphi^2 D^2}$	0.000470	14	0.000466	13
$C^{(1)}_{W^2 arphi^4}$	0.01605	481	0.0006852	20

Table: p p > h h j j cross sections for LHC with $\sqrt{s} = 13$ TeV and $\mathcal{L} = 30$ fb⁻¹. OLD RESULTS

Summary

- 1. Di-Higgs VBF production interesting and "promising" process
- 2. Large number of dim-6 and dim-8 bosonic SMEFT operators contributing
- 3. NDA as a source of estimation for dim-8 operators
- 4. WW o HH reveals potential enhancement from $\mathcal{O}(1)$, $\mathcal{O}(s)$ and $\mathcal{O}(s^2)$ terms
- 5. Initial MC results suggest potential impact of dim-6 and dim-6² and limited dim-8

Next steps & future directions?

- 1. Finish thorough MG5 study including final states
- 2. More rigorous inclusion of constraints on dim-6 and dim-8 WCs
- 3. Inclusion of remaining classes of WCs and ZZ \rightarrow HH process
- 4. Matching to particular UV models for more realistic picture
- 5. Effects of fermionic dim-8 operators?
- 6. ggF?

Thank you!