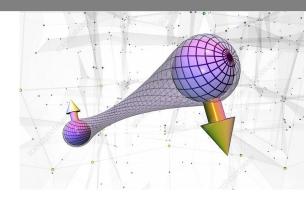
Quantum Entanglement in Diboson production

Emidio Gabrielli

University of Trieste, Italy NICPB, Tallinn, Estonia



1

Effective Field Theory in Multiboson production

Padova, June 10 - 11, 2024

in collaboration with: Marco Fabbrichesi, Roberto Floreanini, and Luca Marzola

based on: JHEP 09 (2023) 195; arXiv:2304.02403; EPJC 83 (2023) 9, 823; arXiv:2302.00683; PRD 109 (2024) 3, L031104; arXiv:2305.04982

- "Entanglement" between two systems is a pure quantum phenomena
- Violations incompatible with classical physics based on causality and local realism (locality) (EPR paradox, hidden variables theories)
- Violation of Bell inequality <u>observed</u> at **low energy**

pair of photons Freedman-Clauser PRL 28 (1972), Aspect-Dalibard-Roger PRL 49 (1982), Zelinger et al., Nature 433, 230 (2005)

At high energy (B physics):

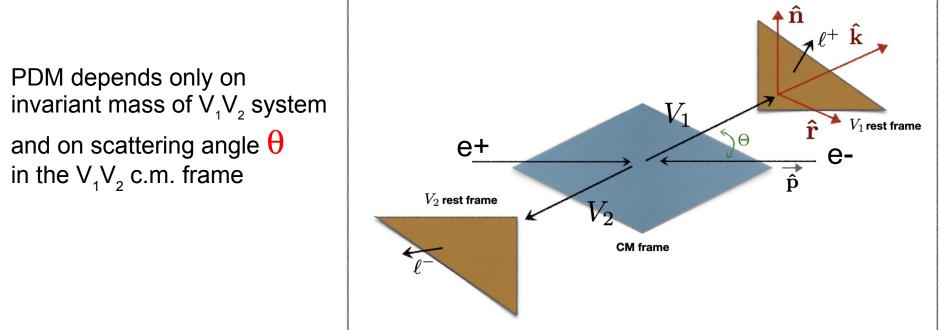
first observation of **Bell violation** at high energy in B meson decays and in the presence of WEAK and STRONG interactions ! (large significance >> 5σ)

observation of Entanglement (as ATLAS [arXiv:2311.07288] and CMS [CMS-PAS-TOP-23001] results for tops)

Fabbrichesi, Floreanini, EG, Marzola, PRD 109 (2024) 3, L031104 ; arXiv: 2305.04982

Entanglement & Bell inequalities in spin-1 systems (qutrits)

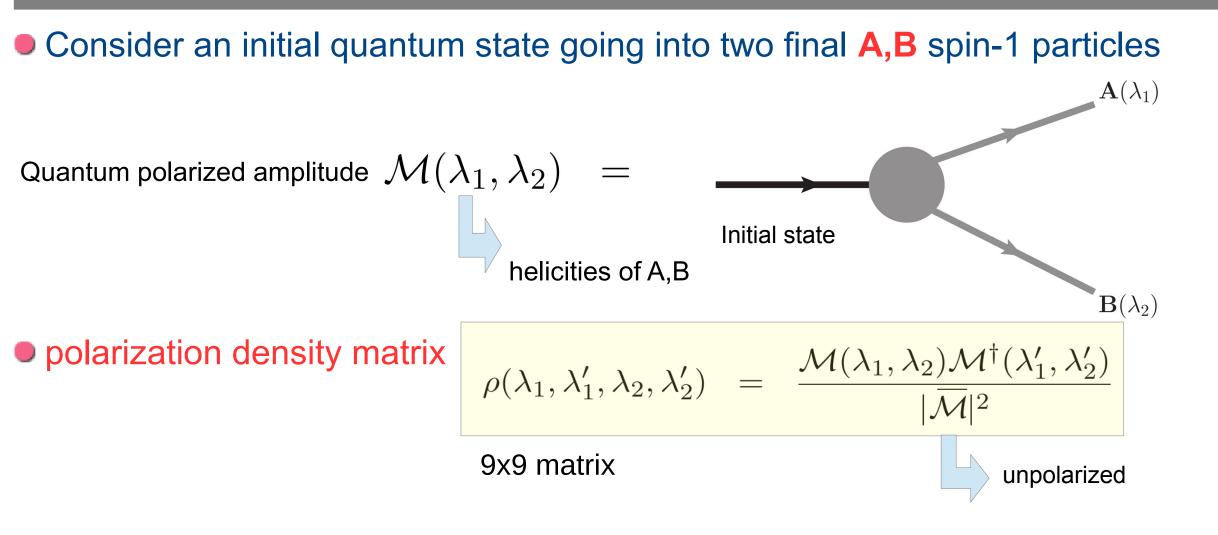
- Requires the knowledge of the Polarization Density Matrix (PDM) of spin-1 V₁ V₂ production
- PDM can be fully reconstructed from the angular distributions of the single V₁ V₂ decay products



but it can also be computed analytically

knowledge of full PDM allows to quantify (where possible) entanglement and Bell inequality violation

Polarization density matrix: two final spin-1 particles



Two methods available for computing or reconstructing PDM of two qutrits

Gell-Mann matrices decomposition (or spherical harmonics basis) → more general

PDM ho can be decomposed on the basis of tensor products of Gell-Mann matrices T^a

9x9 matrix

$$\rho(\lambda_{1}, \lambda'_{1}, \lambda_{2}, \lambda'_{2}) = \left(\frac{1}{9} [\mathbb{1} \otimes \mathbb{1}] + \sum_{a} f_{a} [\mathbb{1} \otimes T^{a}] + \sum_{a} g_{a} [T^{a} \otimes \mathbb{1}] + \sum_{ab} h_{ab} \left[T^{a} \otimes T^{b}\right]\right)_{\lambda_{1}\lambda'_{1}, \lambda_{2}\lambda'_{2}}$$
helicities

$$f_{a} = \frac{1}{6} \operatorname{Tr} \left[\rho (\mathbb{1} \otimes T^{a})\right], \quad g_{a} = \frac{1}{6} \operatorname{Tr} \left[\rho (T^{a} \otimes \mathbb{1})\right], \quad h_{ab} = \frac{1}{4} \operatorname{Tr} \left[\rho \left(T^{a} \otimes T^{b}\right)\right]$$
Spin polarization of particle 1
Spin polarization of particle 2
Spin correlations of particles 1 and 2

extract f,g,h coefficients from data using the angular distributions of their decay products

Right-handed basis
$$\{\hat{\mathbf{n}}, \hat{\mathbf{r}}, \hat{\mathbf{k}}\}$$

 $\hat{\mathbf{n}} = \frac{1}{\sin\Theta} \left(\hat{\mathbf{p}} \times \hat{\mathbf{k}} \right), \qquad \hat{\mathbf{r}} = \frac{1}{\sin\Theta} \left(\hat{\mathbf{p}} - \cos\Theta \hat{\mathbf{k}} \right)$
 $\int \frac{\hat{\mathbf{p}} \cdot \hat{\mathbf{k}}}{\frac{1}{100} \left(\hat{\mathbf{p}} - \cos\Theta \hat{\mathbf{k}} \right)}$

$$\mathrm{d}\Omega^{\pm} = \sin\theta^{\pm}\mathrm{d}\theta^{\pm}\,\mathrm{d}\phi^{\pm}$$

phase space written in terms of the spherical coordinates (with independent polar axis) for the momenta of the final charged leptons in the respective rest frames of the decaying spin-1 particles

Extracting PDM for Two-Qutrits from data

The following example is for W+ and W- final states, but the method is general

Rahaman, Singh, NPB 984 (2022), arXiv:2109.09345

Differential cross section $\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega^{+} \mathrm{d}\Omega^{-}} = \left(\frac{3}{4\pi}\right)^{2} \mathrm{Tr} \left[\rho_{V_{1}V_{2}} \left(\Gamma_{+} \otimes \Gamma_{-}\right)\right]$ Kronecker product $\mathrm{d}\Omega^{\pm} = \sin\theta^{\pm}\mathrm{d}\theta^{\pm}\,\mathrm{d}\phi^{\pm} \longrightarrow$ phase space written in terms of the spherical coordinates (with independent polar axis) for the momenta

 $\rho_{V_1V_2}$ = density matrix of V_1V_2

of the final charged leptons in the respective rest frames of the decaying spin-1 particles

Density matrices that describe the polarization of the two spin-1 massive vectors into $\mathbf{L} + \mathbf{L}$ final leptons (the charged ones assumed to be massless)

> (in the case of the W-bosons these are projectors because of their chiral couplings to leptons)

can be computed by rotating to an arbitrary polar axis the spin ± 1 states of gauge bosons from the ones given in the **k-direction** quantization axis

$$\Gamma_{\pm} = \frac{1}{3} \, \mathbb{1} + \sum_{i=1}^{8} \mathfrak{q}_{\pm}^{a} \, T^{a} \xrightarrow{} \text{Density matrices for W-bosons}$$

 $\mathfrak{q}^a_\pm \to \mathsf{Wigner}\, \mathsf{q} ext{-symbols}$ (see backup slides) are functions of the solid angle: Ω^\pm

set of polynomials of spherical coordindates (see backup slide)

$$h_{ab} = \frac{1}{\sigma} \int \int \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega^{+} \mathrm{d}\Omega^{-}} \mathfrak{p}^{a}_{+} \mathfrak{p}^{b}_{-} \mathrm{d}\Omega^{+} \mathrm{d}\Omega^{-}$$
$$f_{a} = \frac{1}{\sigma} \int \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega^{+}} \mathfrak{p}^{a}_{+} \mathrm{d}\Omega^{+}$$
$$g_{a} = \frac{1}{\sigma} \int \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega^{-}} \mathfrak{p}^{a}_{-} \mathrm{d}\Omega^{-}$$

 \mathfrak{p}^n_{\pm} a particular set of orthogonal functions $\square \left(\frac{3}{4\pi}\right) \int \mathfrak{p}^n_{\pm} \mathfrak{q}^m_{\pm} d\Omega^{\pm} = \delta^{nm}$ (see backup slides)

For ZZ case, the set of functions are linear combinations of q^a_+ (see backup slides)

Quantify entanglement

 $\rho = |\psi\rangle\langle\psi|$ $\rho^2 = \rho$ $\Gamma r[\rho^2] = 1$ For <u>pure states</u> Hill, Wootters, PRL 78 (1997)

• CONCURRENCE
$$\mathcal{C}[|\Psi\rangle] = \sqrt{2\left(1 - \mathrm{Tr}[(\rho_r)^2]\right)}$$

 $r = A ext{ or } B$ **P. Rungta et al**, PRA 64 (2001) \rightarrow vanish for separable (not entangled) states В

For mixed stat

$$\begin{array}{ll} & \text{Trace performed in the subsystems } r = A \text{ or} \\ & \text{For } \underline{\text{mixed states}} & \rho = \sum_{i} p_i \, |\Psi_i\rangle \langle \Psi_i| \ , \qquad p_i \geq 0 \ , \qquad \sum_{i} p_i = 1 \\ & \mathcal{C}[\rho] = \inf_{\{|\Psi\rangle\}} \sum_{i} p_i \, \mathcal{C}[|\Psi_i\rangle] & \longrightarrow \text{ optimization problem} \\ & \text{ (analytical solution only for qubit)} \end{array}$$

(witness of entanglement)

$$\mathscr{C}_2[\rho] = 2 \max\left(0, \operatorname{Tr}[\rho^2] - \operatorname{Tr}[(\rho_A)^2], \operatorname{Tr}[\rho^2] - \operatorname{Tr}[(\rho_B)^2]\right)$$

If non-vanishing unequivocally signal the presence of entanglement

used as observable for entanglement in WW, ZZ and WZ productions

Fabbrichesi, Floreanini, EG, Marzola

EPJC 83 (2023) 9, 823 ; arXiv: 2302.00683]

If the bipartite (A,B) system is a pure state it is possible to quantify its entanglement via

Entropy of entanglement

 $\mathscr{E}[\rho] = -\mathrm{Tr}\left[\rho_A \log \rho_A\right] = -\mathrm{Tr}\left[\rho_B \log \rho_B\right]$

Log is in natural basis

equality holds if and only if the bipartite is separable

 $0 \leq \mathcal{E}[\rho] \leq \log d$ d = 3 for qutrits (Von Neumann Entropy)

• Very useful in the case of Higgs decay into $H \rightarrow WW^*$ or ZZ^{*} (pure state)

Bell inequality for Two-QUTRITS

take a bi-partite system with components A,B

• perform two measurements $\rightarrow (A_1, A_2) (B_1, B_2)$ each can take values $\rightarrow \{0, 1, 2\}$

lacksquare consider the following correlator $\,\mathcal{I}_3\,$ for probability measurements

$$\mathcal{I}_3 = P(A_1 = B_1) + P(B_1 = A_2 + 1) + P(A_2 = B_2) + P(B_2 = A_1) -P(A_1 = B_1 - 1) - P(A_1 = B_2) - P(A_2 = B_2 - 1) - P(B_2 = A_1 - 1)$$

can be expressed as

Collins, Gisin, Linden, Massar, Popescu, PRL 88 (2002)

$$\mathcal{I}_3 = \operatorname{Tr}[\rho \mathcal{B}]$$

with ${\cal B}$ a suitable Bell operator

Bell inequalities for two-qutrits

For deterministic local models

$$\mathcal{I}_3 \leq 2$$

QM for qutrits can violate this inequality with upper bound = 4

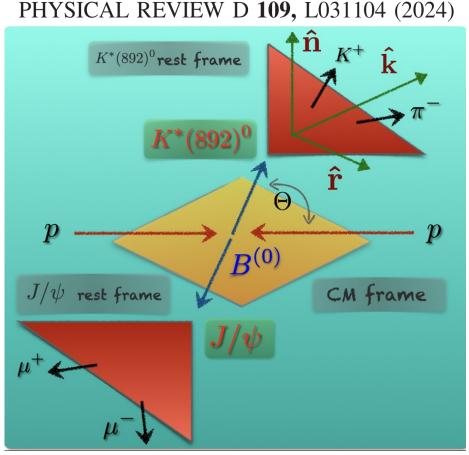
in order to maximize Bell's inequality

$$\mathcal{B} \to (U \otimes V)^{\dagger} \cdot \mathcal{B} \cdot (U \otimes V)$$
¹¹
U,V unitary 3x3 matrices

first observation of Bell violation at high energy in B meson decays and in the presence of WEAK and STRONG interactions and for qutrit systems (spin-1) !

work based on data from LHCb experiment at CERN [Phys. Rev. D 88, 052002 (2013)]

$$B^0 \rightarrow J/\psi K^*(892)^0$$



M. Fabbrichesi, EG, L. Marzola, R. Floreanini

	Е	\mathcal{I}_3
• $B^0 \to J/\psi K^*(892)^0$ [5]	0.756 ± 0.009	2.548 ± 0.015
• $B^0 \to \phi K^*(892)^0$ [18]	$0.707 \pm 0.133^{*}$	$2.417 \pm 0.368^{*}$
• $B^0 \to \rho K^* (892)^0$ [19]	$0.450 \pm 0.077^{*}$	$2.208 \pm 0.151^{*}$
• $B_s \to \phi \phi$ [20]	0.734 ± 0.037	2.525 ± 0.064
• $B_s \to J/\psi \phi$ [21]	0.731 ± 0.032	2.462 ± 0.080

CGLMP inequality $\mathcal{I}_3 < 2$ (for qutrits)

 $\mathcal{I}_3 = 2.548 \pm 0.015,$

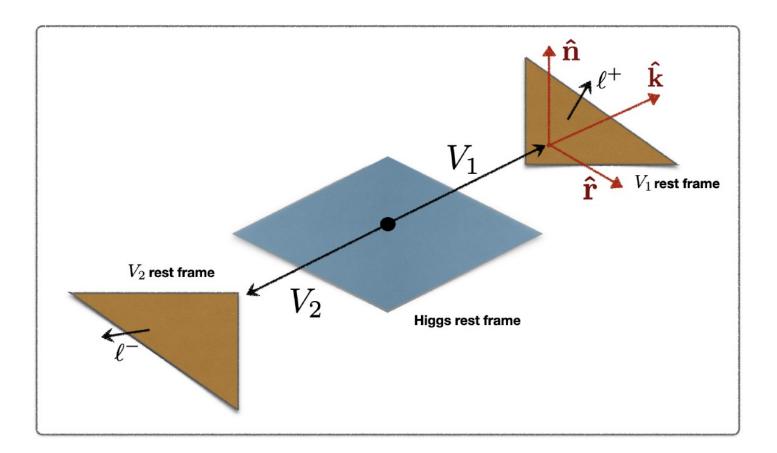
Significance (to reject the null hypothesis) Entanglement (Entropy): 86 σ

Bell inequality violation: 36σ

Di-boson production in Higgs boson decays

EPJC 83 (2023) 9, 823 ; arXiv: 2302.00683

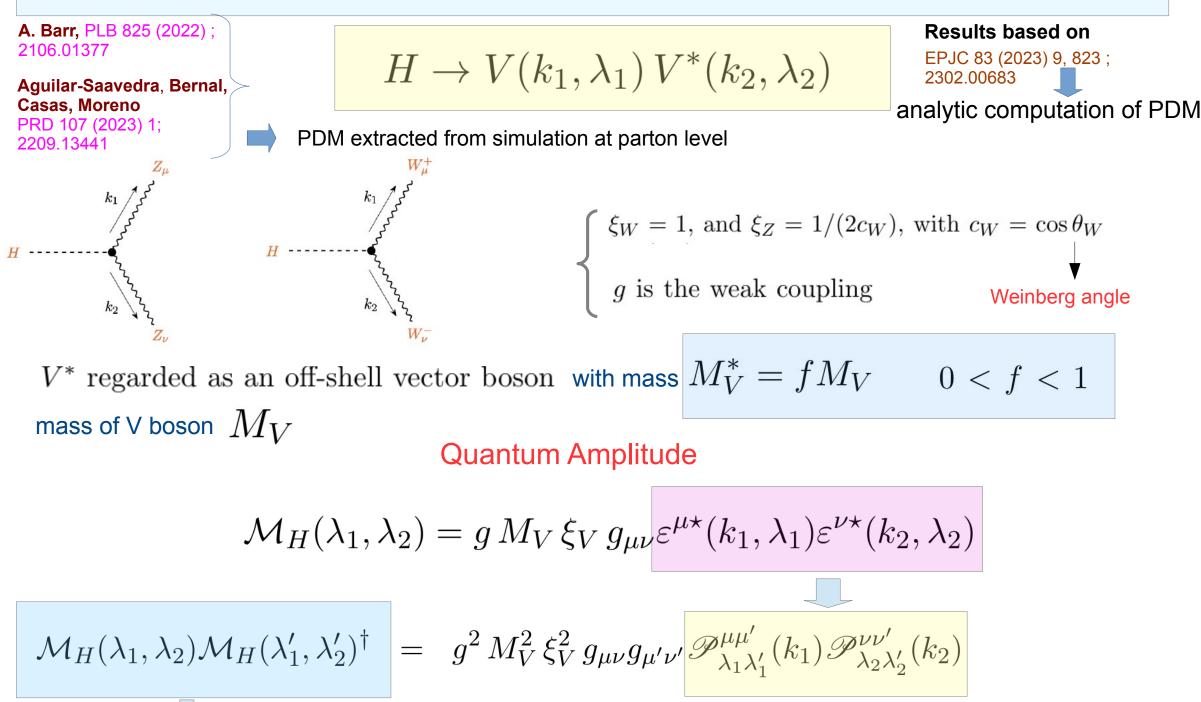
$$H \to V(k_1, \lambda_1) V^*(k_2, \lambda_2)$$



In the Higgs boson rest frame the density matrix of the bipartite VV* system does not depend on the scattering angle, but only by the Higgs mass, the V mass and the off-shell V* mass

13

Di-boson production in Higgs boson decays



By projecting vinto the Gell-Mann matrix basis for 2-qutrits one can extract the f,g and h coefficients

14

Inserting the f,g and h coefficients into the Gell-Mann basis for 2-qutrits

$$\operatorname{Tr}\left[\rho_{H}\right] = 1$$

density matrix is idempotent

$$\rho_H^2 = \rho_H$$

Signaling that $H \rightarrow VV^*$ is a **pure state**

$$\rho_H = |\Psi_H\rangle \langle \Psi_H|$$

Aguilar-Saavedra, Bernal, Casas, Moreno PRD 107 (2023) 1; 2209.13441

using the basis

$$|\lambda \lambda' \rangle = |\lambda\rangle \otimes |\lambda'\rangle$$
 with $\lambda, \lambda' \in \{+, 0, -\}$

where the pure state is

EPJC 83 (2023) 9, 823 ; 2302.00683

$$|\Psi_H\rangle = \frac{1}{\sqrt{2+\varkappa^2}} \left[|+-\rangle - \varkappa |0\,0\rangle + |-+\rangle \right]$$

$$\varkappa = 1 + \frac{m_H^2 - (1+f)^2 M_V^2}{2 f M_V^2}$$

Being a pure state we can quantify entanglement via Entropy of entanglement

(Von Neumann Entropy)

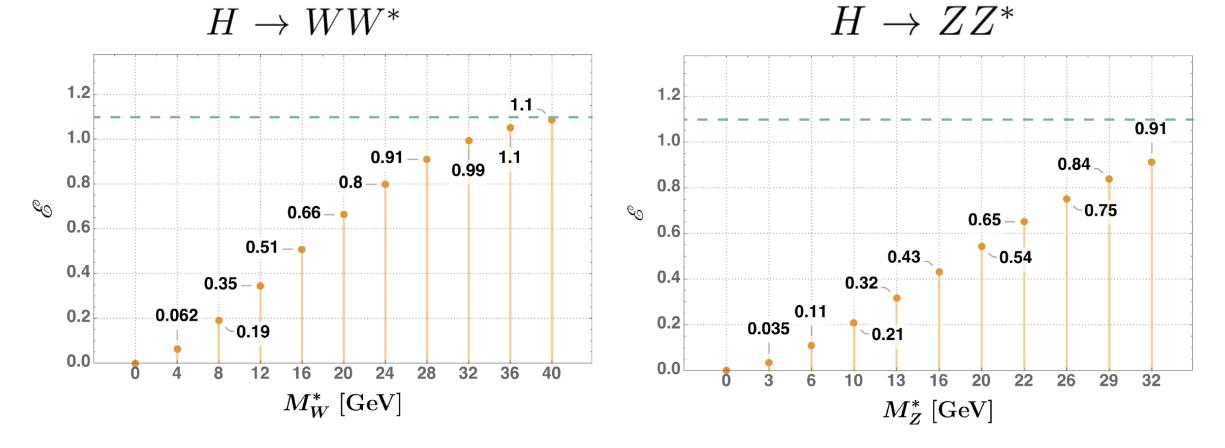
$$\mathscr{E}[\rho] = -\mathrm{Tr}\left[\rho_A \log \rho_A\right] = -\mathrm{Tr}\left[\rho_B \log \rho_B\right]$$

 $0 \le \mathcal{E}[\rho] \le \log 3 \quad \sim 1.01$

EPJC 83 (2023) 9, 823;

2302.00683

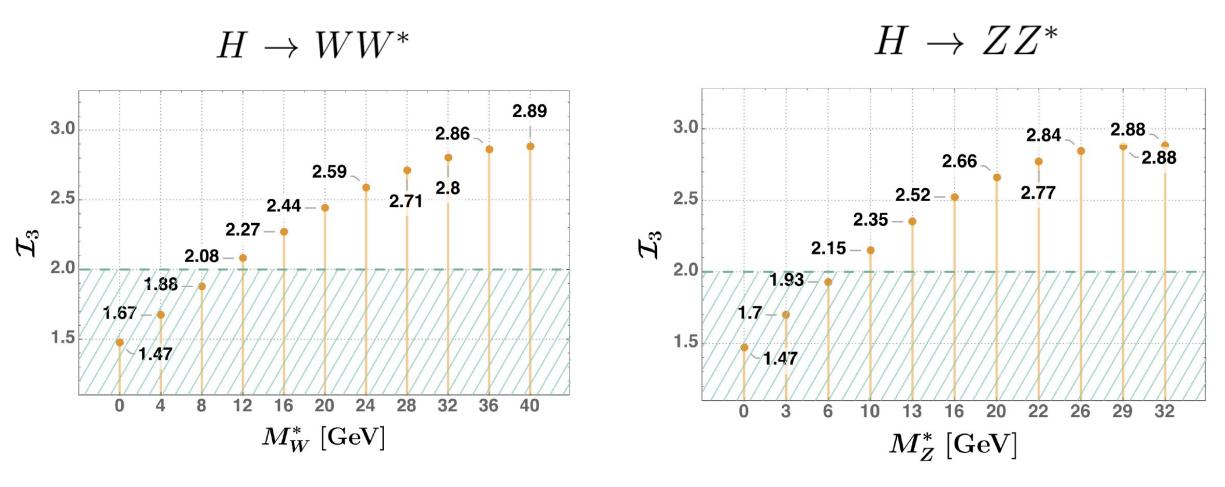
equality holds if and only if the bipartite is separable



EPJC 83 (2023) 9, 823 ; 2302.00683

Bell inequality violation for $H \rightarrow VV^*$

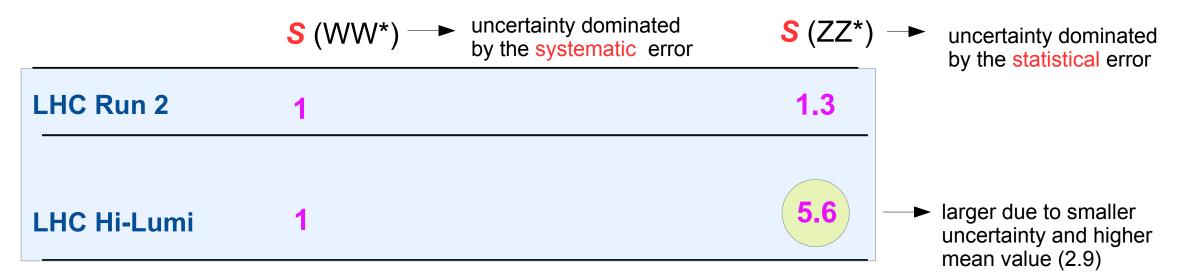
 $\mathcal{I}_3 > 2$



Maximization of $\mathcal{I}_3\,$ performed point by point as function of M_{V^*}

Summary of results for $H \to WW^* \:\: \text{and} \: H \to ZZ^*$

significance **S** for rejecting the null hypothesis $\mathcal{I}_3 \leq 2$



ZZ* promising channel at LHC Hi-Lumi

- In real simulation a reduced significance is expected (systematic uncertainties due to unfolding, background, and detector were neglected or only partially modeled here)
- Results are also consistent with analysis of where simulations of events have been adopted for the reconstruction of the density matrix
 A. Barr, PLB 825 (2022); 2106.01377
 Aguilar-Saavedra, Bernal, Casas, Moreno PRD 107 (2023) 1; 2209.13441 [hep-ph]

Constraining HWW and HZZ anomalous couplings with Quantum Tomography

Fabbrichesi, Floreanini, EG, Marzola, JHEP 09 (2023) 195; 2304.02403

We use polarization density matrix of the processes

$$H \to WW^* \qquad H \to ZZ^*$$

to constrain anomalous Higgs couplings to WW and ZZ

Effective Higgs-VV Lagrangian (including SM)

$$\mathcal{L}_{HVV} = g m_W W^+_{\mu} W^{-\mu} H + \frac{g}{2\cos\theta_W} m_Z Z_{\mu} Z^{\mu} H$$

$$- \frac{g}{m_W} \left[\frac{\lambda_1^W}{2} W^+_{\mu\nu} W^{-\mu\nu} + \frac{\lambda_2^W}{2} \left(W^{+\nu} \partial^{\mu} W^-_{\mu\nu} + \text{H.c.} \right) + \frac{\widetilde{\lambda}_{CP}^W}{4} W^+_{\mu\nu} \widetilde{W}^{-\mu\nu} \right]$$

$$+ \frac{\lambda_1^Z}{2} Z_{\mu\nu} Z^{\mu\nu} + \frac{\lambda_2^Z}{2} Z^{\nu} \partial^{\mu} Z_{\mu\nu} + \frac{\widetilde{\lambda}_{CP}^Z}{4} Z_{\mu\nu} \widetilde{Z}^{\mu\nu} \right] H,$$
19

CP-even

CP-odd

 $V^{\mu\nu}$ — Field strength , V=W,Z

 $\tilde{V}^{\mu\nu} = \epsilon^{\mu\nu\alpha\beta} V_{\alpha\beta}$

This state can be described in terms of helicity amplitudes h_i

again a pure state!

 $\rho_H^2 = \rho_H$

observables to constrain anomalous couplings in $H \rightarrow VV^{*}$

Entropy of entanglement

$$\mathscr{E}_{ent} = -\operatorname{Tr}\left[\rho_A \log \rho_A\right] = -\operatorname{Tr}\left[\rho_B \log \rho_B\right] \Rightarrow CP$$
-even

Lower bound on concurrence (entanglement)

$$\mathscr{C}_{2} = 2 \max \left[0, -\frac{2}{9} - 12 \sum_{a} f_{a}^{2} + 6 \sum_{a} g_{a}^{2} + 4 \sum_{ab} h_{ab}^{2} \right],$$

$$-\frac{2}{9} - 12 \sum_{a} g_{a}^{2} + 6 \sum_{a} f_{a}^{2} + 4 \sum_{ab} h_{ab}^{2} \right].$$
 CP-even

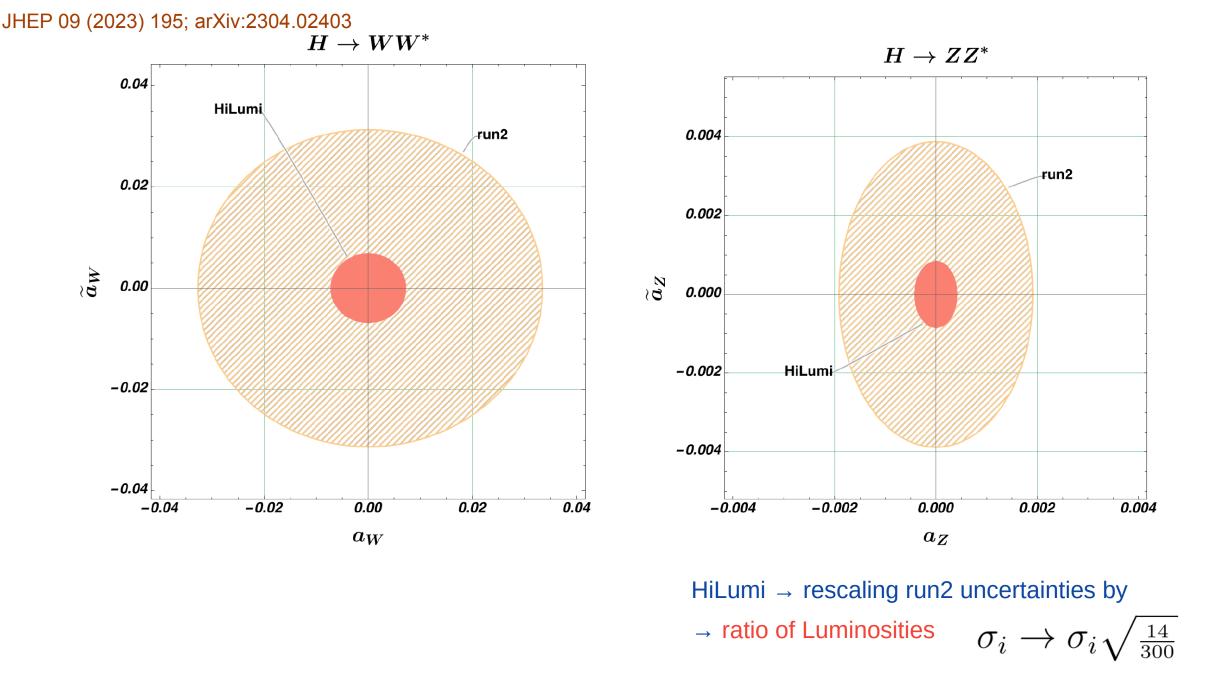
Constraining the anomalous couplings in $H \rightarrow VV^{\ast}$

Main uncertainty comes from the measurement of polarizations \rightarrow originates in the reconstruction of the rest frame of the decaying Higgs boson \rightarrow related to VV* invariant mass

We propagate uncertainty in the Higgs mass to the operators by means of a Montecarlo simul. \rightarrow giving variances σ_i^2 associated to the operators O_i

Works well for ZZ*

For WW we can determine only transverse mass → comes with an error of 5 GeV for fully leptonic decays, and we take half for semileptonic decays



including bckg effects weakens a bit the bounds (see case for ZZ in backup slides)

95% CL limits			
	LHC	run2	HiLumi
		$ a_W \le 0.033$	$ a_W \le 0.0070$
No background		$ \tilde{a}_W \le 0.031$	$ \tilde{a}_W \le 0.0068$
		$ a_Z \le 0.0019$	$ a_Z \le 0.00040$
		$ \tilde{a}_Z \le 0.0039$	$ \tilde{a}_Z \le 0.00086$

• Comparison with other theoretical analysis based on polarizations (not entanglement) 1 σ limits and for L=1ab⁻¹ \Rightarrow $a_Z = 6.88 \times 10^{-3}$, $\widetilde{a}_Z = 9.53 \times 10^{-3}$ K. Rao, S.D. Rindani, P. Sarmah

NPB 964 (2021) 115317; 2009.00980

• Comparison with CMS
$$f_{g2} = \frac{\sigma_2}{\sigma} |a_V|^2$$
, and $f_{g3} = \frac{\sigma_3}{\sigma} |\tilde{a}_V|^2$
Our 95% CL limits $f_{g2}^Z < 7.8 \times 10^{-6}$, $f_{g3}^Z < 1.5 \times 10^{-5}$
CMS 95% CL limits $f_{g2}^V < 3.4 \times 10^{-3}$, $f_{g3}^V < 1.4 \times 10^{-2}$

Di-boson production in pp collisions

$$p \ p \to V_1 \ V_2$$

$$V_1, V_2 \in \{W, Z\}$$

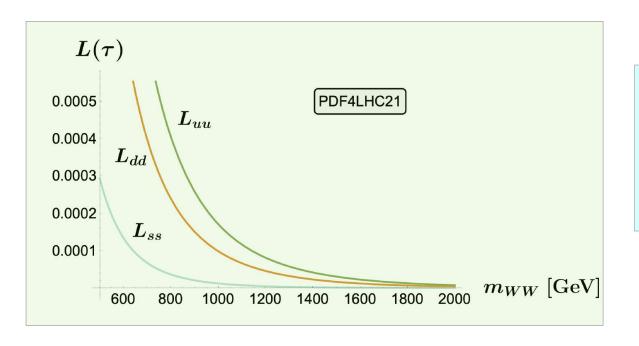
Proceeds via the partonic quark-antiquark process

(away from the Higgs resonance)

 $q_1 \, \bar{q}_2 \to V_1 V_2$

weighted by the parton luminosity

$$L^{q_1\bar{q}_1}(au)$$



parton luminosity of the initial $q_1 \bar{q_2}$ state

$$L^{q_1\bar{q}_1}(\tau) = \frac{4\tau}{\sqrt{s}} \int_{\tau}^{1/\tau} \frac{\mathrm{d}z}{z} q_{q_1}(\tau z) q_{\bar{q}_2}\left(\frac{\tau}{z}\right)$$

 $\tau = m_{VV} / \sqrt{s}$ pp c.o.m. energy invariant mass of V₁V₂ system

Decomposing the polarization matrix density into the Gell-Mann matrix basis

$$\rho(\lambda_1,\lambda_1',\lambda_2,\lambda_2') = \left(\frac{1}{9}\left[\mathbb{1}\otimes\mathbb{1}\right] + \sum_a f_a\left[\mathbb{1}\otimes T^a\right] + \sum_a g_a\left[T^a\otimes\mathbb{1}\right] + \sum_{ab} h_{ab}\left[T^a\otimes T^b\right]\right)_{\lambda_1\lambda_1',\lambda_2\lambda_2'}$$

we obtain for the h correlations coefficients in VV production — b depend also on scattering angle (-)

$$h_{ab}[m_{VV},\Theta] = \frac{\sum_{q=u,d,s} L^{q\bar{q}}(\tau) \left(\tilde{h}_{ab}^{q\bar{q}}[m_{VV},\Theta] + \tilde{h}_{ab}^{q\bar{q}}[m_{VV},\Theta + \pi]\right)}{\sum_{q=u,d,s} L^{q\bar{q}}(\tau) \left(A^{q\bar{q}}[m_{VV},\Theta] + A^{q\bar{q}}[m_{VV},\Theta + \pi]\right)}$$

and analogously for the f_a and g_a correlation coefficients, where

$$\tilde{h}_{ab} = A^{q\bar{q}}h_{ab}$$

 $A^{q\bar{q}}$ = unpolarized square amplitude of the partonic process

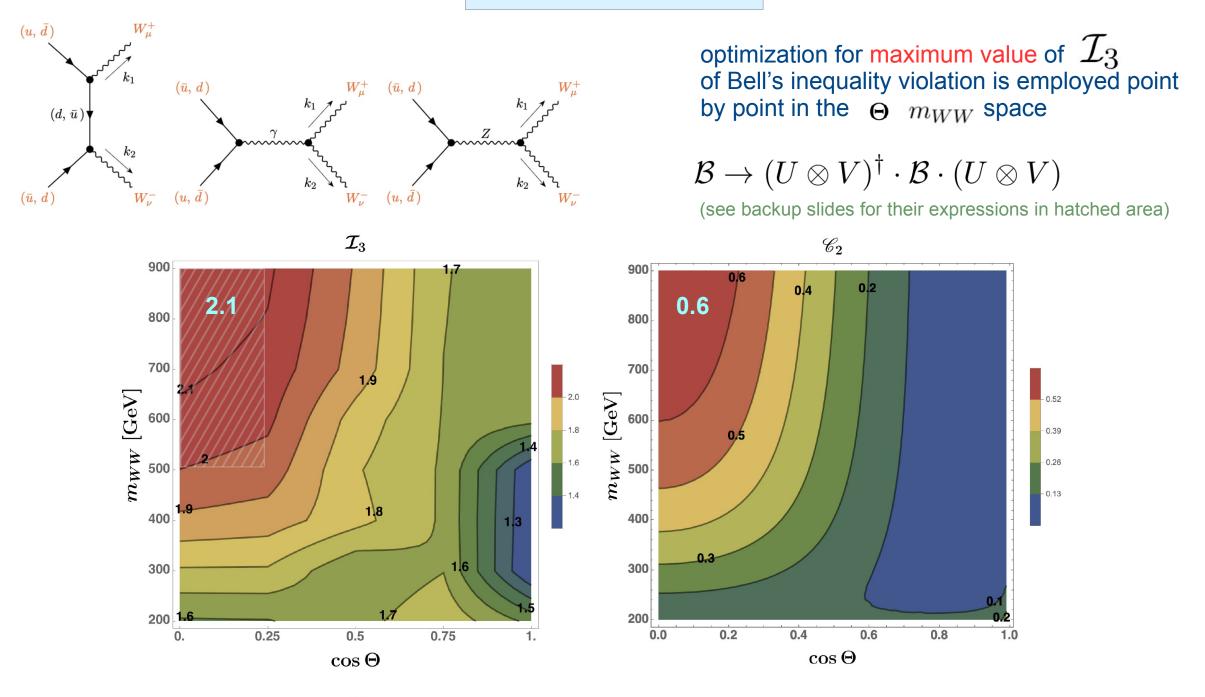
main uncertainty on the correlation coefficients comes from the missing higher order QCD corrections

- giving approx a 10% uncertainty on the main entanglement observables
- Other theoretical uncertainties, mainly from PDF and other SM inputs, is negligible → of the order of permille effect

Fabbrichesi, Floreanini, EG, Marzola

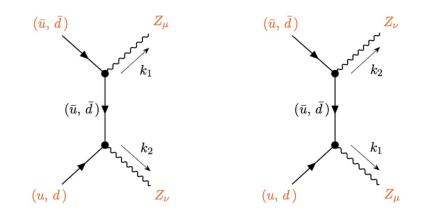
EPJC 83 (2023) 9, 823 ; arXiv: 2302.00683]

 $p \, p \to W^+ W^-$

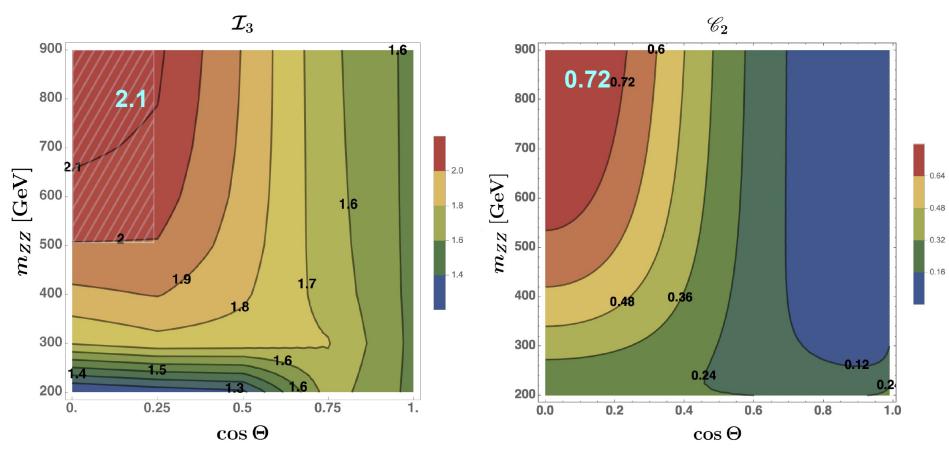


hatched area in the left-plot for $\mathcal{I}_3 > 2$ indicates bin used as reference for our estimation of the significance⁷ (see next slides)

EPJC 83 (2023) 9, 823 ; arXiv: 2302.00683



- same strategy as in WW for optimization of maximum value of of Bell's inequality violation
- reduced effect for Bell violations with respect to WW, but error is smaller being dominated by statistics



hatched area in the left-plot for $\mathcal{I}_3 > 2$ indicates bins used as reference for our estimation of the significance (see next slides)

Bell's inequalities in Di-boson production at LHC

EPJC 83 (2023) 9, 823 ; arXiv: 2302.00683

$$p \, p \to W^+ W^- \quad p \, p \to ZZ \qquad p \, p \to WZ$$

(backup slides for details)

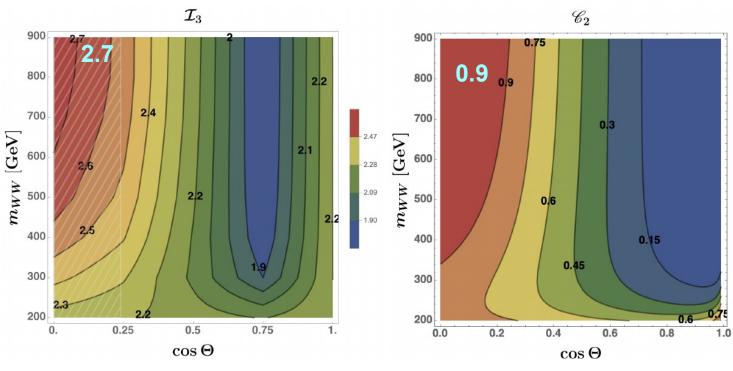
- not sufficient N. of events to test Bell's inequalities with large significance in the relevant kinematic region
- \bullet pp \rightarrow WW largely affected by systematic error induced by the missing neutrino momentum reconstruction
- $pp \rightarrow ZZ$ is the most promising channel

At Hi-lumi significance more than 2 to reject the null hypothesis

estimates of significance expected to be reduced by a full simulation analysis

$$e^+ e^- \rightarrow W^+ W^-$$

Lepton colliders

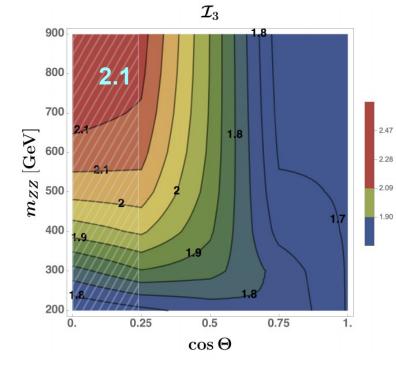


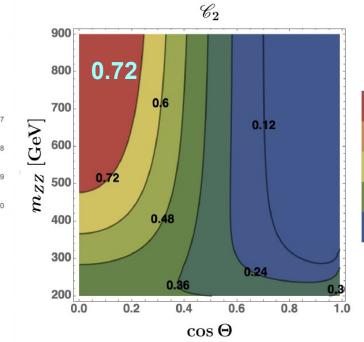
$$h_{ab}[m_{WW},\Theta] = \frac{\tilde{h}_{ab}^{\ell\bar{\ell}}[m_{WW},\Theta]}{A^{\ell\bar{\ell}}[m_{WW},\Theta]},$$

$$f_{a}[m_{WW},\Theta] = \frac{\tilde{f}_{a}^{\ell\bar{\ell}}[m_{WW},\Theta]}{A^{\ell\bar{\ell}}[m_{WW},\Theta]},$$

$$g_{a}[m_{WW},\Theta] = \frac{\tilde{g}_{a}^{\ell\bar{\ell}}[m_{WW},\Theta]}{A^{\ell\bar{\ell}}[m_{WW},\Theta]},$$

absence of PDF increases entanglement and Bell violations in WW





$$e^{0.90} e^+ e^- \to Z Z$$

0.90

0.72

0.54

- 0.36

0.54

- 0.36

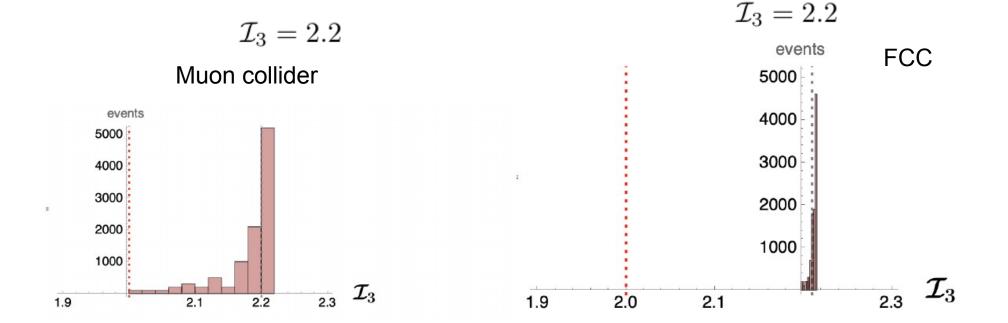
ZZ channel not much different than LHC \rightarrow due to the fact that PDF almost factorize (t,u channels)

Lepton colliders : events and sensitivity

	e^+	$e^- \to Z$	Ζ	promising channel
		$\sqrt{s} = 1 \text{ TeV}$	\sqrt{s} =	= 368 GeV
		(muon) $\mathcal{L} = 1 \text{ ab}^{-1}$	(FCC	C) $\mathcal{L} = 1.5 \text{ ab}^{-1}$
ev	vents	: 44	7	48

 $m_{WW} > 200 \text{ GeV} \text{ and } \cos \Theta < 0.25$

Significance to reject null hypothesis:2 @ muon collider and > 4 @ FCC



- Events computed with MADGRAPH@LO
- Efficiency 70% in each lepton identification → n. of events reduced accordingly
- only statistic error assumed
- no background considered

FCC significance is larger than muon collider due to larger n. of events at FCC (statistical error reduced)

10⁴ pseudo experiments

31

Summary

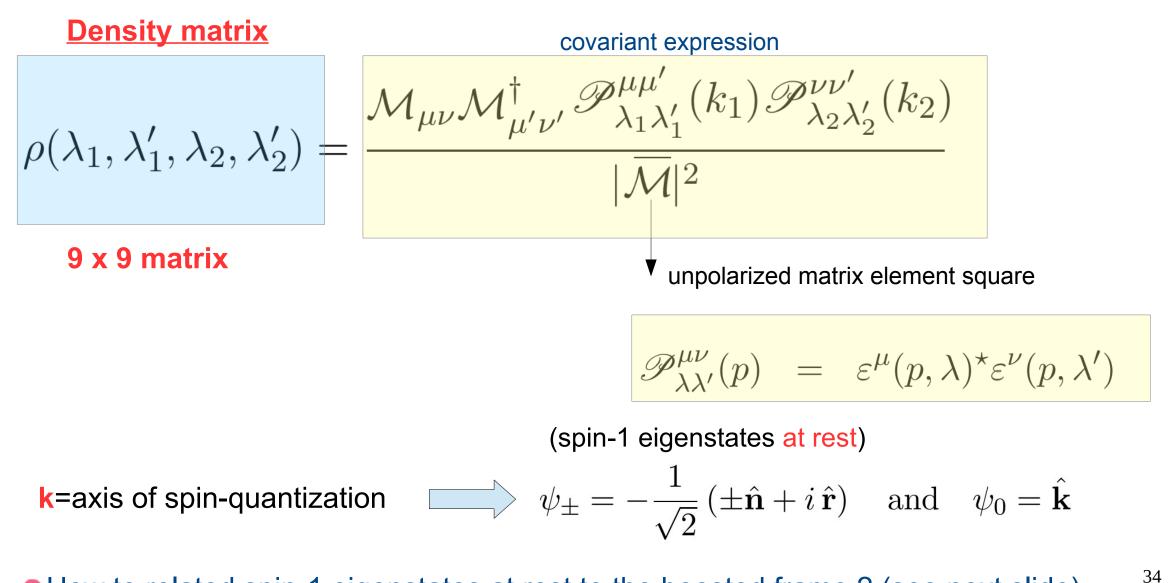
- Quantum tomography in diboson production is a very powerful tool
- require the knowledge of polarization density matrix
- that can be fully reconstructed from decay products of W and Z
- and allow to investigate quantum entanglement and Bell inequality violation
- Entanglement in diboson production difficult to quantify in general case (mixtures) (but we can use lower bound on concurrence as witness of entanglement)
- It is possible to quantify entanglement in pure states $H \rightarrow VV^*$ (using Entropy)
- Large significance (> 5₀) to observe entanglement and Bell inequality violation in $H \rightarrow ZZ^* \text{ expected at LHC Hi-Lumi}$

Entanglement as powerful tool to constrain anomalous couplings in $H \rightarrow VV^*$

Backup slides

• Matrix element of two-Vector Boson production $\bar{q}(p_1) q(p_2) \rightarrow V_1(k_1, \lambda_1) V_2(k_2, \lambda_2)$

$$\mathcal{M}(\lambda_1,\lambda_2) = \mathcal{M}_{\mu\nu}\varepsilon^{\mu\star}(k_1,\lambda_1)\varepsilon^{\nu\star}(k_2,\lambda_2)$$



How to related spin-1 eigenstates at rest to the boosted frame ? (see next slide)

covariant polarization vector of spin-1

Covariant Projector

$$\varepsilon^{\mu}(p,\lambda) = -\frac{1}{\sqrt{2}} |\lambda| \left(\lambda \, n_1^{\mu} + i \, n_2^{\mu}\right) + \left(1 - |\lambda|\right) n_3^{\mu}$$

helicity $\lambda=\pm 1,0$

rest frame limit

$$arepsilon^{\mu}(p,\lambda)_{\scriptscriptstyle{(eta
ightarrow\,0)}}\,\psi_{\pm}$$
 , ψ_{0}

β is the velocity

boosted base

$$n_1^{\mu} = (0, \, \mathbf{\hat{n}}) \,, \,\, n_2^{\mu} = (0, \, \mathbf{\hat{r}}) \,, \,\, n_3^{\mu} = \frac{E}{M}(\beta, \, \mathbf{\hat{k}})$$

$$\mathcal{P}_{\lambda\lambda'}^{\mu\nu}(p) = \varepsilon^{\mu}(p,\lambda)^{\star}\varepsilon^{\nu}(p,\lambda') \qquad \text{master formula} \qquad \varepsilon^{0123} = \\ = \frac{1}{3} \left(-g^{\mu\nu} + \frac{p^{\mu}p^{\nu}}{M^2} \right) \delta_{\lambda\lambda'} - \frac{i}{2M} \epsilon^{\mu\nu\alpha\beta} p_{\alpha} n_{\beta}^i \left(S_i \right)_{\lambda\lambda'} - \frac{1}{2} n_i^{\mu} n_j^{\nu} \left(S_{ij} \right)_{\lambda\lambda'} \right)$$

 $S_i, i \in \{1, 2, 3\}$ — rotation matrices for spin-1 particle

H.S. Song, Lett. Nuovo Cim. 25 (1979) S.Y. Choi, T. Lee, H.S. Song, PRD 40 (1989) Fabbrichesi, Floreanini, EG, Marzola, 2302.00683 [hep-ph]

$$S_{ij} = S_i S_j + S_j S_i - \frac{4}{3} \mathbb{1} \,\delta_{ij}$$

(see backup slides)

basis correspondence
$$|+\rangle = \begin{pmatrix} 1\\0\\0 \end{pmatrix}, |0\rangle = \begin{pmatrix} 0\\1\\0 \end{pmatrix}, |-\rangle = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$
 corresponding to eigenevalues for $(S_i)_{\lambda\lambda'}$

1

Sensitivity to the Bell violation

 $H \rightarrow WW^* ZZ^*$

		$\ell^+ \nu_\ell \ell^- \bar{\nu}_\ell$	$\ell^-\ell^+\ell^-\ell^+$
LHC run2	$(\mathcal{L} = 140 \text{ fb}^{-1})$	4571	28
<u>Hi-Lumi</u>	$(\mathcal{L} = 3 \text{ ab}^{-1})$	$9.8 imes 10^3$	589

cuts in V* invariant mass: 40 GeV for WW* and 30 GeV for ZZ*

we used MADGRAPH5 @ LO corrected by k factors at N3LO + N3LL Bonvini, Marzani, Muselli, Rottoli, JHEP 08, 105 (2016) 1603.08000 [hep-ph]

take into account efficiency (70%) in the identification of final leptons
 events reduced of 25% for ZZ* and 50% for WW*

- backgrounds can be efficiently reduced after considering topology of final states and use of suitable cuts

 we neglect all background effects in our assessment of significance
- We model uncertainty as a Gaussian dispersion in the determination of the mass of the off-shell weak boson controlled by the number of events

For the WW* we add a systematic error taking into account uncertainty in the reconstruction of W* mass, taking as benchmark value = 5 GeV for the systematic error in reconstruction of neutrino momenta

Relations between helicity amplitudes h_i and h_{ab} , f_a , g_a , of Gell-Mann basis

$$\begin{split} \hat{h}_{-}\hat{h}_{-}^{*} &= \frac{1}{9} \Big[1 + 3\sqrt{3} \left(f_{8} - 2g_{8} - 2h_{38} \right) + 9f_{3} - 6h_{88} \Big] ,\\ \hat{h}_{0}\hat{h}_{-}^{*} &= h_{16} + i \left(h_{17} - h_{26} \right) + h_{27} ,\\ \hat{h}_{+}\hat{h}_{-}^{*} &= h_{44} + i \left(h_{45} - h_{54} \right) + h_{55} ,\\ \hat{h}_{0}\hat{h}_{0}^{*} &= \frac{1}{9} \Big[1 - 9 \big(f_{3} + g_{3} - h_{33} \big) + 3\sqrt{3} \left(f_{8} + g_{8} - h_{38} - h_{83} \right) + 3h_{88} \Big] ,\\ \hat{h}_{+}\hat{h}_{0}^{*} &= h_{61} + i \left(h_{62} - h_{71} \right) + h_{72} ,\\ \hat{h}_{+}\hat{h}_{+}^{*} &= \frac{1}{9} \Big[1 + 3\sqrt{3} \left(g_{8} - 2f_{8} - 2h_{83} \right) + 9g_{3} - 6h_{88} \Big] , \end{split}$$

Including background for $H \to Z \ell^+ \ell^-$

$$\rho_{\rm ZZ} = \alpha \rho_{\rm H \to ZZ} + (1 - \alpha) \rho_{\rm BCKG}$$

Main EW background

 $pp \to ZZ/Z\gamma \to 4\ell$

We take $\ lpha=0.8$ corresponding to bckg 4 times smaller than signal

LHC	run2	HiLumi
	$ a_Z \le 0.0028$	$ a_Z \le 0.00062$
	$ \tilde{a}_Z \le 0.0039$	$ \tilde{a}_Z \le 0.00086$

bckg effects as expected weakens a bit the bounds

 $0 \le \alpha \le 1$

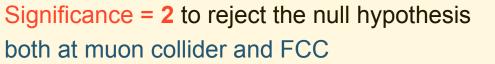
S/(S+B)

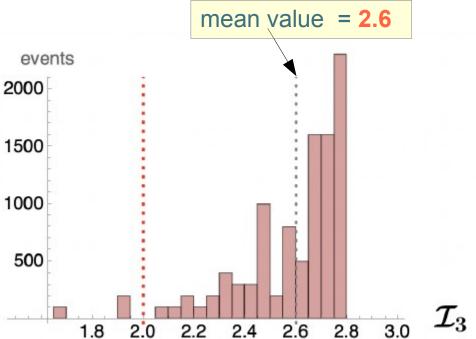
Lepton colliders : events and sensitivity

$$e^+ e^- \to W^+ W^-$$

	$\sqrt{s} = 1 \mathrm{TeV}$	$\sqrt{s} = 368 { m GeV}$
	(muon) $\mathcal{L} = 1 \text{ ab}^{-1}$	(FCC) $\mathcal{L} = 1.5 \text{ ab}^{-1}$
events	$3.6 imes 10^3$	5.8×10^4

 $m_{WW}>200~{\rm GeV}$ and $\cos\Theta<0.25$





Events computed with MADGRAPH@LO

- Efficiency 70% in each lepton identification → n. of events reduced accordingly
- systematic error due to missing neutrino in WW mass reconstruction largely dominates against statistical one
- no background considered

